/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include "types.h" #include "dma.h" #include "soc.h" /* * dma register field offset calculation */ #define DMA64REGOFFS(field) offsetof(struct dma64regs, field) #define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field)) #define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field)) /* * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within * a contiguous 8kB physical address. */ #define D64RINGALIGN_BITS 13 #define D64MAXRINGSZ (1 << D64RINGALIGN_BITS) #define D64RINGALIGN (1 << D64RINGALIGN_BITS) #define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc)) /* transmit channel control */ #define D64_XC_XE 0x00000001 /* transmit enable */ #define D64_XC_SE 0x00000002 /* transmit suspend request */ #define D64_XC_LE 0x00000004 /* loopback enable */ #define D64_XC_FL 0x00000010 /* flush request */ #define D64_XC_PD 0x00000800 /* parity check disable */ #define D64_XC_AE 0x00030000 /* address extension bits */ #define D64_XC_AE_SHIFT 16 /* transmit descriptor table pointer */ #define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */ /* transmit channel status */ #define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */ #define D64_XS0_XS_MASK 0xf0000000 /* transmit state */ #define D64_XS0_XS_SHIFT 28 #define D64_XS0_XS_DISABLED 0x00000000 /* disabled */ #define D64_XS0_XS_ACTIVE 0x10000000 /* active */ #define D64_XS0_XS_IDLE 0x20000000 /* idle wait */ #define D64_XS0_XS_STOPPED 0x30000000 /* stopped */ #define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */ #define D64_XS1_AD_MASK 0x00001fff /* active descriptor */ #define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */ #define D64_XS1_XE_SHIFT 28 #define D64_XS1_XE_NOERR 0x00000000 /* no error */ #define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */ #define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */ #define D64_XS1_XE_DTE 0x30000000 /* data transfer error */ #define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */ #define D64_XS1_XE_COREE 0x50000000 /* core error */ /* receive channel control */ /* receive enable */ #define D64_RC_RE 0x00000001 /* receive frame offset */ #define D64_RC_RO_MASK 0x000000fe #define D64_RC_RO_SHIFT 1 /* direct fifo receive (pio) mode */ #define D64_RC_FM 0x00000100 /* separate rx header descriptor enable */ #define D64_RC_SH 0x00000200 /* overflow continue */ #define D64_RC_OC 0x00000400 /* parity check disable */ #define D64_RC_PD 0x00000800 /* address extension bits */ #define D64_RC_AE 0x00030000 #define D64_RC_AE_SHIFT 16 /* flags for dma controller */ /* partity enable */ #define DMA_CTRL_PEN (1 << 0) /* rx overflow continue */ #define DMA_CTRL_ROC (1 << 1) /* allow rx scatter to multiple descriptors */ #define DMA_CTRL_RXMULTI (1 << 2) /* Unframed Rx/Tx data */ #define DMA_CTRL_UNFRAMED (1 << 3) /* receive descriptor table pointer */ #define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */ /* receive channel status */ #define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */ #define D64_RS0_RS_MASK 0xf0000000 /* receive state */ #define D64_RS0_RS_SHIFT 28 #define D64_RS0_RS_DISABLED 0x00000000 /* disabled */ #define D64_RS0_RS_ACTIVE 0x10000000 /* active */ #define D64_RS0_RS_IDLE 0x20000000 /* idle wait */ #define D64_RS0_RS_STOPPED 0x30000000 /* stopped */ #define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */ #define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */ #define D64_RS1_RE_MASK 0xf0000000 /* receive errors */ #define D64_RS1_RE_SHIFT 28 #define D64_RS1_RE_NOERR 0x00000000 /* no error */ #define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */ #define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */ #define D64_RS1_RE_DTE 0x30000000 /* data transfer error */ #define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */ #define D64_RS1_RE_COREE 0x50000000 /* core error */ /* fifoaddr */ #define D64_FA_OFF_MASK 0xffff /* offset */ #define D64_FA_SEL_MASK 0xf0000 /* select */ #define D64_FA_SEL_SHIFT 16 #define D64_FA_SEL_XDD 0x00000 /* transmit dma data */ #define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */ #define D64_FA_SEL_RDD 0x40000 /* receive dma data */ #define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */ #define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */ #define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */ #define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */ #define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */ #define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */ #define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */ /* descriptor control flags 1 */ #define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */ #define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */ #define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */ #define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */ #define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */ /* descriptor control flags 2 */ /* buffer byte count. real data len must <= 16KB */ #define D64_CTRL2_BC_MASK 0x00007fff /* address extension bits */ #define D64_CTRL2_AE 0x00030000 #define D64_CTRL2_AE_SHIFT 16 /* parity bit */ #define D64_CTRL2_PARITY 0x00040000 /* control flags in the range [27:20] are core-specific and not defined here */ #define D64_CTRL_CORE_MASK 0x0ff00000 #define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */ #define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */ #define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */ #define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */ /* * packet headroom necessary to accommodate the largest header * in the system, (i.e TXOFF). By doing, we avoid the need to * allocate an extra buffer for the header when bridging to WL. * There is a compile time check in wlc.c which ensure that this * value is at least as big as TXOFF. This value is used in * dma_rxfill(). */ #define BCMEXTRAHDROOM 172 /* debug/trace */ #ifdef DEBUG #define DMA_ERROR(fmt, ...) \ do { \ if (*di->msg_level & 1) \ pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \ } while (0) #define DMA_TRACE(fmt, ...) \ do { \ if (*di->msg_level & 2) \ pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \ } while (0) #else #define DMA_ERROR(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #define DMA_TRACE(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif /* DEBUG */ #define DMA_NONE(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #define MAXNAMEL 8 /* 8 char names */ /* macros to convert between byte offsets and indexes */ #define B2I(bytes, type) ((bytes) / sizeof(type)) #define I2B(index, type) ((index) * sizeof(type)) #define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */ #define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */ #define PCI64ADDR_HIGH 0x80000000 /* address[63] */ #define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */ /* * DMA Descriptor * Descriptors are only read by the hardware, never written back. */ struct dma64desc { __le32 ctrl1; /* misc control bits & bufcount */ __le32 ctrl2; /* buffer count and address extension */ __le32 addrlow; /* memory address of the date buffer, bits 31:0 */ __le32 addrhigh; /* memory address of the date buffer, bits 63:32 */ }; /* dma engine software state */ struct dma_info { struct dma_pub dma; /* exported structure */ uint *msg_level; /* message level pointer */ char name[MAXNAMEL]; /* callers name for diag msgs */ struct bcma_device *core; struct device *dmadev; bool dma64; /* this dma engine is operating in 64-bit mode */ bool addrext; /* this dma engine supports DmaExtendedAddrChanges */ /* 64-bit dma tx engine registers */ uint d64txregbase; /* 64-bit dma rx engine registers */ uint d64rxregbase; /* pointer to dma64 tx descriptor ring */ struct dma64desc *txd64; /* pointer to dma64 rx descriptor ring */ struct dma64desc *rxd64; u16 dmadesc_align; /* alignment requirement for dma descriptors */ u16 ntxd; /* # tx descriptors tunable */ u16 txin; /* index of next descriptor to reclaim */ u16 txout; /* index of next descriptor to post */ /* pointer to parallel array of pointers to packets */ struct sk_buff **txp; /* Aligned physical address of descriptor ring */ dma_addr_t txdpa; /* Original physical address of descriptor ring */ dma_addr_t txdpaorig; u16 txdalign; /* #bytes added to alloc'd mem to align txd */ u32 txdalloc; /* #bytes allocated for the ring */ u32 xmtptrbase; /* When using unaligned descriptors, the ptr register * is not just an index, it needs all 13 bits to be * an offset from the addr register. */ u16 nrxd; /* # rx descriptors tunable */ u16 rxin; /* index of next descriptor to reclaim */ u16 rxout; /* index of next descriptor to post */ /* pointer to parallel array of pointers to packets */ struct sk_buff **rxp; /* Aligned physical address of descriptor ring */ dma_addr_t rxdpa; /* Original physical address of descriptor ring */ dma_addr_t rxdpaorig; u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */ u32 rxdalloc; /* #bytes allocated for the ring */ u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */ /* tunables */ unsigned int rxbufsize; /* rx buffer size in bytes, not including * the extra headroom */ uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper * stack, e.g. some rx pkt buffers will be * bridged to tx side without byte copying. * The extra headroom needs to be large enough * to fit txheader needs. Some dongle driver may * not need it. */ uint nrxpost; /* # rx buffers to keep posted */ unsigned int rxoffset; /* rxcontrol offset */ /* add to get dma address of descriptor ring, low 32 bits */ uint ddoffsetlow; /* high 32 bits */ uint ddoffsethigh; /* add to get dma address of data buffer, low 32 bits */ uint dataoffsetlow; /* high 32 bits */ uint dataoffsethigh; /* descriptor base need to be aligned or not */ bool aligndesc_4k; }; /* * default dma message level (if input msg_level * pointer is null in dma_attach()) */ static uint dma_msg_level; /* Check for odd number of 1's */ static u32 parity32(__le32 data) { /* no swap needed for counting 1's */ u32 par_data = *(u32 *)&data; par_data ^= par_data >> 16; par_data ^= par_data >> 8; par_data ^= par_data >> 4; par_data ^= par_data >> 2; par_data ^= par_data >> 1; return par_data & 1; } static bool dma64_dd_parity(struct dma64desc *dd) { return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2); } /* descriptor bumping functions */ static uint xxd(uint x, uint n) { return x & (n - 1); /* faster than %, but n must be power of 2 */ } static uint txd(struct dma_info *di, uint x) { return xxd(x, di->ntxd); } static uint rxd(struct dma_info *di, uint x) { return xxd(x, di->nrxd); } static uint nexttxd(struct dma_info *di, uint i) { return txd(di, i + 1); } static uint prevtxd(struct dma_info *di, uint i) { return txd(di, i - 1); } static uint nextrxd(struct dma_info *di, uint i) { return txd(di, i + 1); } static uint ntxdactive(struct dma_info *di, uint h, uint t) { return txd(di, t-h); } static uint nrxdactive(struct dma_info *di, uint h, uint t) { return rxd(di, t-h); } static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags) { uint dmactrlflags; if (di == NULL) { DMA_ERROR("NULL dma handle\n"); return 0; } dmactrlflags = di->dma.dmactrlflags; dmactrlflags &= ~mask; dmactrlflags |= flags; /* If trying to enable parity, check if parity is actually supported */ if (dmactrlflags & DMA_CTRL_PEN) { u32 control; control = bcma_read32(di->core, DMA64TXREGOFFS(di, control)); bcma_write32(di->core, DMA64TXREGOFFS(di, control), control | D64_XC_PD); if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) & D64_XC_PD) /* We *can* disable it so it is supported, * restore control register */ bcma_write32(di->core, DMA64TXREGOFFS(di, control), control); else /* Not supported, don't allow it to be enabled */ dmactrlflags &= ~DMA_CTRL_PEN; } di->dma.dmactrlflags = dmactrlflags; return dmactrlflags; } static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset) { u32 w; bcma_set32(di->core, ctrl_offset, D64_XC_AE); w = bcma_read32(di->core, ctrl_offset); bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE); return (w & D64_XC_AE) == D64_XC_AE; } /* * return true if this dma engine supports DmaExtendedAddrChanges, * otherwise false */ static bool _dma_isaddrext(struct dma_info *di) { /* DMA64 supports full 32- or 64-bit operation. AE is always valid */ /* not all tx or rx channel are available */ if (di->d64txregbase != 0) { if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control))) DMA_ERROR("%s: DMA64 tx doesn't have AE set\n", di->name); return true; } else if (di->d64rxregbase != 0) { if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control))) DMA_ERROR("%s: DMA64 rx doesn't have AE set\n", di->name); return true; } return false; } static bool _dma_descriptor_align(struct dma_info *di) { u32 addrl; /* Check to see if the descriptors need to be aligned on 4K/8K or not */ if (di->d64txregbase != 0) { bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0); addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow)); if (addrl != 0) return false; } else if (di->d64rxregbase != 0) { bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0); addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow)); if (addrl != 0) return false; } return true; } /* * Descriptor table must start at the DMA hardware dictated alignment, so * allocated memory must be large enough to support this requirement. */ static void *dma_alloc_consistent(struct dma_info *di, uint size, u16 align_bits, uint *alloced, dma_addr_t *pap) { if (align_bits) { u16 align = (1 << align_bits); if (!IS_ALIGNED(PAGE_SIZE, align)) size += align; *alloced = size; } return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC); } static u8 dma_align_sizetobits(uint size) { u8 bitpos = 0; while (size >>= 1) bitpos++; return