/******************************************************************************* * * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver * Copyright(c) 2013 - 2014 Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Contact Information: * e1000-devel Mailing List * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * ******************************************************************************/ #include "i40evf.h" #include "i40e_prototype.h" static int i40evf_setup_all_tx_resources(struct i40evf_adapter *adapter); static int i40evf_setup_all_rx_resources(struct i40evf_adapter *adapter); static void i40evf_free_all_tx_resources(struct i40evf_adapter *adapter); static void i40evf_free_all_rx_resources(struct i40evf_adapter *adapter); static int i40evf_close(struct net_device *netdev); char i40evf_driver_name[] = "i40evf"; static const char i40evf_driver_string[] = "Intel(R) XL710 X710 Virtual Function Network Driver"; #define DRV_VERSION "0.9.34" const char i40evf_driver_version[] = DRV_VERSION; static const char i40evf_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation."; /* i40evf_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static DEFINE_PCI_DEVICE_TABLE(i40evf_pci_tbl) = { {PCI_VDEVICE(INTEL, I40E_DEV_ID_VF), 0}, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, i40evf_pci_tbl); MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION("Intel(R) XL710 X710 Virtual Function Network Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); /** * i40evf_allocate_dma_mem_d - OS specific memory alloc for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to fill out * @size: size of memory requested * @alignment: what to align the allocation to **/ i40e_status i40evf_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, u64 size, u32 alignment) { struct i40evf_adapter *adapter = (struct i40evf_adapter *)hw->back; if (!mem) return I40E_ERR_PARAM; mem->size = ALIGN(size, alignment); mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, (dma_addr_t *)&mem->pa, GFP_KERNEL); if (mem->va) return 0; else return I40E_ERR_NO_MEMORY; } /** * i40evf_free_dma_mem_d - OS specific memory free for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to free **/ i40e_status i40evf_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) { struct i40evf_adapter *adapter = (struct i40evf_adapter *)hw->back; if (!mem || !mem->va) return I40E_ERR_PARAM; dma_free_coherent(&adapter->pdev->dev, mem->size, mem->va, (dma_addr_t)mem->pa); return 0; } /** * i40evf_allocate_virt_mem_d - OS specific memory alloc for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to fill out * @size: size of memory requested **/ i40e_status i40evf_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, u32 size) { if (!mem) return I40E_ERR_PARAM; mem->size = size; mem->va = kzalloc(size, GFP_KERNEL); if (mem->va) return 0; else return I40E_ERR_NO_MEMORY; } /** * i40evf_free_virt_mem_d - OS specific memory free for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to free **/ i40e_status i40evf_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) { if (!mem) return I40E_ERR_PARAM; /* it's ok to kfree a NULL pointer */ kfree(mem->va); return 0; } /** * i40evf_debug_d - OS dependent version of debug printing * @hw: pointer to the HW structure * @mask: debug level mask * @fmt_str: printf-type format description **/ void i40evf_debug_d(void *hw, u32 mask, char *fmt_str, ...) { char buf[512]; va_list argptr; if (!(mask & ((struct i40e_hw *)hw)->debug_mask)) return; va_start(argptr, fmt_str); vsnprintf(buf, sizeof(buf), fmt_str, argptr); va_end(argptr); /* the debug string is already formatted with a newline */ pr_info("%s", buf); } /** * i40evf_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure **/ static void i40evf_tx_timeout(struct net_device *netdev) { struct i40evf_adapter *adapter = netdev_priv(netdev); adapter->tx_timeout_count++; if (!(adapter->flags & I40EVF_FLAG_RESET_PENDING)) { adapter->flags |= I40EVF_FLAG_RESET_NEEDED; schedule_work(&adapter->reset_task); } } /** * i40evf_misc_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static void i40evf_misc_irq_disable(struct i40evf_adapter *adapter) { struct i40e_hw *hw = &adapter->hw; wr32(hw, I40E_VFINT_DYN_CTL01, 0); /* read flush */ rd32(hw, I40E_VFGEN_RSTAT); synchronize_irq(adapter->msix_entries[0].vector); } /** * i40evf_misc_irq_enable - Enable default interrupt generation settings * @adapter: board private structure **/ static void i40evf_misc_irq_enable(struct i40evf_adapter *adapter) { struct i40e_hw *hw = &adapter->hw; wr32(hw, I40E_VFINT_DYN_CTL01, I40E_VFINT_DYN_CTL01_INTENA_MASK | I40E_VFINT_DYN_CTL01_ITR_INDX_MASK); wr32(hw, I40E_VFINT_ICR0_ENA1, I40E_VFINT_ICR0_ENA_ADMINQ_MASK); /* read flush */ rd32(hw, I40E_VFGEN_RSTAT); } /** * i40evf_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static void i40evf_irq_disable(struct i40evf_adapter *adapter) { int i; struct i40e_hw *hw = &adapter->hw; if (!adapter->msix_entries) return; for (i = 1; i < adapter->num_msix_vectors; i++) { wr32(hw, I40E_VFINT_DYN_CTLN1(i - 1), 0); synchronize_irq(adapter->msix_entries[i].vector); } /* read flush */ rd32(hw, I40E_VFGEN_RSTAT); } /** * i40evf_irq_enable_queues - Enable interrupt for specified queues * @adapter: board private structure * @mask: bitmap of queues to enable **/ void i40evf_irq_enable_queues(struct i40evf_adapter *adapter, u32 mask) { struct i40e_hw *hw = &adapter->hw; int i; for (i = 1; i < adapter->num_msix_vectors; i++) { if (mask & (1 << (i - 1))) { wr32(hw, I40E_VFINT_DYN_CTLN1(i - 1), I40E_VFINT_DYN_CTLN1_INTENA_MASK | I40E_VFINT_DYN_CTLN_CLEARPBA_MASK); } } } /** * i40evf_fire_sw_int - Generate SW interrupt for specified vectors * @adapter: board private structure * @mask: bitmap of vectors to trigger **/ static void i40evf_fire_sw_int(struct i40evf_adapter *adapter, u32 mask) { struct i40e_hw *hw = &adapter->hw; int i; uint32_t dyn_ctl; for (i = 1; i < adapter->num_msix_vectors; i++) { if (mask & (1 << i)) { dyn_ctl = rd32(hw, I40E_VFINT_DYN_CTLN1(i - 1)); dyn_ctl |= I40E_VFINT_DYN_CTLN_SWINT_TRIG_MASK | I40E_VFINT_DYN_CTLN_CLEARPBA_MASK; wr32(hw, I40E_VFINT_DYN_CTLN1(i - 1), dyn_ctl); } } } /** * i40evf_irq_enable - Enable default interrupt generation settings * @adapter: board private structure **/ void i40evf_irq_enable(struct i40evf_adapter *adapter, bool flush) { struct i40e_hw *hw = &adapter->hw; i40evf_irq_enable_queues(adapter, ~0); if (flush) rd32(hw, I40E_VFGEN_RSTAT); } /** * i40evf_msix_aq - Interrupt handler for vector 0 * @irq: interrupt number * @data: pointer to netdev **/ static irqreturn_t i40evf_msix_aq(int irq, void *data) { struct net_device *netdev = data; struct i40evf_adapter *adapter = netdev_priv(netdev); struct i40e_hw *hw = &adapter->hw; u32 val; u32 ena_mask; /* handle non-queue interrupts */ val = rd32(hw, I40E_VFINT_ICR01); ena_mask = rd32(hw, I40E_VFINT_ICR0_ENA1); val = rd32(hw, I40E_VFINT_DYN_CTL01); val = val | I40E_PFINT_DYN_CTL0_CLEARPBA_MASK; wr32(hw, I40E_VFINT_DYN_CTL01, val); /* re-enable interrupt causes */ wr32(hw, I40E_VFINT_ICR0_ENA1, ena_mask); wr32(hw, I40E_VFINT_DYN_CTL01, I40E_VFINT_DYN_CTL01_INTENA_MASK); /* schedule work on the private workqueue */ schedule_work(&adapter->adminq_task); return IRQ_HANDLED; } /** * i40evf_msix_clean_rings - MSIX mode Interrupt