/* * FCI FC2580 silicon tuner driver * * Copyright (C) 2012 Antti Palosaari * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "fc2580_priv.h" /* Max transfer size done by I2C transfer functions */ #define MAX_XFER_SIZE 64 /* * TODO: * I2C write and read works only for one single register. Multiple registers * could not be accessed using normal register address auto-increment. * There could be (very likely) register to change that behavior.... * * Due to that limitation functions: * fc2580_wr_regs() * fc2580_rd_regs() * could not be used for accessing more than one register at once. * * TODO: * Currently it blind writes bunch of static registers from the * fc2580_freq_regs_lut[] when fc2580_set_params() is called. Add some * logic to reduce unneeded register writes. */ /* write multiple registers */ static int fc2580_wr_regs(struct fc2580_priv *priv, u8 reg, u8 *val, int len) { int ret; u8 buf[MAX_XFER_SIZE]; struct i2c_msg msg[1] = { { .addr = priv->i2c_addr, .flags = 0, .len = 1 + len, .buf = buf, } }; if (1 + len > sizeof(buf)) { dev_warn(&priv->i2c->dev, "%s: i2c wr reg=%04x: len=%d is too big!\n", KBUILD_MODNAME, reg, len); return -EINVAL; } buf[0] = reg; memcpy(&buf[1], val, len); ret = i2c_transfer(priv->i2c, msg, 1); if (ret == 1) { ret = 0; } else { dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%02x " \ "len=%d\n", KBUILD_MODNAME, ret, reg, len); ret = -EREMOTEIO; } return ret; } /* read multiple registers */ static int fc2580_rd_regs(struct fc2580_priv *priv, u8 reg, u8 *val, int len) { int ret; u8 buf[MAX_XFER_SIZE]; struct i2c_msg msg[2] = { { .addr = priv->i2c_addr, .flags = 0, .len = 1, .buf = ®, }, { .addr = priv->i2c_addr, .flags = I2C_M_RD, .len = len, .buf = buf, } }; if (len > sizeof(buf)) { dev_warn(&priv->i2c->dev, "%s: i2c rd reg=%04x: len=%d is too big!\n", KBUILD_MODNAME, reg, len); return -EINVAL; } ret = i2c_transfer(priv->i2c, msg, 2); if (ret == 2) { memcpy(val, buf, len); ret = 0; } else { dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%02x " \ "len=%d\n", KBUILD_MODNAME, ret, reg, len); ret = -EREMOTEIO; } return ret; } /* write single register */ static int fc2580_wr_reg(struct fc2580_priv *priv, u8 reg, u8 val) { return fc2580_wr_regs(priv, reg, &val, 1); } /* read single register */ static int fc2580_rd_reg(struct fc2580_priv *priv, u8 reg, u8 *val) { return fc2580_rd_regs(priv, reg, val, 1); } /* write single register conditionally only when value differs from 0xff * XXX: This is special routine meant only for writing fc2580_freq_regs_lut[] * values. Do not use for the other purposes. */ static int fc2580_wr_reg_ff(struct fc2580_priv *priv, u8 reg, u8 val) { if (val == 0xff) return 0; else return fc2580_wr_regs(priv, reg, &val, 1); } static int fc2580_set_params(struct dvb_frontend *fe) { struct fc2580_priv *priv = fe->tuner_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret = 0, i; unsigned int r_val, n_val, k_val, k_val_reg, f_ref; u8 tmp_val, r18_val; u64 f_vco; /* * Fractional-N synthesizer/PLL. * Most likely all those PLL calculations are not correct. I am not * sure, but it looks like it is divider based Fractional-N synthesizer. * There is divider for reference clock too? * Anyhow, synthesizer calculation results seems to be quite correct. */ dev_dbg(&priv->i2c->dev, "%s: delivery_system=%d frequency=%d " \ "bandwidth_hz=%d\n", __func__, c->delivery_system, c->frequency, c->bandwidth_hz); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* PLL */ for (i = 0; i < ARRAY_SIZE(fc2580_pll_lut); i++) { if (c->frequency <= fc2580_pll_lut[i].freq) break; } if (i == ARRAY_SIZE(fc2580_pll_lut)) goto err; f_vco = c->frequency; f_vco *= fc2580_pll_lut[i].div; if (f_vco >= 2600000000UL) tmp_val = 0x0e | fc2580_pll_lut[i].band; else tmp_val = 0x06 | fc2580_pll_lut[i].band; ret = fc2580_wr_reg(priv, 0x02, tmp_val); if (ret < 0) goto err; if (f_vco >= 2UL * 76 * priv->clk) { r_val = 1; r18_val = 0x00; } else if (f_vco >= 1UL * 76 * priv->clk) { r_val = 2; r18_val = 0x10; } else { r_val = 4; r18_val = 0x20; } f_ref = 2UL * priv->clk / r_val; n_val = div_u64_rem(f_vco, f_ref, &k_val); k_val_reg = div_u64(1ULL * k_val * (1 << 20), f_ref); ret = fc2580_wr_reg(priv, 0x18, r18_val | ((k_val_reg >> 16) & 0xff)); if (ret < 0) goto err; ret = fc2580_wr_reg(priv, 0x1a, (k_val_reg >> 8) & 0xff); if (ret < 0) goto err; ret = fc2580_wr_reg(priv, 0x1b, (k_val_reg >> 0) & 0xff); if (ret < 0) goto err; ret = fc2580_wr_reg(priv, 0x1c, n_val); if (ret < 0) goto err; if (priv->clk >= 28000000) { ret = fc2580_wr_reg(priv, 0x4b, 0x22); if (ret < 0) goto err; } if (fc2580_pll_lut[i].band == 0x00) { if (c->frequency <= 794000000) tmp_val = 0x9f; else tmp_val = 0x8f; ret = fc2580_wr_reg(priv, 0x2d, tmp_val); if (ret < 0) goto err; } /* registers */ for (i = 0; i < ARRAY_SIZE(fc2580_freq_regs_lut); i++) { if (c->frequency <= fc2580_freq_regs_lut[i].freq) break; } if (i == ARRAY_SIZE(fc2580_freq_regs_lut)) goto err; ret = fc2580_wr_reg_ff(priv, 0x25, fc2580_freq_regs_lut[i].r25_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x27, fc2580_freq_regs_lut[i].r27_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x28, fc2580_freq_regs_lut[i].r28_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x29, fc2580_freq_regs_lut[i].r29_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x2b, fc2580_freq_regs_lut[i].r2b_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x2c, fc2580_freq_regs_lut[i].r2c_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x2d, fc2580_freq_regs_lut[i].r2d_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x30, fc2580_freq_regs_lut[i].r30_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x44, fc2580_freq_regs_lut[i].r44_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x50, fc2580_freq_regs_lut[i].r50_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x53, fc2580_freq_regs_lut[i].r53_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x5f, fc2580_freq_regs_lut[i].r5f_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x61, fc2580_freq_regs_lut[i].r61_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x62, fc2580_freq_regs_lut[i].r62_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x63, fc2580_freq_regs_lut[i].r63_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x67, fc2580_freq_regs_lut[i].r67_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x68, fc2580_freq_regs_lut[i].r68_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x69, fc2580_freq_regs_lut[i].r69_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x6a, fc2580_freq_regs_lut[i].r6a_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x6b, fc2580_freq_regs_lut[i].r6b_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x6c, fc2580_freq_regs_lut[i].r6c_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x6d, fc2580_freq_regs_lut[i].r6d_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x6e, fc2580_freq_regs_lut[i].r6e_val); if (ret < 0) goto err; ret = fc2580_wr_reg_ff(priv, 0x6f, fc2580_freq_regs_lut[i].r6f_val); if (ret < 0) goto err; /* IF filters */ for (i = 0; i < ARRAY_SIZE(fc2580_if_filter_lut); i++) { if (c->bandwidth_hz <= fc2580_if_filter_lut[i].freq) break; } if (i == ARRAY_SIZE(fc2580_if_filter_lut)) goto err; ret = fc2580_wr_reg(priv, 0x36, fc2580_if_filter_lut[i].r36_val); if (ret < 0) goto err; ret = fc2580_wr_reg(priv, 0x37, div_u64(1ULL * priv->clk * fc2580_if_filter_lut[i].mul, 1000000000)); if (ret < 0) goto err; ret = fc2580_wr_reg(priv, 0x39, fc2580_if_filter_lut[i].r39_val); if (ret < 0) goto err; /* calibration? */ ret = fc2580_wr_reg(priv, 0x2e, 0x09); if (ret < 0) goto err; for (i = 0; i < 5; i++) { ret = fc2580_rd_reg(priv, 0x2f, &tmp_val); if (ret < 0) goto err; /* done when [7:6] are set */ if ((tmp_val & 0xc0) == 0xc0) break; ret = fc2580_wr_reg(priv, 0x2e, 0x01); if (ret < 0) goto err; ret = fc2580_wr_reg(priv, 0x2e, 0x09); if (ret < 0) goto err; usleep_range(5000, 25000); } dev_dbg(&priv->i2c->dev, "%s: loop=%i\n", __func__, i); ret = fc2580_wr_reg(priv, 0x2e, 0x01); if (ret < 0) goto err; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return 0; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int fc2580_init(struct dvb_frontend *fe) { struct fc2580_priv *priv = fe->tuner_priv; int