/* * Copyright 2011 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include #include #include #include #include #include "radeon.h" #include "radeon_asic.h" #include #include "sid.h" #include "atom.h" #include "si_blit_shaders.h" #define SI_PFP_UCODE_SIZE 2144 #define SI_PM4_UCODE_SIZE 2144 #define SI_CE_UCODE_SIZE 2144 #define SI_RLC_UCODE_SIZE 2048 #define SI_MC_UCODE_SIZE 7769 #define OLAND_MC_UCODE_SIZE 7863 MODULE_FIRMWARE("radeon/TAHITI_pfp.bin"); MODULE_FIRMWARE("radeon/TAHITI_me.bin"); MODULE_FIRMWARE("radeon/TAHITI_ce.bin"); MODULE_FIRMWARE("radeon/TAHITI_mc.bin"); MODULE_FIRMWARE("radeon/TAHITI_rlc.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_pfp.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_me.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_ce.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_mc.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_rlc.bin"); MODULE_FIRMWARE("radeon/VERDE_pfp.bin"); MODULE_FIRMWARE("radeon/VERDE_me.bin"); MODULE_FIRMWARE("radeon/VERDE_ce.bin"); MODULE_FIRMWARE("radeon/VERDE_mc.bin"); MODULE_FIRMWARE("radeon/VERDE_rlc.bin"); MODULE_FIRMWARE("radeon/OLAND_pfp.bin"); MODULE_FIRMWARE("radeon/OLAND_me.bin"); MODULE_FIRMWARE("radeon/OLAND_ce.bin"); MODULE_FIRMWARE("radeon/OLAND_mc.bin"); MODULE_FIRMWARE("radeon/OLAND_rlc.bin"); extern int r600_ih_ring_alloc(struct radeon_device *rdev); extern void r600_ih_ring_fini(struct radeon_device *rdev); extern void evergreen_fix_pci_max_read_req_size(struct radeon_device *rdev); extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save); extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save); extern u32 evergreen_get_number_of_dram_channels(struct radeon_device *rdev); extern void evergreen_print_gpu_status_regs(struct radeon_device *rdev); extern bool evergreen_is_display_hung(struct radeon_device *rdev); #define PCIE_BUS_CLK 10000 #define TCLK (PCIE_BUS_CLK / 10) /** * si_get_xclk - get the xclk * * @rdev: radeon_device pointer * * Returns the reference clock used by the gfx engine * (SI). */ u32 si_get_xclk(struct radeon_device *rdev) { u32 reference_clock = rdev->clock.spll.reference_freq; u32 tmp; tmp = RREG32(CG_CLKPIN_CNTL_2); if (tmp & MUX_TCLK_TO_XCLK) return TCLK; tmp = RREG32(CG_CLKPIN_CNTL); if (tmp & XTALIN_DIVIDE) return reference_clock / 4; return reference_clock; } /* get temperature in millidegrees */ int si_get_temp(struct radeon_device *rdev) { u32 temp; int actual_temp = 0; temp = (RREG32(CG_MULT_THERMAL_STATUS) & CTF_TEMP_MASK) >> CTF_TEMP_SHIFT; if (temp & 0x200) actual_temp = 255; else actual_temp = temp & 0x1ff; actual_temp = (actual_temp * 1000); return actual_temp; } #define TAHITI_IO_MC_REGS_SIZE 36 static const u32 tahiti_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = { {0x0000006f, 0x03044000}, {0x00000070, 0x0480c018}, {0x00000071, 0x00000040}, {0x00000072, 0x01000000}, {0x00000074, 0x000000ff}, {0x00000075, 0x00143400}, {0x00000076, 0x08ec0800}, {0x00000077, 0x040000cc}, {0x00000079, 0x00000000}, {0x0000007a, 0x21000409}, {0x0000007c, 0x00000000}, {0x0000007d, 0xe8000000}, {0x0000007e, 0x044408a8}, {0x0000007f, 0x00000003}, {0x00000080, 0x00000000}, {0x00000081, 0x01000000}, {0x00000082, 0x02000000}, {0x00000083, 0x00000000}, {0x00000084, 0xe3f3e4f4}, {0x00000085, 0x00052024}, {0x00000087, 0x00000000}, {0x00000088, 0x66036603}, {0x00000089, 0x01000000}, {0x0000008b, 0x1c0a0000}, {0x0000008c, 0xff010000}, {0x0000008e, 0xffffefff}, {0x0000008f, 0xfff3efff}, {0x00000090, 0xfff3efbf}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00a77400} }; static const u32 pitcairn_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = { {0x0000006f, 0x03044000}, {0x00000070, 0x0480c018}, {0x00000071, 0x00000040}, {0x00000072, 0x01000000}, {0x00000074, 0x000000ff}, {0x00000075, 0x00143400}, {0x00000076, 0x08ec0800}, {0x00000077, 0x040000cc}, {0x00000079, 0x00000000}, {0x0000007a, 0x21000409}, {0x0000007c, 0x00000000}, {0x0000007d, 0xe8000000}, {0x0000007e, 0x044408a8}, {0x0000007f, 0x00000003}, {0x00000080, 0x00000000}, {0x00000081, 0x01000000}, {0x00000082, 0x02000000}, {0x00000083, 0x00000000}, {0x00000084, 0xe3f3e4f4}, {0x00000085, 0x00052024}, {0x00000087, 0x00000000}, {0x00000088, 0x66036603}, {0x00000089, 0x01000000}, {0x0000008b, 0x1c0a0000}, {0x0000008c, 0xff010000}, {0x0000008e, 0xffffefff}, {0x0000008f, 0xfff3efff}, {0x00000090, 0xfff3efbf}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00a47400} }; static const u32 verde_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = { {0x0000006f, 0x03044000}, {0x00000070, 0x0480c018}, {0x00000071, 0x00000040}, {0x00000072, 0x01000000}, {0x00000074, 0x000000ff}, {0x00000075, 0x00143400}, {0x00000076, 0x08ec0800}, {0x00000077, 0x040000cc}, {0x00000079, 0x00000000}, {0x0000007a, 0x21000409}, {0x0000007c, 0x00000000}, {0x0000007d, 0xe8000000}, {0x0000007e, 0x044408a8}, {0x0000007f, 0x00000003}, {0x00000080, 0x00000000}, {0x00000081, 0x01000000}, {0x00000082, 0x02000000}, {0x00000083, 0x00000000}, {0x00000084, 0xe3f3e4f4}, {0x00000085, 0x00052024}, {0x00000087, 0x00000000}, {0x00000088, 0x66036603}, {0x00000089, 0x01000000}, {0x0000008b, 0x1c0a0000}, {0x0000008c, 0xff010000}, {0x0000008e, 0xffffefff}, {0x0000008f, 0xfff3efff}, {0x00000090, 0xfff3efbf}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00a37400} }; static const u32 oland_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = { {0x0000006f, 0x03044000}, {0x00000070, 0x0480c018}, {0x00000071, 0x00000040}, {0x00000072, 0x01000000}, {0x00000074, 0x000000ff}, {0x00000075, 0x00143400}, {0x00000076, 0x08ec0800}, {0x00000077, 0x040000cc}, {0x00000079, 0x00000000}, {0x0000007a, 0x21000409}, {0x0000007c, 0x00000000}, {0x0000007d, 0xe8000000}, {0x0000007e, 0x044408a8}, {0x0000007f, 0x00000003}, {0x00000080, 0x00000000}, {0x00000081, 0x01000000}, {0x00000082, 0x02000000}, {0x00000083, 0x00000000}, {0x00000084, 0xe3f3e4f4}, {0x00000085, 0x00052024}, {0x00000087, 0x00000000}, {0x00000088, 0x66036603}, {0x00000089, 0x01000000}, {0x0000008b, 0x1c0a0000}, {0x0000008c, 0xff010000}, {0x0000008e, 0xffffefff}, {0x0000008f, 0xfff3efff}, {0x00000090, 0xfff3efbf}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00a17730} }; /* ucode loading */ static int si_mc_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; u32 running, blackout = 0; u32 *io_mc_regs; int i, ucode_size, regs_size; if (!rdev->mc_fw) return -EINVAL; switch (rdev->family) { case CHIP_TAHITI: io_mc_regs = (u32 *)&tahiti_io_mc_regs; ucode_size = SI_MC_UCODE_SIZE; regs_size = TAHITI_IO_MC_REGS_SIZE; break; case CHIP_PITCAIRN: io_mc_regs = (u32 *)&pitcairn_io_mc_regs; ucode_size = SI_MC_UCODE_SIZE; regs_size = TAHITI_IO_MC_REGS_SIZE; break; case CHIP_VERDE: default: io_mc_regs = (u32 *)&verde_io_mc_regs; ucode_size = SI_MC_UCODE_SIZE; regs_size = TAHITI_IO_MC_REGS_SIZE; break; case CHIP_OLAND: io_mc_regs = (u32 *)&oland_io_mc_regs; ucode_size = OLAND_MC_UCODE_SIZE; regs_size = TAHITI_IO_MC_REGS_SIZE; break; } running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK; if (running == 0) { if (running) { blackout = RREG32(MC_SHARED_BLACKOUT_CNTL); WREG32(MC_SHARED_BLACKOUT_CNTL, blackout | 1); } /* reset the engine and set to writable */ WREG32(MC_SEQ_SUP_CNTL, 0x00000008); WREG32(MC_SEQ_SUP_CNTL, 0x00000010); /* load mc io regs */ for (i = 0; i < regs_size; i++) { WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]); WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]); } /* load the MC ucode */ fw_data = (const __be32 *)rdev->mc_fw->data; for (i = 0; i < ucode_size; i++) WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++)); /* put the engine back into the active state */ WREG32(MC_SEQ_SUP_CNTL, 0x00000008); WREG32(MC_SEQ_SUP_CNTL, 0x00000004); WREG32(MC_SEQ_SUP_CNTL, 0x00000001); /* wait for training to complete */ for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D0) break; udelay(1); } for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D1) break; udelay(1); } if (running) WREG32(MC_SHARED_BLACKOUT_CNTL, blackout); } return 0; } static int si_init_microcode(struct radeon_device *rdev) { struct platform_device *pdev; const char *chip_name; const char *rlc_chip_name; size_t pfp_req_size, me_req_size, ce_req_size, rlc_req_size, mc_req_size; char fw_name[30]; int err; DRM_DEBUG("\n"); pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0); err = IS_ERR(pdev); if (err) { printk(KERN_ERR "radeon_cp: Failed to register firmware\n"); return -EINVAL; } switch (rdev->family) { case CHIP_TAHITI: chip_name = "TAHITI"; rlc_chip_name = "TAHITI"; pfp_req_size = SI_PFP_UCODE_SIZE * 4; me_req_size = SI_PM4_UCODE_SIZE * 4; ce_req_size = SI_CE_UCODE_SIZE * 4; rlc_req_size = SI_RLC_UCODE_SIZE * 4; mc_req_size = SI_MC_UCODE_SIZE * 4; break; case CHIP_PITCAIRN: chip_name = "PITCAIRN"; rlc_chip_name = "PITCAIRN"; pfp_req_size = SI_PFP_UCODE_SIZE * 4; me_req_size = SI_PM4_UCODE_SIZE * 4; ce_req_size = SI_CE_UCODE_SIZE * 4; rlc_req_size = SI_RLC_UCODE_SIZE * 4; mc_req_size = SI_MC_UCODE_SIZE * 4; break; case CHIP_VERDE: chip_name = "VERDE"; rlc_chip_name = "VERDE"; pfp_req_size = SI_PFP_UCODE_SIZE * 4; me_req_size = SI_PM4_UCODE_SIZE * 4; ce_req_size = SI_CE_UCODE_SIZE * 4; rlc_req_size = SI_RLC_UCODE_SIZE * 4; mc_req_size = SI_MC_UCODE_SIZE * 4; break; case CHIP_OLAND: chip_name = "OLAND"; rlc_chip_name = "OLAND"; pfp_req_size = SI_PFP_UCODE_SIZE * 4; me_req_size = SI_PM4_UCODE_SIZE * 4; ce_req_size = SI_CE_UCODE_SIZE * 4; rlc_req_size = SI_RLC_UCODE_SIZE * 4; mc_req_size = OLAND_MC_UCODE_SIZE * 4; break; default: BUG(); } DRM_INFO("Loading %s Microcode\n", chip_name); snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name); err = request_firmware(&rdev->pfp_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->pfp_fw->size != pfp_req_size) { printk(KERN_ERR "si_cp: Bogus length %zu in firmware \"%s\"\n", rdev->pfp_fw->size, fw_name); err = -EINVAL; goto out; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name); err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->me_fw->size != me_req_size) { printk(KERN_ERR "si_cp: Bogus length %zu in firmware \"%s\"\n", rdev->me_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name); err = request_firmware(&rdev->ce_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->ce_fw->size != ce_req_size) { printk(KERN_ERR "si_cp: Bogus length %zu in firmware \"%s\"\n", rdev->ce_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", rlc_chip_name); err = request_firmware(&rdev->rlc_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->rlc_fw->size != rlc_req_size) { printk(KERN_ERR "si_rlc: Bogus length %zu in firmware \"%s\"\n", rdev->rlc_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name); err = request_firmware(&rdev->mc_fw, fw_name, &pdev->dev); if (err) goto out; if (rdev->mc_fw->size != mc_req_size) { printk(KERN_ERR "si_mc: Bogus length %zu in firmware \"%s\"\n", rdev->mc_fw->size, fw_name); err = -EINVAL; } out: platform_device_unregister(pdev); if (err) { if (err != -EINVAL) printk(KERN_ERR "si_cp: Failed to load firmware \"%s\"\n", fw_name); release_firmware(rdev->pfp_fw); rdev->pfp_fw = NULL; release_firmware(rdev->me_fw); rdev->me_fw = NULL; release_firmware(rdev->ce_fw); rdev->ce_fw = NULL; release_firmware(rdev->rlc_fw); rdev->rlc_fw = NULL; release_firmware(rdev->mc_fw); rdev->mc_fw = NULL; } return err; } /* watermark setup */ static u32 dce6_line_buffer_adjust(struct radeon_device *rdev, struct radeon_crtc *radeon_crtc, struct drm_display_mode *mode, struct drm_display_mode *other_mode) { u32 tmp; /* * Line Buffer Setup * There are 3 line buffers, each one shared by 2 display controllers. * DC_LB_MEMORY_SPLIT controls how that line buffer is shared between * the display controllers. The paritioning is done via one of four * preset allocations specified in bits 21:20: * 0 - half lb * 2 - whole lb, other crtc must be disabled */ /* this can get tricky if we have two large displays on a paired group * of crtcs. Ideally for multiple large displays we'd assign them to * non-linked crtcs for maximum line buffer allocation. */ if (radeon_crtc->base.enabled && mode) { if (other_mode) tmp = 0; /* 1/2 */ else tmp = 2; /* whole */ } else tmp = 0; WREG32(DC_LB_MEMORY_SPLIT + radeon_crtc->crtc_offset, DC_LB_MEMORY_CONFIG(tmp)); if (radeon_crtc->base.enabled && mode) { switch (tmp) { case 0: default: return 4096 * 2; case 2: return 8192 * 2; } } /* controller not enabled, so no lb used */ return 0; } static u32 si_get_number_of_dram_channels(struct radeon_device *rdev) { u32 tmp = RREG32(MC_SHARED_CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: default: return 1; case 1: return 2; case 2: return 4; case 3: return 8; case 4: return 3; case 5: return 6; case 6: return 10; case 7: return 12; case 8: return 16; } } struct dce6_wm_params { u32 dram_channels; /* number of dram channels */ u32 yclk; /* bandwidth per dram data pin in kHz */ u32 sclk; /* engine clock in kHz */ u32 disp_clk; /* display clock in kHz */ u32 src_width; /* viewport width */ u32 active_time; /* active display time in ns */ u32 blank_time; /* blank time in ns */ bool interlaced; /* mode is interlaced */ fixed20_12 vsc; /* vertical scale ratio */ u32 num_heads; /* number of active crtcs */ u32 bytes_per_pixel; /* bytes per pixel display + overlay */ u32 lb_size; /* line buffer allocated to pipe */ u32 vtaps; /* vertical scaler taps */ }; static u32 dce6_dram_bandwidth(struct dce6_wm_params *wm) { /* Calculate raw DRAM Bandwidth */ fixed20_12 dram_efficiency; /* 0.7 */ fixed20_12 yclk, dram_channels, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); yclk.full = dfixed_const(wm->yclk); yclk.full = dfixed_div(yclk, a); dram_channels.full = dfixed_const(wm->dram_channels * 4); a.full = dfixed_const(10); dram_efficiency.full = dfixed_const(7); dram_efficiency.full = dfixed_div(dram_efficiency, a); bandwidth.full = dfixed_mul(dram_channels, yclk); bandwidth.full = dfixed_mul(bandwidth, dram_efficiency); return dfixed_trunc(bandwidth); } static u32 dce6_dram_bandwidth_for_display(struct dce6_wm_params *wm) { /* Calculate DRAM Bandwidth and the part allocated to display. */ fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */ fixed20_12 yclk, dram_channels, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); yclk.full = dfixed_const(wm->yclk); yclk.full = dfixed_div(yclk, a); dram_channels.full = dfixed_const(wm->dram_channels * 4); a.full = dfixed_const(10); disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */ disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a); bandwidth.full = dfixed_mul(dram_channels, yclk); bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation); return dfixed_trunc(bandwidth); } static u32 dce6_data_return_bandwidth(struct dce6_wm_params *wm) { /* Calculate the display Data return Bandwidth */ fixed20_12 return_efficiency; /* 0.8 */ fixed20_12 sclk, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); sclk.full = dfixed_const(wm->sclk); sclk.full = dfixed_div(sclk, a); a.full = dfixed_const(10); return_efficiency.full = dfixed_const(8); return_efficiency.full = dfixed_div(return_efficiency, a); a.full = dfixed_const(32); bandwidth.full = dfixed_mul(a, sclk); bandwidth.full = dfixed_mul(bandwidth, return_efficiency); return dfixed_trunc(bandwidth); } static u32 dce6_get_dmif_bytes_per_request(struct dce6_wm_params *wm) { return 32; } static u32 dce6_dmif_request_bandwidth(struct dce6_wm_params *wm) { /* Calculate the DMIF Request Bandwidth */ fixed20_12 disp_clk_request_efficiency; /* 0.8 */ fixed20_12 disp_clk, sclk, bandwidth; fixed20_12 a, b1, b2; u32 min_bandwidth; a.full = dfixed_const(1000); disp_clk.full = dfixed_const(wm->disp_clk); disp_clk.full = dfixed_div(disp_clk, a); a.full = dfixed_const(dce6_get_dmif_bytes_per_request(wm) / 2); b1.full = dfixed_mul(a, disp_clk); a.full = dfixed_const(1000); sclk.full = dfixed_const(wm->sclk); sclk.full = dfixed_div(sclk, a); a.full = dfixed_const(dce6_get_dmif_bytes_per_request(wm)); b2.full = dfixed_mul(a, sclk); a.full = dfixed_const(10); disp_clk_request_efficiency.full = dfixed_const(8); disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a); min_bandwidth = min(dfixed_trunc(b1), dfixed_trunc(b2)); a.full = dfixed_const(min_bandwidth); bandwidth.full = dfixed_mul(a, disp_clk_request_efficiency); return dfixed_trunc(bandwidth); } static u32 dce6_available_bandwidth(struct dce6_wm_params *wm) { /* Calculate the Available bandwidth. Display can use this temporarily but not in average. */ u32 dram_bandwidth = dce6_dram_bandwidth(wm); u32 data_return_bandwidth = dce6_data_return_bandwidth(wm); u32 dmif_req_bandwidth = dce6_dmif_request_bandwidth(wm); return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth)); } static u32 dce6_average_bandwidth(struct dce6_wm_params *wm) { /* Calculate the display mode Average Bandwidth * DisplayMode should contain the source and destination dimensions, * timing, etc. */ fixed20_12 bpp; fixed20_12 line_time; fixed20_12 src_width; fixed20_12 bandwidth; fixed20_12 a; a.full = dfixed_const(1000); line_time.full = dfixed_const(wm->active_time + wm->blank_time); line_time.full = dfixed_div(line_time, a); bpp.full = dfixed_const(wm->bytes_per_pixel); src_width.full = dfixed_const(wm->src_width); bandwidth.full = dfixed_mul(src_width, bpp); bandwidth.full = dfixed_mul(bandwidth, wm->vsc); bandwidth.full = dfixed_div(bandwidth, line_time); return dfixed_trunc(bandwidth); } static u32 dce6_latency_watermark(struct dce6_wm_params *wm) { /* First calcualte the latency in ns */ u32 mc_latency = 2000; /* 2000 ns. */ u32 available_bandwidth = dce6_available_bandwidth(wm); u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth; u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth; u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */ u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) + (wm->num_heads * cursor_line_pair_return_time); u32 latency = mc_latency + other_heads_data_return_time + dc_latency; u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time; u32 tmp, dmif_size = 12288; fixed20_12 a, b, c; if (wm->num_heads == 0) return 0; a.full = dfixed_const(2); b.full = dfixed_const(1); if ((wm->vsc.full > a.full) || ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) || (wm->vtaps >= 5) || ((wm->vsc.full >= a.full) && wm->interlaced)) max_src_lines_per_dst_line = 4; else max_src_lines_per_dst_line = 2; a.full = dfixed_const(available_bandwidth); b.full = dfixed_const(wm->num_heads); a.full = dfixed_div(a, b); b.full = dfixed_const(mc_latency + 512); c.full = dfixed_const(wm->disp_clk); b.full = dfixed_div(b, c); c.full = dfixed_const(dmif_size); b.full = dfixed_div(c, b); tmp = min(dfixed_trunc(a), dfixed_trunc(b)); b.full = dfixed_const(1000); c.full = dfixed_const(wm->disp_clk); b.full = dfixed_div(c, b); c.full = dfixed_const(wm->bytes_per_pixel); b.full = dfixed_mul(b, c); lb_fill_bw = min(tmp, dfixed_trunc(b)); a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel); b.full = dfixed_const(1000); c.full = dfixed_const(lb_fill_bw); b.full = dfixed_div(c, b); a.full = dfixed_div(a, b); line_fill_time = dfixed_trunc(a); if (line_fill_time < wm->active_time) return latency; else return latency + (line_fill_time - wm->active_time); } static bool dce6_average_bandwidth_vs_dram_bandwidth_for_display(struct dce6_wm_params *wm) { if (dce6_average_bandwidth(wm) <= (dce6_dram_bandwidth_for_display(wm) / wm->num_heads)) return true; else return false; }; static bool dce6_average_bandwidth_vs_available_bandwidth(struct dce6_wm_params *wm) { if (dce6_average_bandwidth(wm) <= (dce6_available_bandwidth(wm) / wm->num_heads)) return true; else return false; }; static bool dce6_check_latency_hiding(struct dce6_wm_params *wm) { u32 lb_partitions = wm->lb_size / wm->src_width; u32 line_time = wm->active_time + wm->blank_time; u32 latency_tolerant_lines; u32 latency_hiding; fixed20_12 a; a.full = dfixed_const(1); if (wm->vsc.full > a.full) latency_tolerant_lines = 1; else { if (lb_partitions <= (wm->vtaps + 1)) latency_tolerant_lines = 1; else latency_tolerant_lines = 2; } latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time); if (dce6_latency_watermark(wm) <= latency_hiding) return true; else return false; } static void dce6_program_watermarks(struct radeon_device *rdev, struct radeon_crtc *radeon_crtc, u32 lb_size, u32 num_heads) { struct drm_display_mode *mode = &radeon_crtc->base.mode; struct dce6_wm_params wm; u32 pixel_period; u32 line_time = 0; u32 latency_watermark_a = 0, latency_watermark_b = 0; u32 priority_a_mark = 0, priority_b_mark = 0; u32 priority_a_cnt = PRIORITY_OFF; u32 priority_b_cnt = PRIORITY_OFF; u32 tmp, arb_control3; fixed20_12 a, b, c; if (radeon_crtc->base.enabled && num_heads && mode) { pixel_period = 1000000 / (u32)mode->clock; line_time = min((u32)mode->crtc_htotal * pixel_period, (u32)65535); priority_a_cnt = 0; priority_b_cnt = 0; wm.yclk = rdev->pm.current_mclk * 10; wm.sclk = rdev->pm.current_sclk * 10; wm.disp_clk = mode->clock; wm.src_width = mode->crtc_hdisplay; wm.active_time = mode->crtc_hdisplay * pixel_period; wm.blank_time = line_time - wm.active_time; wm.interlaced = false; if (mode->flags & DRM_MODE_FLAG_INTERLACE) wm.interlaced = true; wm.vsc = radeon_crtc->vsc; wm.vtaps = 1; if (radeon_crtc->rmx_type != RMX_OFF) wm.vtaps = 2; wm.bytes_per_pixel = 4; /* XXX: get this from fb config */ wm.lb_size = lb_size; if (rdev->family == CHIP_ARUBA) wm.dram_channels = evergreen_get_number_of_dram_channels(rdev); else wm.dram_channels = si_get_number_of_dram_channels(rdev); wm.num_heads = num_heads; /* set for high clocks */ latency_watermark_a = min(dce6_latency_watermark(&wm), (u32)65535); /* set for low clocks */ /* wm.yclk = low clk; wm.sclk = low clk */ latency_watermark_b = min(dce6_latency_watermark(&wm), (u32)65535); /* possibly force display priority to high */ /* should really do this at mode validation time... */ if (!dce6_average_bandwidth_vs_dram_bandwidth_for_display(&wm) || !dce6_average_bandwidth_vs_available_bandwidth(&wm) || !dce6_check_latency_hiding(&wm) || (rdev->disp_priority == 2)) { DRM_DEBUG_KMS("force priority to high\n"); priority_a_cnt |= PRIORITY_ALWAYS_ON; priority_b_cnt |= PRIORITY_ALWAYS_ON; } a.full = dfixed_const(1000); b.full = dfixed_const(mode->clock); b.full = dfixed_div(b, a); c.full = dfixed_const(latency_watermark_a); c.full = dfixed_mul(c, b); c.full = dfixed_mul(c, radeon_crtc->hsc); c.full = dfixed_div(c, a); a.full = dfixed_const(16); c.full = dfixed_div(c, a); priority_a_mark = dfixed_trunc(c); priority_a_cnt |= priority_a_mark & PRIORITY_MARK_MASK; a.full = dfixed_const(1000); b.full = dfixed_const(mode->clock); b.full = dfixed_div(b, a); c.full = dfixed_const(latency_watermark_b); c.full = dfixed_mul(c, b); c.full = dfixed_mul(c, radeon_crtc->hsc); c.full = dfixed_div(c, a); a.full = dfixed_const(16); c.full = dfixed_div(c, a); priority_b_mark = dfixed_trunc(c); priority_b_cnt |= priority_b_mark & PRIORITY_MARK_MASK; } /* select wm A */ arb_control3 = RREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset); tmp = arb_control3; tmp &= ~LATENCY_WATERMARK_MASK(3); tmp |= LATENCY_WATERMARK_MASK(1); WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset, tmp); WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset, (LATENCY_LOW_WATERMARK(latency_watermark_a) | LATENCY_HIGH_WATERMARK(line_time))); /* select wm B */ tmp = RREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset); tmp &= ~LATENCY_WATERMARK_MASK(3); tmp |= LATENCY_WATERMARK_MASK(2); WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset, tmp); WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset, (LATENCY_LOW_WATERMARK(latency_watermark_b) | LATENCY_HIGH_WATERMARK(line_time))); /* restore original selection */ WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset, arb_control3); /* write the priority marks */ WREG32(PRIORITY_A_CNT + radeon_crtc->crtc_offset, priority_a_cnt); WREG32(PRIORITY_B_CNT + radeon_crtc->crtc_offset, priority_b_cnt); } void dce6_bandwidth_update(struct radeon_device *rdev) { struct drm_display_mode *mode0 = NULL; struct drm_display_mode *mode1 = NULL; u32 num_heads = 0, lb_size; int i; radeon_update_display_priority(rdev); for (i = 0; i < rdev->num_crtc; i++) { if (rdev->mode_info.crtcs[i]->base.enabled) num_heads++; } for (i = 0; i < rdev->num_crtc; i += 2) { mode0 = &rdev->mode_info.crtcs[i]->base.mode; mode1 = &rdev->mode_info.crtcs[i+1]->base.mode; lb_size = dce6_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i], mode0, mode1); dce6_program_watermarks(rdev, rdev->mode_info.crtcs[i], lb_size, num_heads); lb_size = dce6_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i+1], mode1, mode0); dce6_program_watermarks(rdev, rdev->mode_info.crtcs[i+1], lb_size, num_heads); } } /* * Core functions */ static void si_tiling_mode_table_init(struct radeon_device *rdev) { const u32 num_tile_mode_states = 32; u32 reg_offset, gb_tile_moden, split_equal_to_row_size; switch (rdev->config.si.mem_row_size_in_kb) { case 1: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB; break; case 2: default: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB; break; case 4: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB; break; } if ((rdev->family == CHIP_TAHITI) || (rdev->family == CHIP_PITCAIRN)) { for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { switch (reg_offset) { case 0: /* non-AA compressed depth or any compressed stencil */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 1: /* 2xAA/4xAA compressed depth only */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 2: /* 8xAA compressed depth only */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 3: /* 2xAA/4xAA compressed depth with stencil (for depth buffer) */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 4: /* Maps w/ a dimension less than the 2D macro-tile dimensions (for mipmapped depth textures) */ gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 5: /* Uncompressed 16bpp depth - and stencil buffer allocated with it */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 6: /* Uncompressed 32bpp depth - and stencil buffer allocated with it */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); break; case 7: /* Uncompressed 8bpp stencil without depth (drivers typically do not use) */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 8: /* 1D and 1D Array Surfaces */ gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 9: /* Displayable maps. */ gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 10: /* Display 8bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 11: /* Display 16bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 12: /* Display 32bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); break; case 13: /* Thin. */ gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 14: /* Thin 8 bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); break; case 15: /* Thin 16 bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); break; case 16: /* Thin 32 bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); break; case 17: /* Thin 64 bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); break; case 21: /* 8 bpp PRT. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 22: /* 16 bpp PRT */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); break; case 23: /* 32 bpp PRT */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 24: /* 64 bpp PRT */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 25: /* 128 bpp PRT */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_1KB) | NUM_BANKS(ADDR_SURF_8_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); break; default: gb_tile_moden = 0; break; } WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); } } else if ((rdev->family == CHIP_VERDE) || (rdev->family == CHIP_OLAND)) { for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { switch (reg_offset) { case 0: /* non-AA compressed depth or any compressed stencil */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); break; case 1: /* 2xAA/4xAA compressed depth only */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); break; case 2: /* 8xAA compressed depth only */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); break; case 3: /* 2xAA/4xAA compressed depth with stencil (for depth buffer) */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); break; case 4: /* Maps w/ a dimension less than the 2D macro-tile dimensions (for mipmapped depth textures) */ gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 5: /* Uncompressed 16bpp depth - and stencil buffer allocated with it */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 6: /* Uncompressed 32bpp depth - and stencil buffer allocated with it */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 7: /* Uncompressed 8bpp stencil without depth (drivers typically do not use) */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); break; case 8: /* 1D and 1D Array Surfaces */ gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 9: /* Displayable maps. */ gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 10: /* Display 8bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); break; case 11: /* Display 16bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 12: /* Display 32bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 13: /* Thin. */ gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 14: /* Thin 8 bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 15: /* Thin 16 bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 16: /* Thin 32 bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 17: /* Thin 64 bpp. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 21: /* 8 bpp PRT. */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 22: /* 16 bpp PRT */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); break; case 23: /* 32 bpp PRT */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 24: /* 64 bpp PRT */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); break; case 25: /* 128 bpp PRT */ gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_1KB) | NUM_BANKS(ADDR_SURF_8_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); break; default: gb_tile_moden = 0; break; } WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); } } else DRM_ERROR("unknown asic: 0x%x\n", rdev->family); } static void si_select_se_sh(struct radeon_device *rdev, u32 se_num, u32 sh_num) { u32 data = INSTANCE_BROADCAST_WRITES; if ((se_num == 0xffffffff) && (sh_num == 0xffffffff)) data = SH_BROADCAST_WRITES | SE_BROADCAST_WRITES; else if (se_num == 0xffffffff) data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num); else if (sh_num == 0xffffffff) data |= SH_BROADCAST_WRITES | SE_INDEX(se_num); else data |= SH_INDEX(sh_num) | SE_INDEX(se_num); WREG32(GRBM_GFX_INDEX, data); } static u32 si_create_bitmask(u32 bit_width) { u32 i, mask = 0; for (i = 0; i < bit_width; i++) { mask <<= 1; mask |= 1; } return mask; } static u32 si_get_cu_enabled(struct radeon_device *rdev, u32 cu_per_sh) { u32 data, mask; data = RREG32(CC_GC_SHADER_ARRAY_CONFIG); if (data & 1) data &= INACTIVE_CUS_MASK; else data = 0; data |= RREG32(GC_USER_SHADER_ARRAY_CONFIG); data >>= INACTIVE_CUS_SHIFT; mask = si_create_bitmask(cu_per_sh); return ~data & mask; } static void si_setup_spi(struct radeon_device *rdev, u32 se_num, u32 sh_per_se, u32 cu_per_sh) { int i, j, k; u32 data, mask, active_cu; for (i = 0; i < se_num; i++) { for (j = 0; j < sh_per_se; j++) { si_select_se_sh(rdev, i, j); data = RREG32(SPI_STATIC_THREAD_MGMT_3); active_cu = si_get_cu_enabled(rdev, cu_per_sh); mask = 1; for (k = 0; k < 16; k++) { mask <<= k; if (active_cu & mask) { data &= ~mask; WREG32(SPI_STATIC_THREAD_MGMT_3, data); break; } } } } si_select_se_sh(rdev, 0xffffffff, 0xffffffff); } static u32 si_get_rb_disabled(struct radeon_device *rdev, u32 max_rb_num, u32 se_num, u32 sh_per_se) { u32 data, mask; data = RREG32(CC_RB_BACKEND_DISABLE); if (data & 1) data &= BACKEND_DISABLE_MASK; else data = 0; data |= RREG32(GC_USER_RB_BACKEND_DISABLE); data >>= BACKEND_DISABLE_SHIFT; mask = si_create_bitmask(max_rb_num / se_num / sh_per_se); return data & mask; } static void si_setup_rb(struct radeon_device *rdev, u32 se_num, u32 sh_per_se, u32 max_rb_num) { int i, j; u32 data, mask; u32 disabled_rbs = 0; u32 enabled_rbs = 0; for (i = 0; i < se_num; i++) { for (j = 0; j < sh_per_se; j++) { si_select_se_sh(rdev, i, j); data = si_get_rb_disabled(rdev, max_rb_num, se_num, sh_per_se); disabled_rbs |= data << ((i * sh_per_se + j) * TAHITI_RB_BITMAP_WIDTH_PER_SH); } } si_select_se_sh(rdev, 0xffffffff, 0xffffffff); mask = 1; for (i = 0; i < max_rb_num; i++) { if (!(disabled_rbs & mask)) enabled_rbs |= mask; mask <<= 1; } for (i = 0; i < se_num; i++) { si_select_se_sh(rdev, i, 0xffffffff); data = 0; for (j = 0; j < sh_per_se; j++) { switch (enabled_rbs & 3) { case 1: data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2); break; case 2: data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2); break; case 3: default: data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2); break; } enabled_rbs >>= 2; } WREG32(PA_SC_RASTER_CONFIG, data); } si_select_se_sh(rdev, 0xffffffff, 0xffffffff); } static void si_gpu_init(struct radeon_device *rdev) { u32 gb_addr_config = 0; u32 mc_shared_chmap, mc_arb_ramcfg; u32 sx_debug_1; u32 hdp_host_path_cntl; u32 tmp; int i, j; switch (rdev->family) { case CHIP_TAHITI: rdev->config.si.max_shader_engines = 2; rdev->config.si.max_tile_pipes = 12; rdev->config.si.max_cu_per_sh = 8; rdev->config.si.max_sh_per_se = 2; rdev->config.si.max_backends_per_se = 4; rdev->config.si.max_texture_channel_caches = 12; rdev->config.si.max_gprs = 256; rdev->config.si.max_gs_threads = 32; rdev->config.si.max_hw_contexts = 8; rdev->config.si.sc_prim_fifo_size_frontend = 0x20; rdev->config.si.sc_prim_fifo_size_backend = 0x100; rdev->config.si.sc_hiz_tile_fifo_size = 0x30; rdev->config.si.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = TAHITI_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_PITCAIRN: rdev->config.si.max_shader_engines = 2; rdev->config.si.max_tile_pipes = 8; rdev->config.si.max_cu_per_sh = 5; rdev->config.si.max_sh_per_se = 2; rdev->config.si.max_backends_per_se = 4; rdev->config.si.max_texture_channel_caches = 8; rdev->config.si.max_gprs = 256; rdev->config.si.max_gs_threads = 32; rdev->config.si.max_hw_contexts = 8; rdev->config.si.sc_prim_fifo_size_frontend = 0x20; rdev->config.si.sc_prim_fifo_size_backend = 0x100; rdev->config.si.sc_hiz_tile_fifo_size = 0x30; rdev->config.si.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = TAHITI_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_VERDE: default: rdev->config.si.max_shader_engines = 1; rdev->config.si.max_tile_pipes = 4; rdev->config.si.max_cu_per_sh = 2; rdev->config.si.max_sh_per_se = 2; rdev->config.si.max_backends_per_se = 4; rdev->config.si.max_texture_channel_caches = 4; rdev->config.si.max_gprs = 256; rdev->config.si.max_gs_threads = 32; rdev->config.si.max_hw_contexts = 8; rdev->config.si.sc_prim_fifo_size_frontend = 0x20; rdev->config.si.sc_prim_fifo_size_backend = 0x40; rdev->config.si.sc_hiz_tile_fifo_size = 0x30; rdev->config.si.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = VERDE_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_OLAND: rdev->config.si.max_shader_engines = 1; rdev->config.si.max_tile_pipes = 4; rdev->config.si.max_cu_per_sh = 6; rdev->config.si.max_sh_per_se = 1; rdev->config.si.max_backends_per_se = 2; rdev->config.si.max_texture_channel_caches = 4; rdev->config.si.max_gprs = 256; rdev->config.si.max_gs_threads = 16; rdev->config.si.max_hw_contexts = 8; rdev->config.si.sc_prim_fifo_size_frontend = 0x20; rdev->config.si.sc_prim_fifo_size_backend = 0x40; rdev->config.si.sc_hiz_tile_fifo_size = 0x30; rdev->config.si.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = VERDE_GB_ADDR_CONFIG_GOLDEN; break; } /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff)); evergreen_fix_pci_max_read_req_size(rdev); WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN); mc_shared_chmap = RREG32(MC_SHARED_CHMAP); mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG); rdev->config.si.num_tile_pipes = rdev->config.si.max_tile_pipes; rdev->config.si.mem_max_burst_length_bytes = 256; tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT; rdev->config.si.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024; if (rdev->config.si.mem_row_size_in_kb > 4) rdev->config.si.mem_row_size_in_kb = 4; /* XXX use MC settings? */ rdev->config.si.shader_engine_tile_size = 32; rdev->config.si.num_gpus = 1; rdev->config.si.multi_gpu_tile_size = 64; /* fix up row size */ gb_addr_config &= ~ROW_SIZE_MASK; switch (rdev->config.si.mem_row_size_in_kb) { case 1: default: gb_addr_config |= ROW_SIZE(0); break; case 2: gb_addr_config |= ROW_SIZE(1); break; case 4: gb_addr_config |= ROW_SIZE(2); break; } /* setup tiling info dword. gb_addr_config is not adequate since it does * not have bank info, so create a custom tiling dword. * bits 3:0 num_pipes * bits 7:4 num_banks * bits 11:8 group_size * bits 15:12 row_size */ rdev->config.si.tile_config = 0; switch (rdev->config.si.num_tile_pipes) { case 1: rdev->config.si.tile_config |= (0 << 0); break; case 2: rdev->config.si.tile_config |= (1 << 0); break; case 4: rdev->config.si.tile_config |= (2 << 0); break; case 8: default: /* XXX what about 12? */ rdev->config.si.tile_config |= (3 << 0); break; } switch ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT) { case 0: /* four banks */ rdev->config.si.tile_config |= 0 << 4; break; case 1: /* eight banks */ rdev->config.si.tile_config |= 1 << 4; break; case 2: /* sixteen banks */ default: rdev->config.si.tile_config |= 2 << 4; break; } rdev->config.si.tile_config |= ((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8; rdev->config.si.tile_config |= ((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12; WREG32(GB_ADDR_CONFIG, gb_addr_config); WREG32(DMIF_ADDR_CONFIG, gb_addr_config); WREG32(HDP_ADDR_CONFIG, gb_addr_config); WREG32(DMA_TILING_CONFIG + DMA0_REGISTER_OFFSET, gb_addr_config); WREG32(DMA_TILING_CONFIG + DMA1_REGISTER_OFFSET, gb_addr_config); si_tiling_mode_table_init(rdev); si_setup_rb(rdev, rdev->config.si.max_shader_engines, rdev->config.si.max_sh_per_se, rdev->config.si.max_backends_per_se); si_setup_spi(rdev, rdev->config.si.max_shader_engines, rdev->config.si.max_sh_per_se, rdev->config.si.max_cu_per_sh); /* set HW defaults for 3D engine */ WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) | ROQ_IB2_START(0x2b))); WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60)); sx_debug_1 = RREG32(SX_DEBUG_1); WREG32(SX_DEBUG_1, sx_debug_1); WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4)); WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.si.sc_prim_fifo_size_frontend) | SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.si.sc_prim_fifo_size_backend) | SC_HIZ_TILE_FIFO_SIZE(rdev->config.si.sc_hiz_tile_fifo_size) | SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.si.sc_earlyz_tile_fifo_size))); WREG32(VGT_NUM_INSTANCES, 1); WREG32(CP_PERFMON_CNTL, 0); WREG32(SQ_CONFIG, 0); WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) | FORCE_EOV_MAX_REZ_CNT(255))); WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) | AUTO_INVLD_EN(ES_AND_GS_AUTO)); WREG32(VGT_GS_VERTEX_REUSE, 16); WREG32(PA_SC_LINE_STIPPLE_STATE, 0); WREG32(CB_PERFCOUNTER0_SELECT0, 0); WREG32(CB_PERFCOUNTER0_SELECT1, 0); WREG32(CB_PERFCOUNTER1_SELECT0, 0); WREG32(CB_PERFCOUNTER1_SELECT1, 0); WREG32(CB_PERFCOUNTER2_SELECT0, 0); WREG32(CB_PERFCOUNTER2_SELECT1, 0); WREG32(CB_PERFCOUNTER3_SELECT0, 0); WREG32(CB_PERFCOUNTER3_SELECT1, 0); tmp = RREG32(HDP_MISC_CNTL); tmp |= HDP_FLUSH_INVALIDATE_CACHE; WREG32(HDP_MISC_CNTL, tmp); hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL); WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl); WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3)); udelay(50); } /* * GPU scratch registers helpers function. */ static void si_scratch_init(struct radeon_device *rdev) { int i; rdev->scratch.num_reg = 7; rdev->scratch.reg_base = SCRATCH_REG0; for (i = 0; i < rdev->scratch.num_reg; i++) { rdev->scratch.free[i] = true; rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4); } } void si_fence_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { struct radeon_ring *ring = &rdev->ring[fence->ring]; u64 addr = rdev->fence_drv[fence->ring].gpu_addr; /* flush read cache over gart */ radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, (CP_COHER_CNTL2 - PACKET3_SET_CONFIG_REG_START) >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3)); radeon_ring_write(ring, PACKET3_TCL1_ACTION_ENA | PACKET3_TC_ACTION_ENA | PACKET3_SH_KCACHE_ACTION_ENA | PACKET3_SH_ICACHE_ACTION_ENA); radeon_ring_write(ring, 0xFFFFFFFF); radeon_ring_write(ring, 0); radeon_ring_write(ring, 10); /* poll interval */ /* EVENT_WRITE_EOP - flush caches, send int */ radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4)); radeon_ring_write(ring, EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5)); radeon_ring_write(ring, addr & 0xffffffff); radeon_ring_write(ring, (upper_32_bits(addr) & 0xff) | DATA_SEL(1) | INT_SEL(2)); radeon_ring_write(ring, fence->seq); radeon_ring_write(ring, 0); } /* * IB stuff */ void si_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; u32 header; if (ib->is_const_ib) { /* set switch buffer packet before const IB */ radeon_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); radeon_ring_write(ring, 0); header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2); } else { u32 next_rptr; if (ring->rptr_save_reg) { next_rptr = ring->wptr + 3 + 4 + 8; radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, ((ring->rptr_save_reg - PACKET3_SET_CONFIG_REG_START) >> 2)); radeon_ring_write(ring, next_rptr); } else if (rdev->wb.enabled) { next_rptr = ring->wptr + 5 + 4 + 8; radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (1 << 8)); radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff); radeon_ring_write(ring, next_rptr); } header = PACKET3(PACKET3_INDIRECT_BUFFER, 2); } radeon_ring_write(ring, header); radeon_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif (ib->gpu_addr & 0xFFFFFFFC)); radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF); radeon_ring_write(ring, ib->length_dw | (ib->vm ? (ib->vm->id << 24) : 0)); if (!ib->is_const_ib) { /* flush read cache over gart for this vmid */ radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, (CP_COHER_CNTL2 - PACKET3_SET_CONFIG_REG_START) >> 2); radeon_ring_write(ring, ib->vm ? ib->vm->id : 0); radeon_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3)); radeon_ring_write(ring, PACKET3_TCL1_ACTION_ENA | PACKET3_TC_ACTION_ENA | PACKET3_SH_KCACHE_ACTION_ENA | PACKET3_SH_ICACHE_ACTION_ENA); radeon_ring_write(ring, 0xFFFFFFFF); radeon_ring_write(ring, 0); radeon_ring_write(ring, 10); /* poll interval */ } } /* * CP. */ static void si_cp_enable(struct radeon_device *rdev, bool enable) { if (enable) WREG32(CP_ME_CNTL, 0); else { radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT)); WREG32(SCRATCH_UMSK, 0); rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = false; rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = false; } udelay(50); } static int si_cp_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; int i; if (!rdev->me_fw || !rdev->pfp_fw) return -EINVAL; si_cp_enable(rdev, false); /* PFP */ fw_data = (const __be32 *)rdev->pfp_fw->data; WREG32(CP_PFP_UCODE_ADDR, 0); for (i = 0; i < SI_PFP_UCODE_SIZE; i++) WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_PFP_UCODE_ADDR, 0); /* CE */ fw_data = (const __be32 *)rdev->ce_fw->data; WREG32(CP_CE_UCODE_ADDR, 0); for (i = 0; i < SI_CE_UCODE_SIZE; i++) WREG32(CP_CE_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_CE_UCODE_ADDR, 0); /* ME */ fw_data = (const __be32 *)rdev->me_fw->data; WREG32(CP_ME_RAM_WADDR, 0); for (i = 0; i < SI_PM4_UCODE_SIZE; i++) WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++)); WREG32(CP_ME_RAM_WADDR, 0); WREG32(CP_PFP_UCODE_ADDR, 0); WREG32(CP_CE_UCODE_ADDR, 0); WREG32(CP_ME_RAM_WADDR, 0); WREG32(CP_ME_RAM_RADDR, 0); return 0; } static int si_cp_start(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; int r, i; r = radeon_ring_lock(rdev, ring, 7 + 4); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } /* init the CP */ radeon_ring_write(ring, PACKET3(PACKET3_ME_INITIALIZE, 5)); radeon_ring_write(ring, 0x1); radeon_ring_write(ring, 0x0); radeon_ring_write(ring, rdev->config.si.max_hw_contexts - 1); radeon_ring_write(ring, PACKET3_ME_INITIALIZE_DEVICE_ID(1)); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0); /* init the CE partitions */ radeon_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2)); radeon_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE)); radeon_ring_write(ring, 0xc000); radeon_ring_write(ring, 0xe000); radeon_ring_unlock_commit(rdev, ring); si_cp_enable(rdev, true); r = radeon_ring_lock(rdev, ring, si_default_size + 10); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } /* setup clear context state */ radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); for (i = 0; i < si_default_size; i++) radeon_ring_write(ring, si_default_state[i]); radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); /* set clear context state */ radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); radeon_ring_write(ring, 