Handler * @irq: interrupt number * @data: pointer to a q_vector **/ static irqreturn_t i40evf_msix_clean_rings(int irq, void *data) { struct i40e_q_vector *q_vector = data; if (!q_vector->tx.ring && !q_vector->rx.ring) return IRQ_HANDLED; napi_schedule(&q_vector->napi); return IRQ_HANDLED; } /** * i40evf_map_vector_to_rxq - associate irqs with rx queues * @adapter: board private structure * @v_idx: interrupt number * @r_idx: queue number **/ static void i40evf_map_vector_to_rxq(struct i40evf_adapter *adapter, int v_idx, int r_idx) { struct i40e_q_vector *q_vector = adapter->q_vector[v_idx]; struct i40e_ring *rx_ring = adapter->rx_rings[r_idx]; rx_ring->q_vector = q_vector; rx_ring->next = q_vector->rx.ring; rx_ring->vsi = &adapter->vsi; q_vector->rx.ring = rx_ring; q_vector->rx.count++; q_vector->rx.latency_range = I40E_LOW_LATENCY; } /** * i40evf_map_vector_to_txq - associate irqs with tx queues * @adapter: board private structure * @v_idx: interrupt number * @t_idx: queue number **/ static void i40evf_map_vector_to_txq(struct i40evf_adapter *adapter, int v_idx, int t_idx) { struct i40e_q_vector *q_vector = adapter->q_vector[v_idx]; struct i40e_ring *tx_ring = adapter->tx_rings[t_idx]; tx_ring->q_vector = q_vector; tx_ring->next = q_vector->tx.ring; tx_ring->vsi = &adapter->vsi; q_vector->tx.ring = tx_ring; q_vector->tx.count++; q_vector->tx.latency_range = I40E_LOW_LATENCY; q_vector->num_ringpairs++; q_vector->ring_mask |= (1 << t_idx); } /** * i40evf_map_rings_to_vectors - Maps descriptor rings to vectors * @adapter: board private structure to initialize * * This function maps descriptor rings to the queue-specific vectors * we were allotted through the MSI-X enabling code. Ideally, we'd have * one vector per ring/queue, but on a constrained vector budget, we * group the rings as "efficiently" as possible. You would add new * mapping configurations in here. **/ static int i40evf_map_rings_to_vectors(struct i40evf_adapter *adapter) { int q_vectors; int v_start = 0; int rxr_idx = 0, txr_idx = 0; int rxr_remaining = adapter->vsi_res->num_queue_pairs; int txr_remaining = adapter->vsi_res->num_queue_pairs; int i, j; int rqpv, tqpv; int err = 0; q_vectors = adapter->num_msix_vectors - NONQ_VECS; /* The ideal configuration... * We have enough vectors to map one per queue. */ if (q_vectors == (rxr_remaining * 2)) { for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++) i40evf_map_vector_to_rxq(adapter, v_start, rxr_idx); for (; txr_idx < txr_remaining; v_start++, txr_idx++) i40evf_map_vector_to_txq(adapter, v_start, txr_idx); goto out; } /* If we don't have enough vectors for a 1-to-1 * mapping, we'll have to group them so there are * multiple queues per vector. * Re-adjusting *qpv takes care of the remainder. */ for (i = v_start; i < q_vectors; i++) { rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i); for (j = 0; j < rqpv; j++) { i40evf_map_vector_to_rxq(adapter, i, rxr_idx); rxr_idx++; rxr_remaining--; } } for (i = v_start; i < q_vectors; i++) { tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i); for (j = 0; j < tqpv; j++) { i40evf_map_vector_to_txq(adapter, i, txr_idx); txr_idx++; txr_remaining--; } } out: adapter->aq_required |= I40EVF_FLAG_AQ_MAP_VECTORS; return err; } /** * i40evf_request_traffic_irqs - Initialize MSI-X interrupts * @adapter: board private structure * * Allocates MSI-X vectors for tx and rx handling, and requests * interrupts from the kernel. **/ static int i40evf_request_traffic_irqs(struct i40evf_adapter *adapter, char *basename) { int vector, err, q_vectors; int rx_int_idx = 0, tx_int_idx = 0; i40evf_irq_disable(adapter); /* Decrement for Other and TCP Timer vectors */ q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (vector = 0; vector < q_vectors; vector++) { struct i40e_q_vector *q_vector = adapter->q_vector[vector]; if (q_vector->tx.ring && q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "i40evf-%s-%s-%d", basename, "TxRx", rx_int_idx++); tx_int_idx++; } else if (q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "i40evf-%s-%s-%d", basename, "rx", rx_int_idx++); } else if (q_vector->tx.ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "i40evf-%s-%s-%d", basename, "tx", tx_int_idx++); } else { /* skip this unused q_vector */ continue; } err = request_irq( adapter->msix_entries[vector + NONQ_VECS].vector, i40evf_msix_clean_rings, 0, q_vector->name, q_vector); if (err) { dev_info(&adapter->pdev->dev, "%s: request_irq failed, error: %d\n", __func__, err); goto free_queue_irqs; } /* assign the mask for this irq */ irq_set_affinity_hint( adapter->msix_entries[vector + NONQ_VECS].vector, q_vector->affinity_mask); } return 0; free_queue_irqs: while (vector) { vector--; irq_set_affinity_hint( adapter->msix_entries[vector + NONQ_VECS].vector, NULL); free_irq(adapter->msix_entries[vector + NONQ_VECS].vector, adapter->q_vector[vector]); } return err; } /** * i40evf_request_misc_irq - Initialize MSI-X interrupts * @adapter: board private structure * * Allocates MSI-X vector 0 and requests interrupts from the kernel. This * vector is only for the admin queue, and stays active even when the netdev * is closed. **/ static int i40evf_request_misc_irq(struct i40evf_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err; sprintf(adapter->misc_vector_name, "i40evf:mbx"); err = request_irq(adapter->msix_entries[0].vector, &i40evf_msix_aq, 0, adapter->misc_vector_name, netdev); if (err) { dev_err(&adapter->pdev->dev, "request_irq for %s failed: %d\n", adapter->misc_vector_name, err); free_irq(adapter->msix_entries[0].vector, netdev); } return err; } /** * i40evf_free_traffic_irqs - Free MSI-X interrupts * @adapter: board private structure * * Frees all MSI-X vectors other than 0. **/ static void i40evf_free_traffic_irqs(struct i40evf_adapter *adapter) { int i; int q_vectors; q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (i = 0; i < q_vectors; i++) { irq_set_affinity_hint(adapter->msix_entries[i+1].vector, NULL); free_irq(adapter->msix_entries[i+1].vector, adapter->q_vector[i]); } } /** * i40evf_free_misc_irq - Free MSI-X miscellaneous vector * @adapter: board private structure * * Frees MSI-X vector 0. **/ static void i40evf_free_misc_irq(struct i40evf_adapter *adapter) { struct net_device *netdev = adapter->netdev; free_irq(adapter->msix_entries[0].vector, netdev); } /** * i40evf_configure_tx - Configure Transmit Unit after Reset * @adapter: board private structure * * Configure the Tx unit of the MAC after a reset. **/ static void i40evf_configure_tx(struct i40evf_adapter *adapter) { struct i40e_hw *hw = &adapter->hw; int i; for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) adapter->tx_rings[i]->tail = hw->hw_addr + I40E_QTX_TAIL1(i); } /** * i40evf_configure_rx - Configure Receive Unit after Reset * @adapter: board private structure * * Configure the Rx unit of the MAC after a reset. **/ static void i40evf_configure_rx(struct i40evf_adapter *adapter) { struct i40e_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; int i; int rx_buf_len; adapter->flags &= ~I40EVF_FLAG_RX_PS_CAPABLE; adapter->flags |= I40EVF_FLAG_RX_1BUF_CAPABLE; /* Decide whether to use packet split mode or not */ if (netdev->mtu > ETH_DATA_LEN) { if (adapter->flags & I40EVF_FLAG_RX_PS_CAPABLE) adapter->flags |= I40EVF_FLAG_RX_PS_ENABLED; else adapter->flags &= ~I40EVF_FLAG_RX_PS_ENABLED; } else { if (adapter->flags & I40EVF_FLAG_RX_1BUF_CAPABLE) adapter->flags &= ~I40EVF_FLAG_RX_PS_ENABLED; else adapter->flags |= I40EVF_FLAG_RX_PS_ENABLED; } /* Set the RX buffer length according to the mode */ if (adapter->flags & I40EVF_FLAG_RX_PS_ENABLED) { rx_buf_len = I40E_RX_HDR_SIZE; } else { if (netdev->mtu <= ETH_DATA_LEN) rx_buf_len = I40EVF_RXBUFFER_2048; else rx_buf_len = ALIGN(max_frame, 1024); } for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) { adapter->rx_rings[i]->tail = hw->hw_addr + I40E_QRX_TAIL1(i); adapter->rx_rings[i]->rx_buf_len = rx_buf_len; } } /** * i40evf_find_vlan - Search filter list for specific vlan filter * @adapter: board private structure * @vlan: vlan tag * * Returns ptr to the filter object or NULL **/ static struct i40evf_vlan_filter *i40evf_find_vlan(struct i40evf_adapter *adapter, u16 vlan) { struct i40evf_vlan_filter *f; list_for_each_entry(f, &adapter->vlan_filter_list, list) { if (vlan == f->vlan) return f; } return NULL; } /** * i40evf_add_vlan - Add a vlan filter to the list * @adapter: board private structure * @vlan: VLAN tag * * Returns ptr to the filter object or NULL when no memory available. **/ static struct i40evf_vlan_filter *i40evf_add_vlan(struct i40evf_adapter *adapter, u16 vlan) { struct i40evf_vlan_filter *f; f = i40evf_find_vlan(adapter, vlan); if (NULL == f) { f = kzalloc(sizeof(*f), GFP_ATOMIC); if (NULL == f) return NULL; f->vlan = vlan; INIT_LIST_HEAD(&f->list); list_add(&f->list, &adapter->vlan_filter_list); f->add = true; adapter->aq_required |= I40EVF_FLAG_AQ_ADD_VLAN_FILTER; } return f; } /** * i40evf_del_vlan - Remove a vlan filter from the list * @adapter: board private structure * @vlan: VLAN tag **/ static void i40evf_del_vlan(struct i40evf_adapter *adapter, u16 vlan) { struct i40evf_vlan_filter *f; f = i40evf_find_vlan(adapter, vlan); if (f) { f->remove = true; adapter->aq_required |= I40EVF_FLAG_AQ_DEL_VLAN_FILTER; } } /** * i40evf_vlan_rx_add_vid - Add a VLAN filter to a device * @netdev: network device struct * @vid: VLAN tag **/ static int i40evf_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) { struct i40evf_adapter *adapter = netdev_priv(netdev); if (i40evf_add_vlan(adapter, vid) == NULL) return -ENOMEM; return 0; } /** * i40evf_vlan_rx_kill_vid - Remove a VLAN filter from a device * @netdev: network device struct * @vid: VLAN tag **/ static int i40evf_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) { struct i40evf_adapter *adapter = netdev_priv(netdev); i40evf_del_vlan(adapter, vid); return 0; } /** * i40evf_find_filter - Search filter list for specific mac filter * @adapter: board private structure * @macaddr: the MAC address * * Returns ptr to the filter object or NULL **/ static struct i40evf_mac_filter *i40evf_find_filter(struct i40evf_adapter *adapter, u8 *macaddr) { struct i40evf_mac_filter *f; if (!macaddr) return NULL; list_for_each_entry(f, &adapter->mac_filter_list, list) { if (ether_addr_equal(macaddr, f->macaddr)) return f; } return NULL; } /** * i40e_add_filter - Add a mac filter to the filter list * @adapter: board private structure * @macaddr: the MAC address * * Returns ptr to the filter object or NULL when no memory available. **/ static struct i40evf_mac_filter *i40evf_add_filter(struct i40evf_adapter *adapter, u8 *macaddr) { struct i40evf_mac_filter *f; if (!macaddr) return NULL; while (test_and_set_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section)) mdelay(1); f = i40evf_find_filter(adapter, macaddr); if (NULL == f) { f = kzalloc(sizeof(*f), GFP_ATOMIC); if (NULL == f) { clear_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section); return NULL; } ether_addr_copy(f->macaddr, macaddr); list_add(&f->list, &adapter->mac_filter_list); f->add = true; adapter->aq_required |= I40EVF_FLAG_AQ_ADD_MAC_FILTER; } clear_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section); return f; } /** * i40evf_set_mac - NDO callback to set port mac address * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure **/ static int i40evf_set_mac(struct net_device *netdev, void *p) { struct i40evf_adapter *adapter = netdev_priv(netdev); struct i40e_hw *hw = &adapter->hw; struct i40evf_mac_filter *f; struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) return 0; f = i40evf_add_filter(adapter, addr->sa_data); if (f) { ether_addr_copy(hw->mac.addr, addr->sa_data); ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); } return (f == NULL) ? -ENOMEM : 0; } /** * i40evf_set_rx_mode - NDO callback to set the netdev filters * @netdev: network interface device structure **/ static void i40evf_set_rx_mode(struct net_device *netdev) { struct i40evf_adapter *adapter = netdev_priv(netdev); struct i40evf_mac_filter *f, *ftmp; struct netdev_hw_addr *uca; struct netdev_hw_addr *mca; /* add addr if not already in the filter list */ netdev_for_each_uc_addr(uca, netdev) { i40evf_add_filter(adapter, uca->addr); } netdev_for_each_mc_addr(mca, netdev) { i40evf_add_filter(adapter, mca->addr); } while (test_and_set_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section)) mdelay(1); /* remove filter if not in netdev list */ list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { bool found = false; if (is_multicast_ether_addr(f->macaddr)) { netdev_for_each_mc_addr(mca, netdev) { if (ether_addr_equal(mca->addr, f->macaddr)) { found = true; break; } } } else { netdev_for_each_uc_addr(uca, netdev) { if (ether_addr_equal(uca->addr, f->macaddr)) { found = true; break; } } } if (found) { f->remove = true; adapter->aq_required |= I40EVF_FLAG_AQ_DEL_MAC_FILTER; } } clear_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section); } /** * i40evf_napi_enable_all - enable NAPI on all queue vectors * @adapter: board private structure **/ static void i40evf_napi_enable_all(struct i40evf_adapter *adapter) { int q_idx; struct i40e_q_vector *q_vector; int q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (q_idx = 0; q_idx < q_vectors; q_idx++) { struct napi_struct *napi; q_vector = adapter->q_vector[q_idx]; napi = &q_vector->napi; napi_enable(napi); } } /** * i40evf_napi_disable_all - disable NAPI on all queue vectors * @adapter: board private structure **/ static void i40evf_napi_disable_all(struct i40evf_adapter *adapter) { int q_idx; struct i40e_q_vector *q_vector; int q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (q_idx = 0; q_idx < q_vectors; q_idx++) { q_vector = adapter->q_vector[q_idx]; napi_disable(&q_vector->napi); } } /** * i40evf_configure - set up transmit and receive data structures * @adapter: board private structure **/ static void i40evf_configure(struct i40evf_adapter *adapter) { struct net_device *netdev = adapter->netdev; int i; i40evf_set_rx_mode(netdev); i40evf_configure_tx(adapter); i40evf_configure_rx(adapter); adapter->aq_required |= I40EVF_FLAG_AQ_CONFIGURE_QUEUES; for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) { struct i40e_ring *ring = adapter->rx_rings[i]; i40evf_alloc_rx_buffers(ring, ring->count); ring->next_to_use = ring->count - 1; writel(ring->next_to_use, ring->tail); } } /** * i40evf_up_complete - Finish the last steps of bringing up a connection * @adapter: board private structure **/ static int i40evf_up_complete(struct i40evf_adapter *adapter) { adapter->state = __I40EVF_RUNNING; clear_bit(__I40E_DOWN, &adapter->vsi.state); i40evf_napi_enable_all(adapter); adapter->aq_required |= I40EVF_FLAG_AQ_ENABLE_QUEUES; mod_timer_pending(&adapter->watchdog_timer, jiffies + 1); return 0; } /** * i40evf_clean_all_rx_rings - Free Rx Buffers for all queues * @adapter: board private structure **/ static void i40evf_clean_all_rx_rings(struct i40evf_adapter *adapter) { int i; for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) i40evf_clean_rx_ring(adapter->rx_rings[i]); } /** * i40evf_clean_all_tx_rings - Free Tx Buffers for all queues * @adapter: board private structure **/ static void i40evf_clean_all_tx_rings(struct i40evf_adapter *adapter) { int i; for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) i40evf_clean_tx_ring(adapter->tx_rings[i]); } /** * i40e_down - Shutdown the connection processing * @adapter: board private structure **/ void i40evf_down(struct i40evf_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct i40evf_mac_filter *f; if (adapter->state == __I40EVF_DOWN) return; /* remove all MAC filters */ list_for_each_entry(f, &adapter->mac_filter_list, list) { f->remove = true; } /* remove all VLAN filters */ list_for_each_entry(f, &adapter->vlan_filter_list, list) { f->remove = true; } if (!(adapter->flags & I40EVF_FLAG_PF_COMMS_FAILED) && adapter->state != __I40EVF_RESETTING) { adapter->aq_required |= I40EVF_FLAG_AQ_DEL_MAC_FILTER; adapter->aq_required |= I40EVF_FLAG_AQ_DEL_VLAN_FILTER; /* disable receives */ adapter->aq_required |= I40EVF_FLAG_AQ_DISABLE_QUEUES; mod_timer_pending(&adapter->watchdog_timer, jiffies + 1); msleep(20); } netif_tx_disable(netdev); netif_tx_stop_all_queues(netdev); i40evf_irq_disable(adapter); i40evf_napi_disable_all(adapter); netif_carrier_off(netdev); i40evf_clean_all_tx_rings(adapter); i40evf_clean_all_rx_rings(adapter); } /** * i40evf_acquire_msix_vectors - Setup the MSIX capability * @adapter: board private structure * @vectors: number of vectors to request * * Work with the OS to set up the MSIX vectors needed. * * Returns 0 on success, negative on failure **/ static int i40evf_acquire_msix_vectors(struct i40evf_adapter *adapter, int vectors) { int err, vector_threshold; /* We'll want at least 3 (vector_threshold): * 0) Other (Admin Queue and link, mostly) * 1) TxQ[0] Cleanup * 2) RxQ[0] Cleanup */ vector_threshold = MIN_MSIX_COUNT; /* The more we get, the more we will assign to Tx/Rx Cleanup * for the separate queues...where Rx Cleanup >= Tx Cleanup. * Right now, we simply care about how many we'll get; we'll * set them up later while requesting irq's. */ err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, vector_threshold, vectors); if (err < 0) { dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); kfree(adapter->msix_entries); adapter->msix_entries = NULL; return err; } /* Adjust for only the vectors we'll use, which is minimum * of max_msix_q_vectors + NONQ_VECS, or the number of * vectors we were allocated. */ adapter->num_msix_vectors = err; return 0; } /** * i40evf_free_queues - Free memory for all rings * @adapter: board private structure to initialize * * Free all of the memory associated with queue pairs. **/ static void i40evf_free_queues(struct i40evf_adapter *adapter) { int i; if (!adapter->vsi_res) return; for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) { if (adapter->tx_rings[i]) kfree_rcu(adapter->tx_rings[i], rcu); adapter->tx_rings[i] = NULL; adapter->rx_rings[i] = NULL; } } /** * i40evf_alloc_queues - Allocate memory for all rings * @adapter: board private structure to initialize * * We allocate one ring per queue at run-time since we don't know the * number of queues at compile-time. The polling_netdev array is * intended for Multiqueue, but should work fine with a single queue. **/ static int i40evf_alloc_queues(struct i40evf_adapter *adapter) { int i; for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) { struct i40e_ring *tx_ring; struct i40e_ring *rx_ring; tx_ring = kzalloc(sizeof(struct i40e_ring) * 2, GFP_KERNEL); if (!tx_ring) goto err_out; tx_ring->queue_index = i; tx_ring->netdev = adapter->netdev; tx_ring->dev = &adapter->pdev->dev; tx_ring->count = adapter->tx_desc_count; adapter->tx_rings[i] = tx_ring; rx_ring = &tx_ring[1]; rx_ring->queue_index = i; rx_ring->netdev = adapter->netdev; rx_ring->dev = &adapter->pdev->dev; rx_ring->count = adapter->rx_desc_count; adapter->rx_rings[i] = rx_ring; } return 0; err_out: i40evf_free_queues(adapter); return -ENOMEM; } /** * i40evf_set_interrupt_capability - set MSI-X or FAIL if not supported * @adapter: board private structure to initialize * * Attempt to configure the interrupts using the best available * capabilities of the hardware and the kernel. **/ static int i40evf_set_interrupt_capability(struct i40evf_adapter *adapter) { int vector, v_budget; int pairs = 0; int err = 0; if (!adapter->vsi_res) { err = -EIO; goto out; } pairs = adapter->vsi_res->num_queue_pairs; /* It's easy to be greedy for MSI-X vectors, but it really * doesn't do us much good if we have a lot more vectors * than CPU's. So let's be conservative and only ask for * (roughly) twice the number of vectors as there are CPU's. */ v_budget = min_t(int, pairs, (int)(num_online_cpus() * 2)) + NONQ_VECS; v_budget = min_t(int, v_budget, (int)adapter->vf_res->max_vectors); adapter->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), GFP_KERNEL); if (!adapter->msix_entries) { err = -ENOMEM; goto out; } for (vector = 0; vector < v_budget; vector++) adapter->msix_entries[vector].entry = vector; i40evf_acquire_msix_vectors(adapter, v_budget); out: adapter->netdev->real_num_tx_queues = pairs; return err; } /** * i40evf_alloc_q_vectors - Allocate memory for interrupt vectors * @adapter: board private structure to initialize * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. **/ static int i40evf_alloc_q_vectors(struct i40evf_adapter *adapter) { int q_idx, num_q_vectors; struct i40e_q_vector *q_vector; num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); if (!q_vector) goto err_out; q_vector->adapter = adapter; q_vector->vsi = &adapter->vsi; q_vector->v_idx = q_idx; netif_napi_add(adapter->netdev, &q_vector->napi, i40evf_napi_poll, NAPI_POLL_WEIGHT); adapter->q_vector[q_idx] = q_vector; } return 0; err_out: while (q_idx) { q_idx--; q_vector = adapter->q_vector[q_idx]; netif_napi_del(&q_vector->napi); kfree(q_vector); adapter->q_vector[q_idx] = NULL; } return -ENOMEM; } /** * i40evf_free_q_vectors - Free memory allocated for interrupt vectors * @adapter: board private structure to initialize * * This function frees the memory allocated to the q_vectors. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void i40evf_free_q_vectors(struct i40evf_adapter *adapter) { int q_idx, num_q_vectors; int napi_vectors; num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; napi_vectors = adapter->vsi_res->num_queue_pairs; for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { struct i40e_q_vector *q_vector = adapter->q_vector[q_idx]; adapter->q_vector[q_idx] = NULL; if (q_idx < napi_vectors) netif_napi_del(&q_vector->napi); kfree(q_vector); } } /** * i40evf_reset_interrupt_capability - Reset MSIX setup * @adapter: board private structure * **/ void i40evf_reset_interrupt_capability(struct i40evf_adapter *adapter) { pci_disable_msix(adapter->pdev); kfree(adapter->msix_entries); adapter->msix_entries = NULL; } /** * i40evf_init_interrupt_scheme - Determine if MSIX is supported and init * @adapter: board private structure to initialize * **/ int i40evf_init_interrupt_scheme(struct i40evf_adapter *adapter) { int err; err = i40evf_set_interrupt_capability(adapter); if (err) { dev_err(&adapter->pdev->dev, "Unable to setup interrupt capabilities\n"); goto err_set_interrupt; } err = i40evf_alloc_q_vectors(adapter); if (err) { dev_err(&adapter->pdev->dev, "Unable to allocate memory for queue vectors\n"); goto err_alloc_q_vectors; } err = i40evf_alloc_queues(adapter); if (err) { dev_err(&adapter->pdev->dev, "Unable to allocate memory for queues\n"); goto err_alloc_queues; } dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", (adapter->vsi_res->num_queue_pairs > 1) ? "Enabled" : "Disabled", adapter->vsi_res->num_queue_pairs); return 0; err_alloc_queues: i40evf_free_q_vectors(adapter); err_alloc_q_vectors: i40evf_reset_interrupt_capability(adapter); err_set_interrupt: return err; } /** * i40evf_watchdog_timer - Periodic call-back timer * @data: pointer to adapter disguised as unsigned long **/ static void i40evf_watchdog_timer(unsigned long data) { struct i40evf_adapter *adapter = (struct i40evf_adapter *)data; schedule_work(&adapter->watchdog_task); /* timer will be rescheduled in watchdog task */ } /** * i40evf_watchdog_task - Periodic call-back task * @work: pointer to work_struct **/ static void i40evf_watchdog_task(struct work_struct *work) { struct i40evf_adapter *adapter = container_of(work, struct i40evf_adapter, watchdog_task); struct i40e_hw *hw = &adapter->hw; if (test_and_set_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section)) goto restart_watchdog; if (adapter->flags & I40EVF_FLAG_PF_COMMS_FAILED) { if ((rd32(hw, I40E_VFGEN_RSTAT) & 0x3) == I40E_VFR_VFACTIVE) { /* A chance for redemption! */ dev_err(&adapter->pdev->dev, "Hardware came out of reset. Attempting reinit.\n"); adapter->state = __I40EVF_STARTUP; adapter->flags &= ~I40EVF_FLAG_PF_COMMS_FAILED; schedule_delayed_work(&adapter->init_task, 10); clear_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section); /* Don't reschedule the watchdog, since we've restarted * the init task. When init_task contacts the PF and * gets everything set up again, it'll restart the * watchdog for us. Down, boy. Sit. Stay. Woof. */ return; } adapter->aq_pending = 0; adapter->aq_required = 0; adapter->current_op = I40E_VIRTCHNL_OP_UNKNOWN; goto watchdog_done; } if ((adapter->state < __I40EVF_DOWN) || (adapter->flags & I40EVF_FLAG_RESET_PENDING)) goto watchdog_done; /* check for reset */ if (!(adapter->flags & I40EVF_FLAG_RESET_PENDING) && (rd32(hw, I40E_VFGEN_RSTAT) & 0x3) != I40E_VFR_VFACTIVE) { adapter->state = __I40EVF_RESETTING; adapter->flags |= I40EVF_FLAG_RESET_PENDING; dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); schedule_work(&adapter->reset_task); adapter->aq_pending = 0; adapter->aq_required = 0; adapter->current_op = I40E_VIRTCHNL_OP_UNKNOWN; goto watchdog_done; } /* Process admin queue tasks. After init, everything gets done * here so we don't race on the admin queue. */ if (adapter->aq_pending) goto watchdog_done; if (adapter->aq_required & I40EVF_FLAG_AQ_MAP_VECTORS) { i40evf_map_queues(adapter); goto watchdog_done; } if (adapter->aq_required & I40EVF_FLAG_AQ_ADD_MAC_FILTER) { i40evf_add_ether_addrs(adapter); goto watchdog_done; } if (adapter->aq_required & I40EVF_FLAG_AQ_ADD_VLAN_FILTER) { i40evf_add_vlans(adapter); goto watchdog_done; } if (adapter->aq_required & I40EVF_FLAG_AQ_DEL_MAC_FILTER) { i40evf_del_ether_addrs(adapter); goto watchdog_done; } if (adapter->aq_required & I40EVF_FLAG_AQ_DEL_VLAN_FILTER) { i40evf_del_vlans(adapter); goto watchdog_done; } if (adapter->aq_required & I40EVF_FLAG_AQ_DISABLE_QUEUES) { i40evf_disable_queues(adapter); goto watchdog_done; } if (adapter->aq_required & I40EVF_FLAG_AQ_CONFIGURE_QUEUES) { i40evf_configure_queues(adapter); goto watchdog_done; } if (adapter->aq_required & I40EVF_FLAG_AQ_ENABLE_QUEUES) { i40evf_enable_queues(adapter); goto watchdog_done; } if (adapter->state == __I40EVF_RUNNING) i40evf_request_stats(adapter); i40evf_irq_enable(adapter, true); i40evf_fire_sw_int(adapter, 0xFF); watchdog_done: clear_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section); restart_watchdog: if (adapter->aq_required) mod_timer(&adapter->watchdog_timer, jiffies + msecs_to_jiffies(20)); else mod_timer(&adapter->watchdog_timer, jiffies + (HZ * 2)); schedule_work(&adapter->adminq_task); } /** * next_queue - increment to next available tx queue * @adapter: board private structure * @j: queue counter * * Helper function for RSS programming to increment through available * queus. Returns the next queue value. **/ static int next_queue(struct i40evf_adapter *adapter, int j) { j += 1; return j >= adapter->vsi_res->num_queue_pairs ? 0 : j; } /** * i40evf_configure_rss - Prepare for RSS if used * @adapter: board private structure **/ static void i40evf_configure_rss(struct i40evf_adapter *adapter) { struct i40e_hw *hw = &adapter->hw; u32 lut = 0; int i, j; u64 hena; /* Set of random keys generated using kernel random number generator */ static const u32 seed[I40E_VFQF_HKEY_MAX_INDEX + 1] = { 0x794221b4, 0xbca0c5ab, 0x6cd5ebd9, 0x1ada6127, 0x983b3aa1, 0x1c4e71eb, 0x7f6328b2, 0xfcdc0da0, 0xc135cafa, 0x7a6f7e2d, 0xe7102d28, 0x163cd12e, 0x4954b126 }; /* Hash type is configured by the PF - we just supply the key */ /* Fill out hash function seed */ for (i = 0; i <= I40E_VFQF_HKEY_MAX_INDEX; i++) wr32(hw, I40E_VFQF_HKEY(i), seed[i]); /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ hena = I40E_DEFAULT_RSS_HENA; wr32(hw, I40E_VFQF_HENA(0), (u32)hena); wr32(hw, I40E_VFQF_HENA(1), (u32)(hena >> 32)); /* Populate the LUT with max no. of queues in round robin fashion */ j = adapter->vsi_res->num_queue_pairs; for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++) { j = next_queue(adapter, j); lut = j; j = next_queue(adapter, j); lut |= j << 8; j = next_queue(adapter, j); lut |= j << 16; j = next_queue(adapter, j); lut |= j << 24; wr32(hw, I40E_VFQF_HLUT(i), lut); } i40e_flush(hw); } #define I40EVF_RESET_WAIT_MS 100 #define I40EVF_RESET_WAIT_COUNT 200 /** * i40evf_reset_task - Call-back task to handle hardware reset * @work: pointer to work_struct * * During reset we need to shut down and reinitialize the admin queue * before we can use it to communicate with the PF again. We also clear * and reinit the rings because that context is lost as well. **/ static void i40evf_reset_task(struct work_struct *work) { struct i40evf_adapter *adapter = container_of(work, struct i40evf_adapter, reset_task); struct i40e_hw *hw = &adapter->hw; int i = 0, err; uint32_t rstat_val; while (test_and_set_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section)) udelay(500); if (adapter->flags & I40EVF_FLAG_RESET_NEEDED) { dev_info(&adapter->pdev->dev, "Requesting reset from PF\n"); i40evf_request_reset(adapter); } /* poll until we see the reset actually happen */ for (i = 0; i < I40EVF_RESET_WAIT_COUNT; i++) { rstat_val = rd32(hw, I40E_VFGEN_RSTAT) & I40E_VFGEN_RSTAT_VFR_STATE_MASK; if (rstat_val != I40E_VFR_VFACTIVE) break; else msleep(I40EVF_RESET_WAIT_MS); } if (i == I40EVF_RESET_WAIT_COUNT) { adapter->flags &= ~I40EVF_FLAG_RESET_PENDING; goto