bitpos; } /* This function ensures that the DMA descriptor ring will not get allocated * across Page boundary. If the allocation is done across the page boundary * at the first time, then it is freed and the allocation is done at * descriptor ring size aligned location. This will ensure that the ring will * not cross page boundary */ static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size, u16 *alignbits, uint *alloced, dma_addr_t *descpa) { void *va; u32 desc_strtaddr; u32 alignbytes = 1 << *alignbits; va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa); if (NULL == va) return NULL; desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes); if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr & boundary)) { *alignbits = dma_align_sizetobits(size); dma_free_coherent(di->dmadev, size, va, *descpa); va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa); } return va; } static bool dma64_alloc(struct dma_info *di, uint direction) { u16 size; uint ddlen; void *va; uint alloced = 0; u16 align; u16 align_bits; ddlen = sizeof(struct dma64desc); size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen); align_bits = di->dmadesc_align; align = (1 << align_bits); if (direction == DMA_TX) { va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits, &alloced, &di->txdpaorig); if (va == NULL) { DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n", di->name); return false; } align = (1 << align_bits); di->txd64 = (struct dma64desc *) roundup((unsigned long)va, align); di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va); di->txdpa = di->txdpaorig + di->txdalign; di->txdalloc = alloced; } else { va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits, &alloced, &di->rxdpaorig); if (va == NULL) { DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n", di->name); return false; } align = (1 << align_bits); di->rxd64 = (struct dma64desc *) roundup((unsigned long)va, align); di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va); di->rxdpa = di->rxdpaorig + di->rxdalign; di->rxdalloc = alloced; } return true; } static bool _dma_alloc(struct dma_info *di, uint direction) { return dma64_alloc(di, direction); } struct dma_pub *dma_attach(char *name, struct si_pub *sih, struct bcma_device *core, uint txregbase, uint rxregbase, uint ntxd, uint nrxd, uint rxbufsize, int rxextheadroom, uint nrxpost, uint rxoffset, uint *msg_level) { struct dma_info *di; u8 rev = core->id.rev; uint size; /* allocate private info structure */ di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC); if (di == NULL) return NULL; di->msg_level = msg_level ? msg_level : &dma_msg_level; di->dma64 = ((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64); /* init dma reg info */ di->core = core; di->d64txregbase = txregbase; di->d64rxregbase = rxregbase; /* * Default flags (which can be changed by the driver calling * dma_ctrlflags before enable): For backwards compatibility * both Rx Overflow Continue and Parity are DISABLED. */ _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0); DMA_TRACE("%s: %s flags 0x%x ntxd %d nrxd %d " "rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d " "txregbase %u rxregbase %u\n", name, "DMA64", di->dma.dmactrlflags, ntxd, nrxd, rxbufsize, rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase); /* make a private copy of our callers name */ strncpy(di->name, name, MAXNAMEL); di->name[MAXNAMEL - 1] = '\0'; di->dmadev = core->dma_dev; /* save tunables */ di->ntxd = (u16) ntxd; di->nrxd = (u16) nrxd; /* the actual dma size doesn't include the extra headroom */ di->rxextrahdrroom = (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom; if (rxbufsize > BCMEXTRAHDROOM) di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom); else di->rxbufsize = (u16) rxbufsize; di->nrxpost = (u16) nrxpost; di->rxoffset = (u8) rxoffset; /* * figure out the DMA physical address offset for dd and data * PCI/PCIE: they map silicon backplace address to zero * based memory, need offset * Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram * swapped region for data buffer, not descriptor */ di->ddoffsetlow = 0; di->dataoffsetlow = 0; /* add offset for pcie with DMA64 bus */ di->ddoffsetlow = 0; di->ddoffsethigh = SI_PCIE_DMA_H32; di->dataoffsetlow = di->ddoffsetlow; di->dataoffsethigh = di->ddoffsethigh; /* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */ if ((core->id.id == SDIOD_CORE_ID) && ((rev > 0) && (rev <= 2))) di->addrext = false; else if ((core->id.id == I2S_CORE_ID) && ((rev == 0) || (rev == 1))) di->addrext = false; else di->addrext = _dma_isaddrext(di); /* does the descriptor need to be aligned