ret, i; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); for (i = 0; i < ARRAY_SIZE(fc2580_init_reg_vals); i++) { ret = fc2580_wr_reg(priv, fc2580_init_reg_vals[i].reg, fc2580_init_reg_vals[i].val); if (ret < 0) goto err; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return 0; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int fc2580_sleep(struct dvb_frontend *fe) { struct fc2580_priv *priv = fe->tuner_priv; int ret; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); ret = fc2580_wr_reg(priv, 0x02, 0x0a); if (ret < 0) goto err; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return 0; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret); return ret; } static int fc2580_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { struct fc2580_priv *priv = fe->tuner_priv; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); *frequency = 0; /* Zero-IF */ return 0; } static int fc2580_release(struct dvb_frontend *fe) { struct fc2580_priv *priv = fe->tuner_priv; dev_dbg(&priv->i2c->dev, "%s:\n", __func__); kfree(fe->tuner_priv); return 0; } static const struct dvb_tuner_ops fc2580_tuner_ops = { .info = { .name = "FCI FC2580", .frequency_min = 174000000, .frequency_max = 862000000, }, .release = fc2580_release, .init = fc2580_init, .sleep = fc2580_sleep, .set_params = fc2580_set_params, .get_if_frequency = fc2580_get_if_frequency, }; struct dvb_frontend *fc2580_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct fc2580_config *cfg) { struct fc2580_priv *priv; int ret; u8 chip_id; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); priv = kzalloc(sizeof(struct fc2580_priv), GFP_KERNEL); if (!priv) { ret = -ENOMEM; dev_err(&i2c->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME); goto err; } priv->clk = cfg->clock; priv->i2c = i2c; priv->i2c_addr = cfg->i2c_addr; /* check if the tuner is there */ ret = fc2580_rd_reg(priv, 0x01, &chip_id); if (ret < 0) goto err; dev_dbg(&priv->i2c->dev, "%s: chip_id=%02x\n", __func__, chip_id); switch (chip_id) { case 0x56: case 0x5a: break; default: goto err; } dev_info(&priv->i2c->dev, "%s: FCI FC2580 successfully identified\n", KBUILD_MODNAME); fe->tuner_priv = priv; memcpy(&fe->ops.tuner_ops, &fc2580_tuner_ops, sizeof(struct dvb_tuner_ops)); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); return fe; err: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); dev_dbg(&i2c->dev, "%s: failed=%d\n", __func__, ret); kfree(priv); return NULL; } EXPORT_SYMBOL(fc2580_attach); static int fc2580_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct fc2580_priv *dev; struct fc2580_platform_data *pdata = client->dev.platform_data; struct dvb_frontend *fe = pdata->dvb_frontend; int ret; u8 chip_id; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err; } if (pdata->clk) dev->clk = pdata->clk; else dev->clk = 16384000; /* internal clock */ dev->client = client; dev->i2c = client->adapter; dev->i2c_addr = client->addr; /* check if the tuner is there */ ret = fc2580_rd_reg(dev, 0x01, &chip_id); if (ret < 0) goto err_kfree; dev_dbg(&client->dev, "chip_id=%02x\n", chip_id); switch (chip_id) { case 0x56: case 0x5a: break; default: goto err_kfree; } fe->tuner_priv = dev; memcpy(&fe->ops.tuner_ops, &fc2580_tuner_ops, sizeof(struct dvb_tuner_ops)); fe->ops.tuner_ops.release = NULL; i2c_set_clientdata(client, dev); dev_info(&client->dev, "FCI FC2580 successfully identified\n"); return 0; err_kfree: kfree(dev); err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int fc2580_remove(struct i2c_client *client) { struct fc2580_priv *dev = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); kfree(dev); return 0; } static const struct i2c_device_id fc2580_id_table[] = { {"fc2580", 0}, {} }; MODULE_DEVICE_TABLE(i2c, fc2580_id_table); static struct i2c_driver fc2580_driver = { .driver = { .owner = THIS_MODULE, .name = "fc2580", .suppress_bind_attrs = true, }, .probe = fc2580_probe, .remove = fc2580_remove, .id_table = fc2580_id_table, }; module_i2c_driver(fc2580_driver); MODULE_DESCRIPTION("FCI FC2580 silicon tuner driver"); MODULE_AUTHOR("Antti Palosaari "); MODULE_LICENSE("GPL");