continue_reset; /* act like the reset happened */ } /* wait until the reset is complete and the PF is responding to us */ for (i = 0; i < I40EVF_RESET_WAIT_COUNT; i++) { rstat_val = rd32(hw, I40E_VFGEN_RSTAT) & I40E_VFGEN_RSTAT_VFR_STATE_MASK; if (rstat_val == I40E_VFR_VFACTIVE) break; else msleep(I40EVF_RESET_WAIT_MS); } if (i == I40EVF_RESET_WAIT_COUNT) { /* reset never finished */ dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", rstat_val); adapter->flags |= I40EVF_FLAG_PF_COMMS_FAILED; if (netif_running(adapter->netdev)) { set_bit(__I40E_DOWN, &adapter->vsi.state); i40evf_down(adapter); i40evf_free_traffic_irqs(adapter); i40evf_free_all_tx_resources(adapter); i40evf_free_all_rx_resources(adapter); } i40evf_free_misc_irq(adapter); i40evf_reset_interrupt_capability(adapter); i40evf_free_queues(adapter); kfree(adapter->vf_res); i40evf_shutdown_adminq(hw); adapter->netdev->flags &= ~IFF_UP; clear_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section); return; /* Do not attempt to reinit. It's dead, Jim. */ } continue_reset: adapter->flags &= ~I40EVF_FLAG_RESET_PENDING; i40evf_down(adapter); adapter->state = __I40EVF_RESETTING; /* kill and reinit the admin queue */ if (i40evf_shutdown_adminq(hw)) dev_warn(&adapter->pdev->dev, "%s: Failed to destroy the Admin Queue resources\n", __func__); err = i40evf_init_adminq(hw); if (err) dev_info(&adapter->pdev->dev, "%s: init_adminq failed: %d\n", __func__, err); adapter->aq_pending = 0; adapter->aq_required = 0; i40evf_map_queues(adapter); clear_bit(__I40EVF_IN_CRITICAL_TASK, &adapter->crit_section); mod_timer(&adapter->watchdog_timer, jiffies + 2); if (netif_running(adapter->netdev)) { /* allocate transmit descriptors */ err = i40evf_setup_all_tx_resources(adapter); if (err) goto reset_err; /* allocate receive descriptors */ err = i40evf_setup_all_rx_resources(adapter); if (err) goto reset_err; i40evf_configure(adapter); err = i40evf_up_complete(adapter); if (err) goto reset_err; i40evf_irq_enable(adapter, true); } return; reset_err: dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); i40evf_close(adapter->netdev); } /** * i40evf_adminq_task - worker thread to clean the admin queue * @work: pointer to work_struct containing our data **/ static void i40evf_adminq_task(struct work_struct *work) { struct i40evf_adapter *adapter = container_of(work, struct i40evf_adapter, adminq_task); struct i40e_hw *hw = &adapter->hw; struct i40e_arq_event_info event; struct i40e_virtchnl_msg *v_msg; i40e_status ret; u32 val, oldval; u16 pending; if (adapter->flags & I40EVF_FLAG_PF_COMMS_FAILED) return; event.msg_size = I40EVF_MAX_AQ_BUF_SIZE; event.msg_buf = kzalloc(event.msg_size, GFP_KERNEL); if (!event.msg_buf) return; v_msg = (struct i40e_virtchnl_msg *)&event.desc; do { ret = i40evf_clean_arq_element(hw, &event, &pending); if (ret) break; /* No event to process or error cleaning ARQ */ i40evf_virtchnl_completion(adapter, v_msg->v_opcode, v_msg->v_retval, event.msg_buf, event.msg_size); if (pending != 0) { dev_info(&adapter->pdev->dev, "%s: ARQ: Pending events %d\n", __func__, pending); memset(event.msg_buf, 0, I40EVF_MAX_AQ_BUF_SIZE); } } while (pending); /* check for error indications */ val = rd32(hw, hw->aq.arq.len); oldval = val; if (val & I40E_VF_ARQLEN_ARQVFE_MASK) { dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); val &= ~I40E_VF_ARQLEN_ARQVFE_MASK; } if (val & I40E_VF_ARQLEN_ARQOVFL_MASK) { dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); val &= ~I40E_VF_ARQLEN_ARQOVFL_MASK; } if (val & I40E_VF_ARQLEN_ARQCRIT_MASK) { dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); val &= ~I40E_VF_ARQLEN_ARQCRIT_MASK; } if (oldval != val) wr32(hw, hw->aq.arq.len, val); val = rd32(hw, hw->aq.asq.len); oldval = val; if (val & I40E_VF_ATQLEN_ATQVFE_MASK) { dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); val &= ~I40E_VF_ATQLEN_ATQVFE_MASK; } if (val & I40E_VF_ATQLEN_ATQOVFL_MASK) { dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); val &= ~I40E_VF_ATQLEN_ATQOVFL_MASK; } if (val & I40E_VF_ATQLEN_ATQCRIT_MASK) { dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); val &= ~I40E_VF_ATQLEN_ATQCRIT_MASK; } if (oldval != val) wr32(hw, hw->aq.asq.len, val); /* re-enable Admin queue interrupt cause */ i40evf_misc_irq_enable(adapter); kfree(event.msg_buf); } /** * i40evf_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: board private structure * * Free all transmit software resources **/ static void i40evf_free_all_tx_resources(struct i40evf_adapter *adapter) { int i; for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) if (adapter->tx_rings[i]->desc) i40evf_free_tx_resources(adapter->tx_rings[i]); } /** * i40evf_setup_all_tx_resources - allocate all queues Tx resources * @adapter: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int i40evf_setup_all_tx_resources(struct i40evf_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) { adapter->tx_rings[i]->count = adapter->tx_desc_count; err = i40evf_setup_tx_descriptors(adapter->tx_rings[i]); if (!err) continue; dev_err(&adapter->pdev->dev, "%s: Allocation for Tx Queue %u failed\n", __func__, i); break; } return err; } /** * i40evf_setup_all_rx_resources - allocate all queues Rx resources * @adapter: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int i40evf_setup_all_rx_resources(struct i40evf_adapter *adapter) { int i, err = 0; for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) { adapter->rx_rings[i]->count = adapter->rx_desc_count; err = i40evf_setup_rx_descriptors(adapter->rx_rings[i]); if (!err) continue; dev_err(&adapter->pdev->dev, "%s: Allocation for Rx Queue %u failed\n", __func__, i); break; } return err; } /** * i40evf_free_all_rx_resources - Free Rx Resources for All Queues * @adapter: board private structure * * Free all receive software resources **/ static void i40evf_free_all_rx_resources(struct i40evf_adapter *adapter) { int i; for (i = 0; i < adapter->vsi_res->num_queue_pairs; i++) if (adapter->rx_rings[i]->desc) i40evf_free_rx_resources(adapter->rx_rings[i]); } /** * i40evf_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. **/ static int i40evf_open(struct net_device *netdev) { struct i40evf_adapter *adapter = netdev_priv(netdev); int err; if (adapter->flags & I40EVF_FLAG_PF_COMMS_FAILED) { dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); return -EIO; } if (adapter->state != __I40EVF_DOWN) return -EBUSY; /* allocate transmit descriptors */ err = i40evf_setup_all_tx_resources(adapter); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = i40evf_setup_all_rx_resources(adapter); if (err) goto err_setup_rx; /* clear any pending interrupts, may auto mask */ err = i40evf_request_traffic_irqs(adapter, netdev->name); if (err) goto err_req_irq; i40evf_configure(adapter); err = i40evf_up_complete(adapter); if (err) goto err_req_irq; i40evf_irq_enable(adapter, true); return 0; err_req_irq: i40evf_down(adapter); i40evf_free_traffic_irqs(adapter); err_setup_rx: i40evf_free_all_rx_resources(adapter); err_setup_tx: i40evf_free_all_tx_resources(adapter); return err; } /** * i40evf_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) * are freed, along with all transmit and receive resources. **/ static int i40evf_close(struct net_device *netdev) { struct i40evf_adapter *adapter = netdev_priv(netdev); if (adapter->state <= __I40EVF_DOWN) return 0; set_bit(__I40E_DOWN, &adapter->vsi.state); i40evf_down(adapter); adapter->state = __I40EVF_DOWN; i40evf_free_traffic_irqs(adapter); i40evf_free_all_tx_resources(adapter); i40evf_free_all_rx_resources(adapter); return 0; } /** * i40evf_get_stats - Get System Network Statistics * @netdev: network interface device structure * * Returns the address of the device statistics structure. * The statistics are actually updated from the timer callback. **/ static struct net_device_stats *i40evf_get_stats(struct net_device *netdev) { struct i40evf_adapter *adapter = netdev_priv(netdev); /* only return the current stats */ return &adapter->net_stats; } /** * i40evf_reinit_locked - Software reinit * @adapter: board private structure * * Reinititalizes the ring structures in response to a software configuration * change. Roughly the same as close followed by open, but skips releasing * and reallocating the interrupts. **/ void i40evf_reinit_locked(struct i40evf_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err; WARN_ON(in_interrupt()); i40evf_down(adapter); /* allocate transmit descriptors */ err = i40evf_setup_all_tx_resources(adapter); if (err) goto err_reinit; /* allocate receive descriptors */ err = i40evf_setup_all_rx_resources(adapter); if (err) goto err_reinit; i40evf_configure(adapter); err = i40evf_up_complete(adapter); if (err) goto err_reinit; i40evf_irq_enable(adapter, true); return; err_reinit: dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); i40evf_close(netdev); } /** * i40evf_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure **/ static int i40evf_change_mtu(struct net_device *netdev, int new_mtu) { struct i40evf_adapter *adapter = netdev_priv(netdev); int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; if ((new_mtu < 68) || (max_frame > I40E_MAX_RXBUFFER)) return -EINVAL; /* must set new MTU before calling down or up */ netdev->mtu = new_mtu; i40evf_reinit_locked(adapter); return 0; } static const struct net_device_ops i40evf_netdev_ops = { .ndo_open = i40evf_open, .ndo_stop = i40evf_close, .ndo_start_xmit = i40evf_xmit_frame, .ndo_get_stats = i40evf_get_stats, .ndo_set_rx_mode = i40evf_set_rx_mode, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = i40evf_set_mac, .ndo_change_mtu = i40evf_change_mtu, .ndo_tx_timeout = i40evf_tx_timeout, .ndo_vlan_rx_add_vid = i40evf_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = i40evf_vlan_rx_kill_vid, }; /** * i40evf_check_reset_complete - check that VF reset is complete * @hw: pointer to hw struct * * Returns 0 if device is ready to use, or -EBUSY if it's in reset. **/ static int i40evf_check_reset_complete(struct i40e_hw *hw) { u32 rstat; int i; for (i = 0; i < 100; i++) { rstat = rd32(hw, I40E_VFGEN_RSTAT); if (rstat == I40E_VFR_VFACTIVE) return 0; udelay(10); } return -EBUSY; } /** * i40evf_init_task - worker thread to perform delayed initialization * @work: pointer to work_struct containing our data * * This task completes the work that was begun in probe. Due to the nature * of VF-PF communications, we may need to wait tens of milliseconds to get * reponses back from the PF. Rather than busy-wait in probe and bog down the * whole system, we'll do it in a task so we can sleep. * This task only runs during driver init. Once we've established * communications with the PF driver and set up our netdev, the watchdog * takes over. **/ static void i40evf_init_task(struct work_struct *work) { struct i40evf_adapter *adapter = container_of(work, struct i40evf_adapter, init_task.work); struct net_device *netdev = adapter->netdev; struct i40evf_mac_filter *f; struct i40e_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; int i, err, bufsz; switch (adapter->state) { case __I40EVF_STARTUP: /* driver loaded, probe complete */ adapter->flags &= ~I40EVF_FLAG_PF_COMMS_FAILED; adapter->flags &= ~I40EVF_FLAG_RESET_PENDING; err = i40e_set_mac_type(hw); if (err) { dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err); goto err; } err = i40evf_check_reset_complete(hw); if (err) { dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", err); goto err; } hw->aq.num_arq_entries = I40EVF_AQ_LEN; hw->aq.num_asq_entries = I40EVF_AQ_LEN; hw->aq.arq_buf_size = I40EVF_MAX_AQ_BUF_SIZE; hw->aq.asq_buf_size = I40EVF_MAX_AQ_BUF_SIZE; err = i40evf_init_adminq(hw); if (err) { dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err); goto err; } err = i40evf_send_api_ver(adapter); if (err) { dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err); i40evf_shutdown_adminq(hw); goto err; } adapter->state = __I40EVF_INIT_VERSION_CHECK; goto restart; break; case __I40EVF_INIT_VERSION_CHECK: if (!i40evf_asq_done(hw)) { dev_err(&pdev->dev, "Admin queue command never completed\n"); goto err; } /* aq msg sent, awaiting reply */ err = i40evf_verify_api_ver(adapter); if (err) { dev_info(&pdev->dev, "Unable to verify API version (%d), retrying\n", err); goto err; } err = i40evf_send_vf_config_msg(adapter); if (err) { dev_err(&pdev->dev, "Unable send config request (%d)\n", err); goto err; } adapter->state = __I40EVF_INIT_GET_RESOURCES; goto restart; break; case __I40EVF_INIT_GET_RESOURCES: /* aq msg sent, awaiting reply */ if (!adapter->vf_res) { bufsz = sizeof(struct i40e_virtchnl_vf_resource) + (I40E_MAX_VF_VSI * sizeof(struct i40e_virtchnl_vsi_resource)); adapter->vf_res = kzalloc(bufsz, GFP_KERNEL); if (!adapter->vf_res) goto err; } err = i40evf_get_vf_config(adapter); if (err == I40E_ERR_ADMIN_QUEUE_NO_WORK) goto restart; if (err) { dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); goto err_alloc; } adapter->state = __I40EVF_INIT_SW; break; default: goto err_alloc; } /* got VF config message back from PF, now we can parse it */ for (i = 0; i < adapter->vf_res->num_vsis; i++) { if (adapter->vf_res->vsi_res[i].vsi_type == I40E_VSI_SRIOV) adapter->vsi_res = &adapter->vf_res->vsi_res[i]; } if (!adapter->vsi_res) { dev_err(&pdev->dev, "No LAN VSI found\n"); goto err_alloc; } adapter->flags |= I40EVF_FLAG_RX_CSUM_ENABLED; netdev->netdev_ops = &i40evf_netdev_ops; i40evf_set_ethtool_ops(netdev); netdev->watchdog_timeo = 5 * HZ; netdev->features |= NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_SCTP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_RXCSUM | NETIF_F_GRO; if (adapter->vf_res->vf_offload_flags & I40E_VIRTCHNL_VF_OFFLOAD_VLAN) { netdev->vlan_features = netdev->features; netdev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER; } /* copy netdev features into list of user selectable features */ netdev->hw_features |= netdev->features; netdev->hw_features &= ~NETIF_F_RXCSUM; if (!is_valid_ether_addr(adapter->hw.mac.addr)) { dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", adapter->hw.mac.addr); random_ether_addr(adapter->hw.mac.addr); } ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); INIT_LIST_HEAD(&adapter->mac_filter_list); INIT_LIST_HEAD(&adapter->vlan_filter_list); f = kzalloc(sizeof(*f), GFP_ATOMIC); if (NULL == f) goto err_sw_init; ether_addr_copy(f->macaddr, adapter->hw.mac.addr); f->add = true; adapter->aq_required |= I40EVF_FLAG_AQ_ADD_MAC_FILTER; list_add(&f->list, &adapter->mac_filter_list); init_timer(&adapter->watchdog_timer); adapter->watchdog_timer.function = &i40evf_watchdog_timer; adapter->watchdog_timer.data = (unsigned