and if yes, on 4K/8K or not */ di->aligndesc_4k = _dma_descriptor_align(di); if (di->aligndesc_4k) { di->dmadesc_align = D64RINGALIGN_BITS; if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2)) /* for smaller dd table, HW relax alignment reqmnt */ di->dmadesc_align = D64RINGALIGN_BITS - 1; } else { di->dmadesc_align = 4; /* 16 byte alignment */ } DMA_NONE("DMA descriptor align_needed %d, align %d\n", di->aligndesc_4k, di->dmadesc_align); /* allocate tx packet pointer vector */ if (ntxd) { size = ntxd * sizeof(void *); di->txp = kzalloc(size, GFP_ATOMIC); if (di->txp == NULL) goto fail; } /* allocate rx packet pointer vector */ if (nrxd) { size = nrxd * sizeof(void *); di->rxp = kzalloc(size, GFP_ATOMIC); if (di->rxp == NULL) goto fail; } /* * allocate transmit descriptor ring, only need ntxd descriptors * but it must be aligned */ if (ntxd) { if (!_dma_alloc(di, DMA_TX)) goto fail; } /* * allocate receive descriptor ring, only need nrxd descriptors * but it must be aligned */ if (nrxd) { if (!_dma_alloc(di, DMA_RX)) goto fail; } if ((di->ddoffsetlow != 0) && !di->addrext) { if (di->txdpa > SI_PCI_DMA_SZ) { DMA_ERROR("%s: txdpa 0x%x: addrext not supported\n", di->name, (u32)di->txdpa); goto fail; } if (di->rxdpa > SI_PCI_DMA_SZ) { DMA_ERROR("%s: rxdpa 0x%x: addrext not supported\n", di->name, (u32)di->rxdpa); goto fail; } } DMA_TRACE("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n", di->ddoffsetlow, di->ddoffsethigh, di->dataoffsetlow, di->dataoffsethigh, di->addrext); return (struct dma_pub *) di; fail: dma_detach((struct dma_pub *)di); return NULL; } static inline void dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring, dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount) { u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK; /* PCI bus with big(>1G) physical address, use address extension */ if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) { ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow); ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh); ddring[outidx].ctrl1 = cpu_to_le32(*flags); ddring[outidx].ctrl2 = cpu_to_le32(ctrl2); } else { /* address extension for 32-bit PCI */ u32 ae; ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT; pa &= ~PCI32ADDR_HIGH; ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE; ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow); ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh); ddring[outidx].ctrl1 = cpu_to_le32(*flags); ddring[outidx].ctrl2 = cpu_to_le32(ctrl2); } if (di->dma.dmactrlflags & DMA_CTRL_PEN) { if (dma64_dd_parity(&ddring[outidx])) ddring[outidx].ctrl2 = cpu_to_le32(ctrl2 | D64_CTRL2_PARITY); } } /* !! may be called with core in reset */ void dma_detach(struct dma_pub *pub) { struct dma_info *di = (struct dma_info *)pub; DMA_TRACE("%s:\n", di->name); /* free dma descriptor rings */ if (di->txd64) dma_free_coherent(di->dmadev, di->txdalloc, ((s8 *)di->txd64 - di->txdalign), (di->txdpaorig)); if (di->rxd64) dma_free_coherent(di->dmadev, di->rxdalloc, ((s8 *)di->rxd64 - di->rxdalign), (di->rxdpaorig)); /* free packet pointer vectors */ kfree(di->txp); kfree(di->rxp); /* free our private info structure */ kfree(di); } /* initialize descriptor table base address */ static void _dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa) { if (!di->aligndesc_4k) { if (direction == DMA_TX) di->xmtptrbase = pa; else di->rcvptrbase = pa; } if ((di->ddoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) { if (direction == DMA_TX) { bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), pa + di->ddoffsetlow); bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh), di->ddoffsethigh); } else { bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), pa + di->ddoffsetlow); bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh), di->ddoffsethigh); } } else { /* DMA64 32bits address extension */ u32 ae; /* shift the high bit(s) from pa to ae */ ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT; pa &= ~PCI32ADDR_HIGH; if (direction == DMA_TX) { bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), pa + di->ddoffsetlow); bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh), di->ddoffsethigh); bcma_maskset32(di->core, DMA64TXREGOFFS(di, control), D64_XC_AE, (ae << D64_XC_AE_SHIFT)); } else { bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), pa + di->ddoffsetlow); bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh), di->ddoffsethigh); bcma_maskset32(di->core, DMA64RXREGOFFS(di, control), D64_RC_AE, (ae << D64_RC_AE_SHIFT)); } } } static void _dma_rxenable(struct dma_info *di) { uint dmactrlflags = di->dma.dmactrlflags; u32 