/* * This file is part of wl1271 * * Copyright (C) 2008-2010 Nokia Corporation * * Contact: Luciano Coelho * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * */ #include #include #include #include #include "wl1271.h" #include "wl12xx_80211.h" #include "wl1271_spi.h" #include "wl1271_io.h" struct device *wl1271_wl_to_dev(struct wl1271 *wl) { return wl->if_ops->dev(wl); } void wl1271_disable_interrupts(struct wl1271 *wl) { wl->if_ops->disable_irq(wl); } void wl1271_enable_interrupts(struct wl1271 *wl) { wl->if_ops->enable_irq(wl); } static int wl1271_translate_addr(struct wl1271 *wl, int addr) { /* * To translate, first check to which window of addresses the * particular address belongs. Then subtract the starting address * of that window from the address. Then, add offset of the * translated region. * * The translated regions occur next to each other in physical device * memory, so just add the sizes of the preceeding address regions to * get the offset to the new region. * * Currently, only the two first regions are addressed, and the * assumption is that all addresses will fall into either of those * two. */ if ((addr >= wl->part.reg.start) && (addr < wl->part.reg.start + wl->part.reg.size)) return addr - wl->part.reg.start + wl->part.mem.size; else return addr - wl->part.mem.start; } /* Set the SPI partitions to access the chip addresses * * To simplify driver code, a fixed (virtual) memory map is defined for * register and memory addresses. Because in the chipset, in different stages * of operation, those addresses will move around, an address translation * mechanism is required. * * There are four partitions (three memory and one register partition), * which are mapped to two different areas of the hardware memory. * * Virtual address * space * * | | * ...+----+--> mem.start * Physical address ... | | * space ... | | [PART_0] * ... | | * 00000000 <--+----+... ...+----+--> mem.start + mem.size * | | ... | | * |MEM | ... | | * | | ... | | * mem.size <--+----+... | | {unused area) * | | ... | | * |REG | ... | | * mem.size | | ... | | * + <--+----+... ...+----+--> reg.start * reg.size | | ... | | * |MEM2| ... | | [PART_1] * | | ... | | * ...+----+--> reg.start + reg.size * | | * */ int wl1271_set_partition(struct wl1271 *wl, struct wl1271_partition_set *p) { /* copy partition info */ memcpy(&wl->part, p, sizeof(*p)); wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X", p->mem.start, p->mem.size); wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X", p->reg.start, p->reg.size); wl1271_debug(DEBUG_SPI, "mem2_start %08X mem2_size %08X", p->mem2.start, p->mem2.size); wl1271_debug(DEBUG_SPI, "mem3_start %08X mem3_size %08X", p->mem3.start, p->mem3.size); /* write partition info to the chipset */ wl1271_raw_write32(wl, HW_PART0_START_ADDR, p->mem.start); wl1271_raw_write32(wl, HW_PART0_SIZE_ADDR, p->mem.size); wl1271_raw_write32(wl, HW_PART1_START_ADDR, p->reg.start); wl1271_raw_write32(wl, HW_PART1_SIZE_ADDR, p->reg.size); wl1271_raw_write32(wl, HW_PART2_START_ADDR, p->mem2.start); wl1271_raw_write32(wl, HW_PART2_SIZE_ADDR, p->mem2.size); wl1271_raw_write32(wl, HW_PART3_START_ADDR, p->mem3.start); return 0; } void wl1271_io_reset(struct wl1271 *wl) { wl->if_ops->reset(wl); } void wl1271_io_init(struct wl1271 *wl) { wl->if_ops->init(wl); } void wl1271_raw_write(struct wl1271 *wl, int addr, void *buf, size_t len, bool fixed) { wl->if_ops->write(wl, addr, buf, len, fixed); } void wl1271_raw_read(struct wl1271 *wl, int addr, void *buf, size_t len, bool fixed) { wl->if_ops->read(wl, addr, buf, len, fixed); } void wl1271_read(struct wl1271 *wl, int addr, void *buf, size_t len, bool fixed) { int physical; physical = wl1271_translate_addr(wl, addr); wl1271_raw_read(wl, physical, buf, len, fixed); } void wl1271_write(struct wl1271 *wl, int addr, void *buf, size_t len, bool fixed) { int physical; physical = wl1271_translate_addr(wl, addr); wl1271_raw_write(wl, physical, buf, len, fixed); } u32 wl1271_read32(struct wl1271 *wl, int addr) { return wl1271_raw_read32(wl, wl1271_translate_addr(wl, addr)); } void wl1271_write32(struct wl1271 *wl, int addr, u32 val) { wl1271_raw_write32(wl, wl1271_translate_addr(wl, addr), val); } void wl1271_top_reg_write(struct wl1271 *wl, int addr, u16 val) { /* write address >> 1 + 0x30000 to OCP_POR_CTR */ addr = (addr >> 1) + 0x30000; wl1271_write32(wl, OCP_POR_CTR, addr); /* write value to OCP_POR_WDATA */ wl1271_write32(wl, OCP_DATA_WRITE, val); /* write 1 to OCP_CMD */ wl1271_write32(wl, OCP_CMD, OCP_CMD_WRITE); } u16 wl1271_top_reg_read(struct wl1271 *wl, int addr) { u32 val; int timeout = OCP_CMD_LOOP; /* write address >> 1 + 0x30000 to OCP_POR_CTR */ addr = (addr >> 1) + 0x30000; wl1271_write32(wl, OCP_POR_CTR, addr); /* write 2 to OCP_CMD */ wl1271_write32(wl, OCP_CMD, OCP_CMD_READ); /* poll for data ready */ do { val = wl1271_read32(wl, OCP_DATA_READ); } while (!(val & OCP_READY_MASK) && --timeout); if (!timeout) { wl1271_warning("Top register access timed out."); return 0xffff; } /* check data status and return if OK */ if ((val & OCP_STATUS_MASK) == OCP_STATUS_OK) return val & 0xffff; else { wl1271_warning("Top register access returned error."); return 0xffff; } }