/* * Driver for * Samsung S5H1420 and * PnpNetwork PN1010 QPSK Demodulator * * Copyright (C) 2005 Andrew de Quincey * Copyright (C) 2005-8 Patrick Boettcher * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "s5h1420.h" #include "s5h1420_priv.h" #define TONE_FREQ 22000 struct s5h1420_state { struct i2c_adapter* i2c; const struct s5h1420_config* config; struct dvb_frontend frontend; struct i2c_adapter tuner_i2c_adapter; u8 CON_1_val; u8 postlocked:1; u32 fclk; u32 tunedfreq; fe_code_rate_t fec_inner; u32 symbol_rate; /* FIXME: ugly workaround for flexcop's incapable i2c-controller * it does not support repeated-start, workaround: write addr-1 * and then read */ u8 shadow[256]; }; static u32 s5h1420_getsymbolrate(struct s5h1420_state* state); static int s5h1420_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings); static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "enable debugging"); #define dprintk(x...) do { \ if (debug) \ printk(KERN_DEBUG "S5H1420: " x); \ } while (0) static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg) { int ret; u8 b[2]; struct i2c_msg msg[] = { { .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 }, { .addr = state->config->demod_address, .flags = 0, .buf = ®, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 }, }; b[0] = (reg - 1) & 0xff; b[1] = state->shadow[(reg - 1) & 0xff]; if (state->config->repeated_start_workaround) { ret = i2c_transfer(state->i2c, msg, 3); if (ret != 3) return ret; } else { ret = i2c_transfer(state->i2c, &msg[1], 1); if (ret != 1) return ret; ret = i2c_transfer(state->i2c, &msg[2], 1); if (ret != 1) return ret; } /* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */ return b[0]; } static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data) { u8 buf[] = { reg, data }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; int err; /* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */ err = i2c_transfer(state->i2c, &msg, 1); if (err != 1) { dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data); return -EREMOTEIO; } state->shadow[reg] = data; return 0; } static int s5h1420_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage) { struct s5h1420_state* state = fe->demodulator_priv; dprintk("enter %s\n", __func__); switch(voltage) { case SEC_VOLTAGE_13: s5h1420_writereg(state, 0x3c, (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02); break; case SEC_VOLTAGE_18: s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03); break; case SEC_VOLTAGE_OFF: s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd); break; } dprintk("leave %s\n", __func__); return 0; } static int s5h1420_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone) { struct s5h1420_state* state = fe->demodulator_priv; dprintk("enter %s\n", __func__); switch(tone) { case SEC_TONE_ON: s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08); break; case SEC_TONE_OFF: s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01); break; } dprintk("leave %s\n", __func__); return 0; } static int s5h1420_send_master_cmd (struct dvb_frontend* fe, struct dvb_diseqc_master_cmd* cmd) { struct s5h1420_state* state = fe->demodulator_priv; u8 val; int i; unsigned long timeout; int result = 0; dprintk("enter %s\n", __func__); if (cmd->msg_len > 8) return -EINVAL; /* setup for DISEQC */ val = s5h1420_readreg(state, 0x3b); s5h1420_writereg(state, 0x3b, 0x02); msleep(15); /* write the DISEQC command bytes */ for(i=0; i< cmd->msg_len; i++) { s5h1420_writereg(state, 0x3d + i, cmd->msg[i]); } /* kick off transmission */ s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | ((cmd->msg_len-1) << 4) | 0x08); /* wait for transmission to complete */ timeout = jiffies + ((100*HZ) / 1000); while(time_before(jiffies, timeout)) { if (!(s5h1420_readreg(state, 0x3b) & 0x08)) break; msleep(5); } if (time_after(jiffies, timeout)) result = -ETIMEDOUT; /* restore original settings */ s5h1420_writereg(state, 0x3b, val); msleep(15); dprintk("leave %s\n", __func__); return result; } static int s5h1420_recv_slave_reply (struct dvb_frontend* fe, struct dvb_diseqc_slave_reply* reply) { struct s5h1420_state* state = fe->demodulator_priv; u8 val; int i; int length; unsigned long timeout; int result = 0; /* setup for DISEQC receive */ val = s5h1420_readreg(state, 0x3b); s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */ msleep(15); /* wait for reception to complete */ timeout = jiffies + ((reply->timeout*HZ) / 