control; DMA_TRACE("%s:\n", di->name); control = D64_RC_RE | (bcma_read32(di->core, DMA64RXREGOFFS(di, control)) & D64_RC_AE); if ((dmactrlflags & DMA_CTRL_PEN) == 0) control |= D64_RC_PD; if (dmactrlflags & DMA_CTRL_ROC) control |= D64_RC_OC; bcma_write32(di->core, DMA64RXREGOFFS(di, control), ((di->rxoffset << D64_RC_RO_SHIFT) | control)); } void dma_rxinit(struct dma_pub *pub) { struct dma_info *di = (struct dma_info *)pub; DMA_TRACE("%s:\n", di->name); if (di->nrxd == 0) return; di->rxin = di->rxout = 0; /* clear rx descriptor ring */ memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc)); /* DMA engine with out alignment requirement requires table to be inited * before enabling the engine */ if (!di->aligndesc_4k) _dma_ddtable_init(di, DMA_RX, di->rxdpa); _dma_rxenable(di); if (di->aligndesc_4k) _dma_ddtable_init(di, DMA_RX, di->rxdpa); } static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall) { uint i, curr; struct sk_buff *rxp; dma_addr_t pa; i = di->rxin; /* return if no packets posted */ if (i == di->rxout) return NULL; curr = B2I(((bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) - di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc); /* ignore curr if forceall */ if (!forceall && (i == curr)) return NULL; /* get the packet pointer that corresponds to the rx descriptor */ rxp = di->rxp[i]; di->rxp[i] = NULL; pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow; /* clear this packet from the descriptor ring */ dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE); di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef); di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef); di->rxin = nextrxd(di, i); return rxp; } static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall) { if (di->nrxd == 0) return NULL; return dma64_getnextrxp(di, forceall); } /* * !! rx entry routine * returns the number packages in the next frame, or 0 if there are no more * if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is * supported with pkts chain * otherwise, it's treated as giant pkt and will be tossed. * The DMA scattering starts with normal DMA header, followed by first * buffer data. After it reaches the max size of buffer, the data continues * in next DMA descriptor buffer WITHOUT DMA header */ int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list) { struct dma_info *di = (struct dma_info *)pub; struct sk_buff_head dma_frames; struct sk_buff *p, *next; uint len; uint pkt_len; int resid = 0; int pktcnt = 1; skb_queue_head_init(&dma_frames); next_frame: p = _dma_getnextrxp(di, false); if (p == NULL) return 0; len = le16_to_cpu(*(__le16 *) (p->data)); DMA_TRACE("%s: dma_rx len %d\n", di->name, len); dma_spin_for_len(len, p); /* set actual length */ pkt_len = min((di->rxoffset + len), di->rxbufsize); __skb_trim(p, pkt_len); skb_queue_tail(&dma_frames, p); resid = len - (di->rxbufsize - di->rxoffset); /* check for single or multi-buffer rx */ if (resid > 0) { while ((resid > 0) && (p = _dma_getnextrxp(di, false))) { pkt_len = min_t(uint, resid, di->rxbufsize); __skb_trim(p, pkt_len); skb_queue_tail(&dma_frames, p); resid -= di->rxbufsize; pktcnt++; } #ifdef DEBUG if (resid > 0) { uint cur; cur = B2I(((bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) - di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc); DMA_ERROR("rxin %d rxout %d, hw_curr %d\n", di->rxin, di->rxout, cur); } #endif /* DEBUG */ if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) { DMA_ERROR("%s: bad frame length (%d)\n", di->name, len); skb_queue_walk_safe(&dma_frames, p, next) { skb_unlink(p, &dma_frames); brcmu_pkt_buf_free_skb(p); } di->dma.rxgiants++; pktcnt = 1; goto next_frame; } } skb_queue_splice_tail(&dma_frames, skb_list); return pktcnt; } static bool dma64_rxidle(struct dma_info *di) { DMA_TRACE("%s:\n", di->name); if (di->nrxd == 0) return true; return ((bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) == (bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) & D64_RS0_CD_MASK)); } /* * post receive buffers * return false is refill failed completely and ring is empty this will stall * the rx dma and user might want to call rxfill again asap. This unlikely * happens on memory-rich NIC, but often on memory-constrained dongle */ bool dma_rxfill(struct dma_pub *pub) { struct dma_info *di = (struct dma_info *)pub; struct sk_buff *p; u16 rxin, rxout; u32 flags = 0; uint n; uint i; dma_addr_t pa; uint extra_offset = 0; bool ring_empty; ring_empty = false; /* * Determine how many receive buffers we're lacking * from the full complement, allocate, initialize, * and post them, then update the chip rx lastdscr. */ rxin = di->rxin; rxout = di->rxout; n = di->nrxpost - nrxdactive(di, rxin, rxout); DMA_TRACE("%s: post %d\n", di->name, n); if (di->rxbufsize > BCMEXTRAHDROOM) extra_offset = di->rxextrahdrroom; for (i = 0; i < n; i++) { /* * the di->rxbufsize doesn't include the extra headroom, * we need to add it to the size to be allocated */ p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset); if (p == NULL) { DMA_ERROR("%s: out of rxbufs\n", di->name); if (i == 0 && dma64_rxidle(di)) { DMA_ERROR("%s: ring is empty !