long)adapter; mod_timer(&adapter->watchdog_timer, jiffies + 1); adapter->tx_desc_count = I40EVF_DEFAULT_TXD; adapter->rx_desc_count = I40EVF_DEFAULT_RXD; err = i40evf_init_interrupt_scheme(adapter); if (err) goto err_sw_init; i40evf_map_rings_to_vectors(adapter); i40evf_configure_rss(adapter); err = i40evf_request_misc_irq(adapter); if (err) goto err_sw_init; netif_carrier_off(netdev); adapter->vsi.id = adapter->vsi_res->vsi_id; adapter->vsi.seid = adapter->vsi_res->vsi_id; /* dummy */ adapter->vsi.back = adapter; adapter->vsi.base_vector = 1; adapter->vsi.work_limit = I40E_DEFAULT_IRQ_WORK; adapter->vsi.rx_itr_setting = (I40E_ITR_DYNAMIC | ITR_REG_TO_USEC(I40E_ITR_RX_DEF)); adapter->vsi.tx_itr_setting = (I40E_ITR_DYNAMIC | ITR_REG_TO_USEC(I40E_ITR_TX_DEF)); adapter->vsi.netdev = adapter->netdev; if (!adapter->netdev_registered) { err = register_netdev(netdev); if (err) goto err_register; } adapter->netdev_registered = true; netif_tx_stop_all_queues(netdev); dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); if (netdev->features & NETIF_F_GRO) dev_info(&pdev->dev, "GRO is enabled\n"); dev_info(&pdev->dev, "%s\n", i40evf_driver_string); adapter->state = __I40EVF_DOWN; set_bit(__I40E_DOWN, &adapter->vsi.state); i40evf_misc_irq_enable(adapter); return; restart: schedule_delayed_work(&adapter->init_task, msecs_to_jiffies(50)); return; err_register: i40evf_free_misc_irq(adapter); err_sw_init: i40evf_reset_interrupt_capability(adapter); err_alloc: kfree(adapter->vf_res); adapter->vf_res = NULL; err: /* Things went into the weeds, so try again later */ if (++adapter->aq_wait_count > I40EVF_AQ_MAX_ERR) { dev_err(&pdev->dev, "Failed to communicate with PF; giving up\n"); adapter->flags |= I40EVF_FLAG_PF_COMMS_FAILED; return; /* do not reschedule */ } schedule_delayed_work(&adapter->init_task, HZ * 3); } /** * i40evf_shutdown - Shutdown the device in preparation for a reboot * @pdev: pci device structure **/ static void i40evf_shutdown(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); netif_device_detach(netdev); if (netif_running(netdev)) i40evf_close(netdev); #ifdef CONFIG_PM pci_save_state(pdev); #endif pci_disable_device(pdev); } /** * i40evf_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in i40evf_pci_tbl * * Returns 0 on success, negative on failure * * i40evf_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. **/ static int i40evf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct i40evf_adapter *adapter = NULL; struct i40e_hw *hw = NULL; int err; err = pci_enable_device(pdev); if (err) return err; err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err); goto err_dma; } } err = pci_request_regions(pdev, i40evf_driver_name); if (err) { dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); goto err_pci_reg; } pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); netdev = alloc_etherdev_mq(sizeof(struct i40evf_adapter), MAX_TX_QUEUES); if (!netdev) { err = -ENOMEM; goto err_alloc_etherdev; } SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; hw = &adapter->hw; hw->back = adapter; adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1; adapter->state = __I40EVF_STARTUP; /* Call save state here because it relies on the adapter struct. */ pci_save_state(pdev); hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!hw->hw_addr) { err = -EIO; goto err_ioremap; } hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; hw->bus.device = PCI_SLOT(pdev->devfn); hw->bus.func = PCI_FUNC(pdev->devfn); INIT_WORK(&adapter->reset_task, i40evf_reset_task); INIT_WORK(&adapter->adminq_task, i40evf_adminq_task); INIT_WORK(&adapter->watchdog_task, i40evf_watchdog_task); INIT_DELAYED_WORK(&adapter->init_task, i40evf_init_task); schedule_delayed_work(&adapter->init_task, 10); return 0; err_ioremap: free_netdev(netdev); err_alloc_etherdev: pci_release_regions(pdev); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } #ifdef CONFIG_PM /** * i40evf_suspend - Power management suspend routine * @pdev: PCI device information struct * @state: unused * * Called when the system (VM) is entering sleep/suspend. **/ static int i40evf_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct i40evf_adapter *adapter = netdev_priv(netdev); int retval = 0; netif_device_detach(netdev); if (netif_running(netdev)) { rtnl_lock(); i40evf_down(adapter); rtnl_unlock(); } i40evf_free_misc_irq(adapter); i40evf_reset_interrupt_capability(adapter); retval = pci_save_state(pdev); if (retval) return retval; pci_disable_device(pdev); return 0; } /** * i40evf_resume - Power managment resume routine * @pdev: PCI device information struct * * Called when the system (VM) is resumed from sleep/suspend. **/ static int i40evf_resume(struct pci_dev *pdev) { struct i40evf_adapter *adapter = pci_get_drvdata(pdev); struct net_device *netdev = adapter->netdev; u32 err; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); /* pci_restore_state clears dev->state_saved so call * pci_save_state to restore it. */ pci_save_state(pdev); err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n"); return err; } pci_set_master(pdev); rtnl_lock(); err = i40evf_set_interrupt_capability(adapter); if (err) { dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); return err; } err = i40evf_request_misc_irq(adapter); rtnl_unlock(); if (err) { dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); return err; } schedule_work(&adapter->reset_task); netif_device_attach(netdev); return err; } #endif /* CONFIG_PM */ /** * i40evf_remove - Device Removal Routine * @pdev: PCI device information struct * * i40evf_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void i40evf_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct i40evf_adapter *adapter = netdev_priv(netdev); struct i40e_hw *hw = &adapter->hw; cancel_delayed_work_sync(&adapter->init_task); cancel_work_sync(&adapter->reset_task); if (adapter->netdev_registered) { unregister_netdev(netdev); adapter->netdev_registered = false; } adapter->state = __I40EVF_REMOVE; if (adapter->msix_entries) { i40evf_misc_irq_disable(adapter); i40evf_free_misc_irq(adapter); i40evf_reset_interrupt_capability(adapter); } del_timer_sync(&adapter->watchdog_timer); flush_scheduled_work(); if (hw->aq.asq.count) i40evf_shutdown_adminq(hw); iounmap(hw->hw_addr); pci_release_regions(pdev); i40evf_free_queues(adapter); kfree(adapter->vf_res); free_netdev(netdev); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } static struct pci_driver i40evf_driver = { .name = i40evf_driver_name, .id_table = i40evf_pci_tbl, .probe = i40evf_probe, .remove = i40evf_remove, #ifdef CONFIG_PM .suspend = i40evf_suspend, .resume = i40evf_resume, #endif .shutdown = i40evf_shutdown, }; /** * i40e_init_module - Driver Registration Routine * * i40e_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init i40evf_init_module(void) { int ret; pr_info("i40evf: %s - version %s\n", i40evf_driver_string, i40evf_driver_version); pr_info("%s\n", i40evf_copyright); ret = pci_register_driver(&i40evf_driver); return ret; } module_init(i40evf_init_module); /** * i40e_exit_module - Driver Exit Cleanup Routine * * i40e_exit_module is called just before the driver is removed * from memory. **/ static void __exit i40evf_exit_module(void) { pci_unregister_driver(&i40evf_driver); } module_exit(i40evf_exit_module); /* i40evf_main.c */