1000); while(time_before(jiffies, timeout)) { if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */ break; msleep(5); } if (time_after(jiffies, timeout)) { result = -ETIMEDOUT; goto exit; } /* check error flag - FIXME: not sure what this does - docs do not describe * beyond "error flag for diseqc receive data :( */ if (s5h1420_readreg(state, 0x49)) { result = -EIO; goto exit; } /* check length */ length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4; if (length > sizeof(reply->msg)) { result = -EOVERFLOW; goto exit; } reply->msg_len = length; /* extract data */ for(i=0; i< length; i++) { reply->msg[i] = s5h1420_readreg(state, 0x3d + i); } exit: /* restore original settings */ s5h1420_writereg(state, 0x3b, val); msleep(15); return result; } static int s5h1420_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd) { struct s5h1420_state* state = fe->demodulator_priv; u8 val; int result = 0; unsigned long timeout; /* setup for tone burst */ val = s5h1420_readreg(state, 0x3b); s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01); /* set value for B position if requested */ if (minicmd == SEC_MINI_B) { s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04); } msleep(15); /* start transmission */ s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08); /* wait for transmission to complete */ timeout = jiffies + ((100*HZ) / 1000); while(time_before(jiffies, timeout)) { if (!(s5h1420_readreg(state, 0x3b) & 0x08)) break; msleep(5); } if (time_after(jiffies, timeout)) result = -ETIMEDOUT; /* restore original settings */ s5h1420_writereg(state, 0x3b, val); msleep(15); return result; } static fe_status_t s5h1420_get_status_bits(struct s5h1420_state* state) { u8 val; fe_status_t status = 0; val = s5h1420_readreg(state, 0x14); if (val & 0x02) status |= FE_HAS_SIGNAL; if (val & 0x01) status |= FE_HAS_CARRIER; val = s5h1420_readreg(state, 0x36); if (val & 0x01) status |= FE_HAS_VITERBI; if (val & 0x20) status |= FE_HAS_SYNC; if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC)) status |= FE_HAS_LOCK; return status; } static int s5h1420_read_status(struct dvb_frontend* fe, fe_status_t* status) { struct s5h1420_state* state = fe->demodulator_priv; u8 val; dprintk("enter %s\n", __func__); if (status == NULL) return -EINVAL; /* determine lock state */ *status = s5h1420_get_status_bits(state); /* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert the inversion, wait a bit and check again */ if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) { val = s5h1420_readreg(state, Vit10); if ((val & 0x07) == 0x03) { if (val & 0x08) s5h1420_writereg(state, Vit09, 0x13); else s5h1420_writereg(state, Vit09, 0x1b); /* wait a bit then update lock status */ mdelay(200); *status = s5h1420_get_status_bits(state); } } /* perform post lock setup */ if ((*status & FE_HAS_LOCK) && !state->postlocked) { /* calculate the data rate */ u32 tmp = s5h1420_getsymbolrate(state); switch (s5h1420_readreg(state, Vit10) & 0x07) { case 0: tmp = (tmp * 2 * 1) / 2; break; case 1: tmp = (tmp * 2 * 2) / 3; break; case 2: tmp = (tmp * 2 * 3) / 4; break; case 3: tmp = (tmp * 2 * 5) / 6; break; case 4: tmp = (tmp * 2 * 6) / 7; break; case 5: tmp = (tmp * 2 * 7) / 8; break; } if (tmp == 0) { printk(KERN_ERR "s5h1420: avoided division by 0\n"); tmp = 1; } tmp = state->fclk / tmp; /* set the MPEG_CLK_INTL for the calculated data rate */ if (tmp < 2) val = 0x00; else if (tmp < 5) val = 0x01; else if (tmp < 9) val = 0x02; else if (tmp < 13) val = 0x03; else if (tmp < 17) val = 0x04; else if (tmp < 25) val = 0x05; else if (tmp < 33) val = 0x06; else val = 0x07; dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val); s5h1420_writereg(state, FEC01, 0x18); s5h1420_writereg(state, FEC01, 0x10); s5h1420_writereg(state, FEC01, val); /* Enable "MPEG_Out" */ val = s5h1420_readreg(state, Mpeg02); s5h1420_writereg(state, Mpeg02, val | (1 << 6)); /* kicker disable */ val = s5h1420_readreg(state, QPSK01) & 0x7f; s5h1420_writereg(state, QPSK01, val); /* DC freeze TODO it was never activated by default or it can stay activated */ if (s5h1420_getsymbolrate(state) >= 20000000) { s5h1420_writereg(state, Loop04, 0x8a); s5h1420_writereg(state, Loop05, 0x6a); } else { s5h1420_writereg(state, Loop04, 0x58); s5h1420_writereg(state, Loop05, 0x27); } /* post-lock processing has been done! */ state->postlocked = 1; } dprintk("leave %s\n", __func__); return 0; } static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber) { struct