\n", di->name); ring_empty = true; } di->dma.rxnobuf++; break; } /* reserve an extra headroom, if applicable */ if (extra_offset) skb_pull(p, extra_offset); /* Do a cached write instead of uncached write since DMA_MAP * will flush the cache. */ *(u32 *) (p->data) = 0; pa = dma_map_single(di->dmadev, p->data, di->rxbufsize, DMA_FROM_DEVICE); /* save the free packet pointer */ di->rxp[rxout] = p; /* reset flags for each descriptor */ flags = 0; if (rxout == (di->nrxd - 1)) flags = D64_CTRL1_EOT; dma64_dd_upd(di, di->rxd64, pa, rxout, &flags, di->rxbufsize); rxout = nextrxd(di, rxout); } di->rxout = rxout; /* update the chip lastdscr pointer */ bcma_write32(di->core, DMA64RXREGOFFS(di, ptr), di->rcvptrbase + I2B(rxout, struct dma64desc)); return ring_empty; } void dma_rxreclaim(struct dma_pub *pub) { struct dma_info *di = (struct dma_info *)pub; struct sk_buff *p; DMA_TRACE("%s:\n", di->name); while ((p = _dma_getnextrxp(di, true))) brcmu_pkt_buf_free_skb(p); } void dma_counterreset(struct dma_pub *pub) { /* reset all software counters */ pub->rxgiants = 0; pub->rxnobuf = 0; pub->txnobuf = 0; } /* get the address of the var in order to change later */ unsigned long dma_getvar(struct dma_pub *pub, const char *name) { struct dma_info *di = (struct dma_info *)pub; if (!strcmp(name, "&txavail")) return (unsigned long)&(di->dma.txavail); return 0; } /* 64-bit DMA functions */ void dma_txinit(struct dma_pub *pub) { struct dma_info *di = (struct dma_info *)pub; u32 control = D64_XC_XE; DMA_TRACE("%s:\n", di->name); if (di->ntxd == 0) return; di->txin = di->txout = 0; di->dma.txavail = di->ntxd - 1; /* clear tx descriptor ring */ memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc))); /* DMA engine with out alignment requirement requires table to be inited * before enabling the engine */ if (!di->aligndesc_4k) _dma_ddtable_init(di, DMA_TX, di->txdpa); if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0) control |= D64_XC_PD; bcma_set32(di->core, DMA64TXREGOFFS(di, control), control); /* DMA engine with alignment requirement requires table to be inited * before enabling the engine */ if (di->aligndesc_4k) _dma_ddtable_init(di, DMA_TX, di->txdpa); } void dma_txsuspend(struct dma_pub *pub) { struct dma_info *di = (struct dma_info *)pub; DMA_TRACE("%s:\n", di->name); if (di->ntxd == 0) return; bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE); } void dma_txresume(struct dma_pub *pub) { struct dma_info *di = (struct dma_info *)pub; DMA_TRACE("%s:\n", di->name); if (di->ntxd == 0) return; bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE); } bool dma_txsuspended(struct dma_pub *pub) { struct dma_info *di = (struct dma_info *)pub; return (di->ntxd == 0) || ((bcma_read32(di->core, DMA64TXREGOFFS(di, control)) & D64_XC_SE) == D64_XC_SE); } void dma_txreclaim(struct dma_pub *pub, enum txd_range range) { struct dma_info *di = (struct dma_info *)pub; struct sk_buff *p; DMA_TRACE("%s: %s\n", di->name, range == DMA_RANGE_ALL ? "all" : range == DMA_RANGE_TRANSMITTED ? "transmitted" : "transferred"); if (di->txin == di->txout) return; while ((p = dma_getnexttxp(pub, range))) { /* For unframed data, we don't have any packets to free */ if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED)) brcmu_pkt_buf_free_skb(p); } } bool dma_txreset(struct dma_pub *pub) { struct dma_info *di = (struct dma_info *)pub; u32 status; if (di->ntxd == 0) return true; /* suspend tx DMA first */ bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE); SPINWAIT(((status = (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) & D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) && (status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED), 10000); bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0); SPINWAIT(((status = (bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) & D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000); /* wait for the last transaction to complete */ udelay(300); return status == D64_XS0_XS_DISABLED; } bool dma_rxreset(struct dma_pub *pub) { struct dma_info *di = (struct dma_info *)pub; u32 status; if (di->nrxd == 0) return true; bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0); SPINWAIT(((status = (bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) & D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000); return status == D64_RS0_RS_DISABLED; } /* * !! tx entry routine * WARNING: call must check the return value for error. * the error(toss frames) could be fatal and cause many subsequent hard * to debug problems */ int dma_txfast(struct dma_pub *pub, struct sk_buff *p, bool commit) { struct dma_info *di = (struct dma_info *)pub; unsigned char *data; uint len; u16 txout; u32 flags = 0; dma_addr_t pa; DMA_TRACE("%s:\n", di->name); txout = di->txout; /* * obtain and initialize transmit descriptor entry. */ data = p->data; len = p->len; /* no use to transmit a zero length packet */ if (len == 0) return 0; /* return nonzero if out of tx descriptors */ if (nexttxd(di, txout) == di->txin) goto outoftxd; /* get physical address of buffer start */ pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE); /* With a DMA segment list, Descriptor table is filled * using the segment list instead of looping over * buffers in multi-chain DMA. Therefore, EOF for SGLIST * is when end of segment list is reached. */ flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF; if (txout == (di->ntxd - 1)) flags |= D64_CTRL1_EOT; dma64_dd_upd(di, di->txd64, pa, txout, &flags, len); txout = nexttxd(di, txout); /* save the packet */ di->txp[prevtxd(di, txout)] = p; /* bump the tx descriptor index */ di->txout = txout; /* kick the chip */ if (commit) bcma_write32(di->core, DMA64TXREGOFFS(di, ptr), di->xmtptrbase + I2B(txout, struct dma64desc)); /* tx flow control */ di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1; return 0; outoftxd: DMA_ERROR("%s: out of txds !!!\n", di->name); brcmu_pkt_buf_free_skb(p); di->dma.txavail = 0; di->dma.txnobuf++; return -1; } /* * Reclaim next completed txd (txds if using chained buffers) in the range * specified and return associated packet. * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be * transmitted as noted by the hardware "CurrDescr" pointer. * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be * transferred by the DMA as noted by the hardware "ActiveDescr" pointer. * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and * return associated packet regardless of the value of hardware pointers. */ struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range) { struct dma_info *di = (struct dma_info *)pub; u16 start, end, i; u16 active_desc; struct sk_buff *txp; DMA_TRACE("%s: %s\n", di->name, range == DMA_RANGE_ALL ? "all" : range == DMA_RANGE_TRANSMITTED ? "transmitted" : "transferred"); if (di->ntxd == 0) return NULL; txp = NULL; start = di->txin; if (range == DMA_RANGE_ALL) end = di->txout; else { end = (u16) (B2I(((bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) & D64_XS0_CD_MASK) - di->xmtptrbase) & D64_XS0_CD_MASK, struct dma64desc)); if (range == DMA_RANGE_TRANSFERED) { active_desc = (u16)(bcma_read32(di->core, DMA64TXREGOFFS(di, status1)) & D64_XS1_AD_MASK); active_desc = (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK; active_desc = B2I(active_desc, struct dma64desc); if (end != active_desc) end = prevtxd(di, active_desc); } } if ((start == 0) && (end > di->txout)) goto bogus; for (i = start; i != end && !txp; i = nexttxd(di, i)) { dma_addr_t pa; uint size; pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow; size = (le32_to_cpu(di->txd64[i].ctrl2) & D64_CTRL2_BC_MASK); di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef); di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef); txp = di->txp[i]; di->txp[i] = NULL; dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE); } di->txin = i; /* tx flow control */ di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1; return txp; bogus: DMA_NONE("bogus curr: start %d end %d txout %d\n", start, end, di->txout); return NULL; } /* * Mac80211 initiated actions sometimes require packets in the DMA queue to be * modified. The modified portion of the packet is not under control of the DMA * engine. This function calls a caller-supplied function for each packet in * the caller specified dma chain. */ void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc) (void *pkt, void *arg_a), void *arg_a) { struct dma_info *di = (struct dma_info *) dmah; uint i = di->txin; uint end = di->txout; struct sk_buff *skb; struct ieee80211_tx_info *tx_info; while (i != end) { skb = di->txp[i]; if (skb != NULL) { tx_info = (struct ieee80211_tx_info *)skb->cb; (callback_fnc)(tx_info, arg_a); } i = nexttxd(di, i); } }