s5h1420_state* state = fe->demodulator_priv; s5h1420_writereg(state, 0x46, 0x1d); mdelay(25); *ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47); return 0; } static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength) { struct s5h1420_state* state = fe->demodulator_priv; u8 val = s5h1420_readreg(state, 0x15); *strength = (u16) ((val << 8) | val); return 0; } static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct s5h1420_state* state = fe->demodulator_priv; s5h1420_writereg(state, 0x46, 0x1f); mdelay(25); *ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47); return 0; } static void s5h1420_reset(struct s5h1420_state* state) { dprintk("%s\n", __func__); s5h1420_writereg (state, 0x01, 0x08); s5h1420_writereg (state, 0x01, 0x00); udelay(10); } static void s5h1420_setsymbolrate(struct s5h1420_state* state, struct dvb_frontend_parameters *p) { u8 v; u64 val; dprintk("enter %s\n", __func__); val = ((u64) p->u.qpsk.symbol_rate / 1000ULL) * (1ULL<<24); if (p->u.qpsk.symbol_rate < 29000000) val *= 2; do_div(val, (state->fclk / 1000)); dprintk("symbol rate register: %06llx\n", (unsigned long long)val); v = s5h1420_readreg(state, Loop01); s5h1420_writereg(state, Loop01, v & 0x7f); s5h1420_writereg(state, Tnco01, val >> 16); s5h1420_writereg(state, Tnco02, val >> 8); s5h1420_writereg(state, Tnco03, val & 0xff); s5h1420_writereg(state, Loop01, v | 0x80); dprintk("leave %s\n", __func__); } static u32 s5h1420_getsymbolrate(struct s5h1420_state* state) { return state->symbol_rate; } static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset) { int val; u8 v; dprintk("enter %s\n", __func__); /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so * divide fclk by 1000000 to get the correct value. */ val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000)); dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val); v = s5h1420_readreg(state, Loop01); s5h1420_writereg(state, Loop01, v & 0xbf); s5h1420_writereg(state, Pnco01, val >> 16); s5h1420_writereg(state, Pnco02, val >> 8); s5h1420_writereg(state, Pnco03, val & 0xff); s5h1420_writereg(state, Loop01, v | 0x40); dprintk("leave %s\n", __func__); } static int s5h1420_getfreqoffset(struct s5h1420_state* state) { int val; s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08); val = s5h1420_readreg(state, 0x0e) << 16; val |= s5h1420_readreg(state, 0x0f) << 8; val |= s5h1420_readreg(state, 0x10); s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7); if (val & 0x800000) val |= 0xff000000; /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so * divide fclk by 1000000 to get the correct value. */ val = (((-val) * (state->fclk/1000000)) / (1<<24)); return val; } static void s5h1420_setfec_inversion(struct s5h1420_state* state, struct dvb_frontend_parameters *p) { u8 inversion = 0; u8 vit08, vit09; dprintk("enter %s\n", __func__); if (p->inversion == INVERSION_OFF) inversion = state->config->invert ? 0x08 : 0; else if (p->inversion == INVERSION_ON) inversion = state->config->invert ? 0 : 0x08; if ((p->u.qpsk.fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) { vit08 = 0x3f; vit09 = 0; } else { switch(p->u.qpsk.fec_inner) { case FEC_1_2: vit08 = 0x01; vit09 = 0x10; break; case FEC_2_3: vit08 = 0x02; vit09 = 0x11; break; case FEC_3_4: vit08 = 0x04; vit09 = 0x12; break; case FEC_5_6: vit08 = 0x08; vit09 = 0x13; break; case FEC_6_7: vit08 = 0x10; vit09 = 0x14; break; case FEC_7_8: vit08 = 0x20; vit09 = 0x15; break; default: return; } } vit09 |= inversion; dprintk("fec: %02x %02x\n", vit08, vit09); s5h1420_writereg(state, Vit08, vit08); s5h1420_writereg(state, Vit09, vit09); dprintk("leave %s\n", __func__); } static fe_code_rate_t s5h1420_getfec(struct s5h1420_state* state) { switch(s5h1420_readreg(state, 0x32) & 0x07) { case 0: return FEC_1_2; case 1: return FEC_2_3; case 2: return FEC_3_4; case 3: return FEC_5_6; case 4: return FEC_6_7; case 5: return FEC_7_8; } return FEC_NONE; } static fe_spectral_inversion_t s5h1420_getinversion(struct s5h1420_state* state) { if (s5h1420_readreg(state, 0x32) & 0x08) return INVERSION_ON; return INVERSION_OFF; } static int s5h1420_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) { struct s5h1420_state* state = fe->demodulator_priv; int frequency_delta; struct dvb_frontend_tune_settings fesettings; uint8_t clock_setting; dprintk("enter %s\n", __func__); /* check if we should do a fast-tune */ memcpy(&fesettings.parameters, p, sizeof(struct dvb_frontend_parameters)); s5h1420_get_tune_settings(fe, &fesettings); frequency_delta = p->frequency - state->tunedfreq; if ((frequency_delta > -fesettings.max_drift) && (frequency_delta < fesettings.max_drift) && (frequency_delta != 0) && (state->fec_inner == p->u.qpsk.fec_inner) && (state->symbol_rate == p->u.qpsk.symbol_rate)) { if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } if (fe->ops.tuner_ops.get_frequency) { u32 tmp; fe->ops.tuner_ops.get_frequency(fe, &tmp); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); s5h1420_setfreqoffset(state, p->frequency - tmp); } else { s5h1420_setfreqoffset(state, 0); } dprintk("simple tune\n"); return 0; } dprintk("tuning demod\n"); /* first of all, software reset */ s5h1420_reset(state); /* set s5h1420 fclk PLL according to desired symbol rate */ if (p->u.qpsk.symbol_rate > 33000000) state->fclk = 80000000; else if (p->u.qpsk.symbol_rate > 28500000) state->fclk = 59000000; else if (p->u.qpsk.symbol_rate > 25000000) state->fclk = 86000000; else if (p->u.qpsk.symbol_rate > 1900000) state->fclk = 88000000; else state->fclk = 44000000; /* Clock */ switch (state->fclk) { default: case 88000000: clock_setting = 80; break; case 86000000: clock_setting = 78; break; case 80000000: clock_setting = 72; break; case 59000000: clock_setting = 51; break; case 44000000: clock_setting = 36; break; } dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32)); s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8); s5h1420_writereg(state, PLL02, 0x40); s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32)); /* TODO DC offset removal, config parameter ? */ if (p->u.qpsk.symbol_rate > 29000000) s5h1420_writereg(state, QPSK01, 0xae | 0x10); else s5h1420_writereg(state, QPSK01, 0xac | 0x10); /* set misc registers */ s5h1420_writereg(state, CON_1, 0x00); s5h1420_writereg(state, QPSK02, 0x00); s5h1420_writereg(state, Pre01, 0xb0); s5h1420_writereg(state, Loop01, 0xF0); s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */ s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */ if (p->u.qpsk.symbol_rate > 20000000) s5h1420_writereg(state, Loop04, 0x79); else s5h1420_writereg(state, Loop04, 0x58); s5h1420_writereg(state, Loop05, 0x6b); if (p->u.qpsk.symbol_rate >= 8000000) s5h1420_writereg(state, Post01, (0 << 6) | 0x10); else if (p->u.qpsk.symbol_rate >= 4000000) s5h1420_writereg(state, Post01, (1 << 6) | 0x10); else s5h1420_writereg(state, Post01, (3 << 6) | 0x10); s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */ s5h1420_writereg(state, Sync01, 0x33); s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity); s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */ s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */ s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */ s5h1420_writereg(state, DiS03, 0x00); s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */ /* set tuner PLL */ if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); s5h1420_setfreqoffset(state, 0); } /* set the reset of the parameters */ s5h1420_setsymbolrate(state, p); s5h1420_setfec_inversion(state, p); /* start QPSK */ s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1); state->fec_inner = p->u.qpsk.fec_inner; state->symbol_rate = p->u.qpsk.symbol_rate; state->postlocked = 0; state->tunedfreq = p->frequency; dprintk("leave %s\n", __func__); return 0; } static int s5h1420_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p) { struct s5h1420_state* state = fe->demodulator_priv; p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state); p->inversion = s5h1420_getinversion(state); p->u.qpsk.symbol_rate = s5h1420_getsymbolrate(state); p->u.qpsk.fec_inner = s5h1420_getfec(state); return 0; } static int s5h1420_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings) { if (fesettings->parameters.u.qpsk.symbol_rate > 20000000) { fesettings->min_delay_ms = 50; fesettings->step_size = 2000; fesettings->max_drift = 8000; } else if (fesettings->parameters.u.qpsk.symbol_rate > 12000000) { fesettings->min_delay_ms = 100; fesettings->step_size = 1500; fesettings->max_drift = 9000; } else if (fesettings->parameters.u.qpsk.symbol_rate > 8000000) { fesettings->min_delay_ms = 100; fesettings->step_size = 1000; fesettings->max_drift = 8000; } else if (fesettings->parameters.u.qpsk.symbol_rate > 4000000) { fesettings->min_delay_ms = 100; fesettings->step_size = 500; fesettings->max_drift = 7000; } else if (fesettings->parameters.u.qpsk.symbol_rate > 2000000) { fesettings->min_delay_ms = 200; fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000); fesettings->max_drift = 14 * fesettings->step_size; } else { fesettings->min_delay_ms = 200; fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000); fesettings->max_drift = 18 * fesettings->step_size; } return 0; } static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) { struct s5h1420_state* state = fe->demodulator_priv; if (enable) return s5h1420_writereg(state, 0x02, state->CON_1_val | 1); else return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe); } static int s5h1420_init (struct dvb_frontend* fe) { struct s5h1420_state* state = fe->demodulator_priv; /* disable power down and do reset */ state->CON_1_val = state->config->serial_mpeg << 4; s5h1420_writereg(state, 0x02, state->CON_1_val); msleep(10); s5h1420_reset(state); return 0; } static int s5h1420_sleep(struct dvb_frontend* fe) { struct s5h1420_state* state = fe->demodulator_priv; state->CON_1_val = 0x12; return s5h1420_writereg(state, 0x02, state->CON_1_val); } static void s5h1420_release(struct dvb_frontend* fe) { struct s5h1420_state* state = fe->demodulator_priv; i2c_del_adapter(&state->tuner_i2c_adapter); kfree(state); } static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct s5h1420_state *state = i2c_get_adapdata(i2c_adap); struct i2c_msg m[1 + num]; u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */ memset(m, 0, sizeof(struct i2c_msg) * (1 + num)); m[0].addr = state->config->demod_address; m[0].buf = tx_open; m[0].len = 2; memcpy(&m[1], msg, sizeof(struct i2c_msg) * num); return i2c_transfer(state->i2c, m, 1+num) == 1 + num ? num : -EIO; } static struct i2c_algorithm s5h1420_tuner_i2c_algo = { .master_xfer = s5h1420_tuner_i2c_tuner_xfer, .functionality = s5h1420_tuner_i2c_func, }; struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe) { struct s5h1420_state *state = fe->demodulator_priv; return &state->tuner_i2c_adapter; } EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter); static struct dvb_frontend_ops s5h1420_ops; struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config, struct i2c_adapter *i2c) { /* allocate memory for the internal state */ struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL); u8 i; if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; state->postlocked = 0; state->fclk = 88000000; state->tunedfreq = 0; state->fec_inner = FEC_NONE; state->symbol_rate = 0; /* check if the demod is there + identify it */ i = s5h1420_readreg(state, ID01); if (i != 0x03) goto error; memset(state->shadow, 0xff, sizeof(state->shadow)); for (i = 0; i < 0x50; i++) state->shadow[i] = s5h1420_readreg(state, i); /* create dvb_frontend */ memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; /* create tuner i2c adapter */ strlcpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus", sizeof(state->tuner_i2c_adapter.name)); state->tuner_i2c_adapter.algo = &s5h1420_tuner_i2c_algo; state->tuner_i2c_adapter.algo_data = NULL; i2c_set_adapdata(&state->tuner_i2c_adapter, state); if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) { printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n"); goto error; } return &state->frontend; error: kfree(state); return NULL; } EXPORT_SYMBOL(s5h1420_attach); static struct dvb_frontend_ops s5h1420_ops = { .info = { .name = "Samsung S5H1420/PnpNetwork PN1010 DVB-S", .type = FE_QPSK, .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 125, /* kHz for QPSK frontends */ .frequency_tolerance = 29500, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, /* .symbol_rate_tolerance = ???,*/ .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK }, .release = s5h1420_release, .init = s5h1420_init, .sleep = s5h1420_sleep, .i2c_gate_ctrl = s5h1420_i2c_gate_ctrl, .set_frontend = s5h1420_set_frontend, .get_frontend = s5h1420_get_frontend, .get_tune_settings = s5h1420_get_tune_settings, .read_status = s5h1420_read_status, .read_ber = s5h1420_read_ber, .read_signal_strength = s5h1420_read_signal_strength, .read_ucblocks = s5h1420_read_ucblocks, .diseqc_send_master_cmd = s5h1420_send_master_cmd, .diseqc_recv_slave_reply = s5h1420_recv_slave_reply, .diseqc_send_burst = s5h1420_send_burst, .set_tone = s5h1420_set_tone, .set_voltage = s5h1420_set_voltage, }; MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver"); MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher"); MODULE_LICENSE("GPL");