0); radeon_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2)); radeon_ring_write(ring, 0x00000316); radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */ radeon_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */ radeon_ring_unlock_commit(rdev, ring); for (i = RADEON_RING_TYPE_GFX_INDEX; i <= CAYMAN_RING_TYPE_CP2_INDEX; ++i) { ring = &rdev->ring[i]; r = radeon_ring_lock(rdev, ring, 2); /* clear the compute context state */ radeon_ring_write(ring, PACKET3_COMPUTE(PACKET3_CLEAR_STATE, 0)); radeon_ring_write(ring, 0); radeon_ring_unlock_commit(rdev, ring); } return 0; } static void si_cp_fini(struct radeon_device *rdev) { struct radeon_ring *ring; si_cp_enable(rdev, false); ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; radeon_ring_fini(rdev, ring); radeon_scratch_free(rdev, ring->rptr_save_reg); ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; radeon_ring_fini(rdev, ring); radeon_scratch_free(rdev, ring->rptr_save_reg); ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; radeon_ring_fini(rdev, ring); radeon_scratch_free(rdev, ring->rptr_save_reg); } static int si_cp_resume(struct radeon_device *rdev) { struct radeon_ring *ring; u32 tmp; u32 rb_bufsz; int r; /* Reset cp; if cp is reset, then PA, SH, VGT also need to be reset */ WREG32(GRBM_SOFT_RESET, (SOFT_RESET_CP | SOFT_RESET_PA | SOFT_RESET_VGT | SOFT_RESET_SPI | SOFT_RESET_SX)); RREG32(GRBM_SOFT_RESET); mdelay(15); WREG32(GRBM_SOFT_RESET, 0); RREG32(GRBM_SOFT_RESET); WREG32(CP_SEM_WAIT_TIMER, 0x0); WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0); /* Set the write pointer delay */ WREG32(CP_RB_WPTR_DELAY, 0); WREG32(CP_DEBUG, 0); WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF); /* ring 0 - compute and gfx */ /* Set ring buffer size */ ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; rb_bufsz = drm_order(ring->ring_size / 8); tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB0_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA); ring->wptr = 0; WREG32(CP_RB0_WPTR, ring->wptr); /* set the wb address whether it's enabled or not */ WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC); WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF); if (rdev->wb.enabled) WREG32(SCRATCH_UMSK, 0xff); else { tmp |= RB_NO_UPDATE; WREG32(SCRATCH_UMSK, 0); } mdelay(1); WREG32(CP_RB0_CNTL, tmp); WREG32(CP_RB0_BASE, ring->gpu_addr >> 8); ring->rptr = RREG32(CP_RB0_RPTR); /* ring1 - compute only */ /* Set ring buffer size */ ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; rb_bufsz = drm_order(ring->ring_size / 8); tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB1_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB1_CNTL, tmp | RB_RPTR_WR_ENA); ring->wptr = 0; WREG32(CP_RB1_WPTR, ring->wptr); /* set the wb address whether it's enabled or not */ WREG32(CP_RB1_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET) & 0xFFFFFFFC); WREG32(CP_RB1_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET) & 0xFF); mdelay(1); WREG32(CP_RB1_CNTL, tmp); WREG32(CP_RB1_BASE, ring->gpu_addr >> 8); ring->rptr = RREG32(CP_RB1_RPTR); /* ring2 - compute only */ /* Set ring buffer size */ ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; rb_bufsz = drm_order(ring->ring_size / 8); tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB2_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB2_CNTL, tmp | RB_RPTR_WR_ENA); ring->wptr = 0; WREG32(CP_RB2_WPTR, ring->wptr); /* set the wb address whether it's enabled or not */ WREG32(CP_RB2_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET) & 0xFFFFFFFC); WREG32(CP_RB2_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET) & 0xFF); mdelay(1); WREG32(CP_RB2_CNTL, tmp); WREG32(CP_RB2_BASE, ring->gpu_addr >> 8); ring->rptr = RREG32(CP_RB2_RPTR); /* start the rings */ si_cp_start(rdev); rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = true; rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = true; rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = true; r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]); if (r) { rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = false; rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = false; return r; } r = radeon_ring_test(rdev, CAYMAN_RING_TYPE_CP1_INDEX, &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]); if (r) { rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = false; } r = radeon_ring_test(rdev, CAYMAN_RING_TYPE_CP2_INDEX, &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]); if (r) { rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = false; } return 0; } static u32 si_gpu_check_soft_reset(struct radeon_device *rdev) { u32 reset_mask = 0; u32 tmp; /* GRBM_STATUS */ tmp = RREG32(GRBM_STATUS); if (tmp & (PA_BUSY | SC_BUSY | BCI_BUSY | SX_BUSY | TA_BUSY | VGT_BUSY | DB_BUSY | CB_BUSY | GDS_BUSY | SPI_BUSY | IA_BUSY | IA_BUSY_NO_DMA)) reset_mask |= RADEON_RESET_GFX; if (tmp & (CF_RQ_PENDING | PF_RQ_PENDING | CP_BUSY | CP_COHERENCY_BUSY)) reset_mask |= RADEON_RESET_CP; if (tmp & GRBM_EE_BUSY) reset_mask |= RADEON_RESET_GRBM | RADEON_RESET_GFX | RADEON_RESET_CP; /* GRBM_STATUS2 */ tmp = RREG32(GRBM_STATUS2); if (tmp & (RLC_RQ_PENDING | RLC_BUSY)) reset_mask |= RADEON_RESET_RLC; /* DMA_STATUS_REG 0 */ tmp = RREG32(DMA_STATUS_REG + DMA0_REGISTER_OFFSET); if (!(tmp & DMA_IDLE)) reset_mask |= RADEON_RESET_DMA; /* DMA_STATUS_REG 1 */ tmp = RREG32(DMA_STATUS_REG + DMA1_REGISTER_OFFSET); if (!(tmp & DMA_IDLE)) reset_mask |= RADEON_RESET_DMA1; /* SRBM_STATUS2 */ tmp = RREG32(SRBM_STATUS2); if (tmp & DMA_BUSY) reset_mask |= RADEON_RESET_DMA; if (tmp & DMA1_BUSY) reset_mask |= RADEON_RESET_DMA1; /* SRBM_STATUS */ tmp = RREG32(SRBM_STATUS); if (tmp & IH_BUSY) reset_mask |= RADEON_RESET_IH; if (tmp & SEM_BUSY) reset_mask |= RADEON_RESET_SEM; if (tmp & GRBM_RQ_PENDING) reset_mask |= RADEON_RESET_GRBM; if (tmp & VMC_BUSY) reset_mask |= RADEON_RESET_VMC; if (tmp & (MCB_BUSY | MCB_NON_DISPLAY_BUSY | MCC_BUSY | MCD_BUSY)) reset_mask |= RADEON_RESET_MC; if (evergreen_is_display_hung(rdev)) reset_mask |= RADEON_RESET_DISPLAY; /* VM_L2_STATUS */ tmp = RREG32(VM_L2_STATUS); if (tmp & L2_BUSY) reset_mask |= RADEON_RESET_VMC; return reset_mask; } static void si_gpu_soft_reset(struct radeon_device *rdev, u32 reset_mask) { struct evergreen_mc_save save; u32 grbm_soft_reset = 0, srbm_soft_reset = 0; u32 tmp; if (reset_mask == 0) return; dev_info(rdev->dev, "GPU softreset: 0x%08X\n", reset_mask); evergreen_print_gpu_status_regs(rdev); dev_info(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR)); dev_info(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS)); /* Disable CP parsing/prefetching */ WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT); if (reset_mask & RADEON_RESET_DMA) { /* dma0 */ tmp = RREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET); tmp &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET, tmp); } if (reset_mask & RADEON_RESET_DMA1) { /* dma1 */ tmp = RREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET); tmp &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET, tmp); } udelay(50); evergreen_mc_stop(rdev, &save); if (evergreen_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } if (reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP)) { grbm_soft_reset = SOFT_RESET_CB | SOFT_RESET_DB | SOFT_RESET_GDS | SOFT_RESET_PA | SOFT_RESET_SC | SOFT_RESET_BCI | SOFT_RESET_SPI | SOFT_RESET_SX | SOFT_RESET_TC | SOFT_RESET_TA | SOFT_RESET_VGT | SOFT_RESET_IA; } if (reset_mask & RADEON_RESET_CP) { grbm_soft_reset |= SOFT_RESET_CP | SOFT_RESET_VGT; srbm_soft_reset |= SOFT_RESET_GRBM; } if (reset_mask & RADEON_RESET_DMA) srbm_soft_reset |= SOFT_RESET_DMA; if (reset_mask & RADEON_RESET_DMA1) srbm_soft_reset |= SOFT_RESET_DMA1; if (reset_mask & RADEON_RESET_DISPLAY) srbm_soft_reset |= SOFT_RESET_DC; if (reset_mask & RADEON_RESET_RLC) grbm_soft_reset |= SOFT_RESET_RLC; if (reset_mask & RADEON_RESET_SEM) srbm_soft_reset |= SOFT_RESET_SEM; if (reset_mask & RADEON_RESET_IH) srbm_soft_reset |= SOFT_RESET_IH; if (reset_mask & RADEON_RESET_GRBM) srbm_soft_reset |= SOFT_RESET_GRBM; if (reset_mask & RADEON_RESET_VMC) srbm_soft_reset |= SOFT_RESET_VMC; if (reset_mask & RADEON_RESET_MC) srbm_soft_reset |= SOFT_RESET_MC; if (grbm_soft_reset) { tmp = RREG32(GRBM_SOFT_RESET); tmp |= grbm_soft_reset; dev_info(rdev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(GRBM_SOFT_RESET, tmp); tmp = RREG32(GRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32(GRBM_SOFT_RESET, tmp); tmp = RREG32(GRBM_SOFT_RESET); } if (srbm_soft_reset) { tmp = RREG32(SRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(rdev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(SRBM_SOFT_RESET, tmp); tmp = RREG32(SRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(SRBM_SOFT_RESET, tmp); tmp = RREG32(SRBM_SOFT_RESET); } /* Wait a little for things to settle down */ udelay(50); evergreen_mc_resume(rdev, &save); udelay(50); evergreen_print_gpu_status_regs(rdev); } int si_asic_reset(struct radeon_device *rdev) { u32 reset_mask; reset_mask = si_gpu_check_soft_reset(rdev); if (reset_mask) r600_set_bios_scratch_engine_hung(rdev, true); si_gpu_soft_reset(rdev, reset_mask); reset_mask = si_gpu_check_soft_reset(rdev); if (!reset_mask) r600_set_bios_scratch_engine_hung(rdev, false); return 0; } /** * si_gfx_is_lockup - Check if the GFX engine is locked up * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if the GFX engine is locked up. * Returns true if the engine appears to be locked up, false if not. */ bool si_gfx_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reset_mask = si_gpu_check_soft_reset(rdev); if (!(reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP))) { radeon_ring_lockup_update(ring); return false; } /* force CP activities */ radeon_ring_force_activity(rdev, ring); return radeon_ring_test_lockup(rdev, ring); } /** * si_dma_is_lockup - Check if the DMA engine is locked up * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if the async DMA engine is locked up. * Returns true if the engine appears to be locked up, false if not. */ bool si_dma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reset_mask = si_gpu_check_soft_reset(rdev); u32 mask; if (ring->idx == R600_RING_TYPE_DMA_INDEX) mask = RADEON_RESET_DMA; else mask = RADEON_RESET_DMA1; if (!(reset_mask & mask)) { radeon_ring_lockup_update(ring); return false; } /* force ring activities */ radeon_ring_force_activity(rdev, ring); return radeon_ring_test_lockup(rdev, ring); } /* MC */ static void si_mc_program(struct radeon_device *rdev) { struct evergreen_mc_save save; u32 tmp; int i, j; /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0); evergreen_mc_stop(rdev, &save); if (radeon_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } /* Lockout access through VGA aperture*/ WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE); /* Update configuration */ WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12); WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, rdev->vram_scratch.gpu_addr >> 12); tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16; tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF); WREG32(MC_VM_FB_LOCATION, tmp); /* XXX double check these! */ WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8)); WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30)); WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF); WREG32(MC_VM_AGP_BASE, 0); WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF); WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF); if (radeon_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } evergreen_mc_resume(rdev, &save); /* we need to own VRAM, so turn off the VGA renderer here * to stop it overwriting our objects */ rv515_vga_render_disable(rdev); } /* SI MC address space is 40 bits */ static void si_vram_location(struct radeon_device *rdev, struct radeon_mc *mc, u64 base) { mc->vram_start = base; if (mc->mc_vram_size > (0xFFFFFFFFFFULL - base + 1)) { dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n"); mc->real_vram_size = mc->aper_size; mc->mc_vram_size = mc->aper_size; } mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; dev_info(rdev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", mc->mc_vram_size >> 20, mc->vram_start, mc->vram_end, mc->real_vram_size >> 20); } static void si_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc) { u64 size_af, size_bf; size_af = ((0xFFFFFFFFFFULL - mc->vram_end) + mc->gtt_base_align) & ~mc->gtt_base_align; size_bf = mc->vram_start & ~mc->gtt_base_align; if (size_bf > size_af) { if (mc->gtt_size > size_bf) { dev_warn(rdev->dev, "limiting GTT\n"); mc->gtt_size = size_bf; } mc->gtt_start = (mc->vram_start & ~mc->gtt_base_align) - mc->gtt_size; } else { if (mc->gtt_size > size_af) { dev_warn(rdev->dev, "limiting GTT\n"); mc->gtt_size = size_af; } mc->gtt_start = (mc->vram_end + 1 + mc->gtt_base_align) & ~mc->gtt_base_align; } mc->gtt_end = mc->gtt_start + mc->gtt_size - 1; dev_info(rdev->dev, "GTT: %lluM 0x%016llX - 0x%016llX\n", mc->gtt_size >> 20, mc->gtt_start, mc->gtt_end); } static void si_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc) { if (mc->mc_vram_size > 0xFFC0000000ULL) { /* leave room for at least 1024M GTT */ dev_warn(rdev->dev, "limiting VRAM\n"); mc->real_vram_size = 0xFFC0000000ULL; mc->mc_vram_size = 0xFFC0000000ULL; } si_vram_location(rdev, &rdev->mc, 0); rdev->mc.gtt_base_align = 0; si_gtt_location(rdev, mc); } static int si_mc_init(struct radeon_device *rdev) { u32 tmp; int chansize, numchan; /* Get VRAM informations */ rdev->mc.vram_is_ddr = true; tmp = RREG32(MC_ARB_RAMCFG); if (tmp & CHANSIZE_OVERRIDE) { chansize = 16; } else if (tmp & CHANSIZE_MASK) { chansize = 64; } else { chansize = 32; } tmp = RREG32(MC_SHARED_CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: default: numchan = 1; break; case 1: numchan = 2; break; case 2: numchan = 4; break; case 3: numchan = 8; break; case 4: numchan = 3; break; case 5: numchan = 6; break; case 6: numchan = 10; break; case 7: numchan = 12; break; case 8: numchan = 16; break; } rdev->mc.vram_width = numchan * chansize; /* Could aper size report 0 ? */ rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0); rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0); /* size in MB on si */ rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024; rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024; rdev->mc.visible_vram_size = rdev->mc.aper_size; si_vram_gtt_location(rdev, &rdev->mc); radeon_update_bandwidth_info(rdev); return 0; } /* * GART */ void si_pcie_gart_tlb_flush(struct radeon_device *rdev) { /* flush hdp cache */ WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1); /* bits 0-15 are the VM contexts0-15 */ WREG32(VM_INVALIDATE_REQUEST, 1); } static int si_pcie_gart_enable(struct radeon_device *rdev) { int r, i; if (rdev->gart.robj == NULL) { dev_err(rdev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = radeon_gart_table_vram_pin(rdev); if (r) return r; radeon_gart_restore(rdev); /* Setup TLB control */ WREG32(MC_VM_MX_L1_TLB_CNTL, (0xA << 7) | ENABLE_L1_TLB | SYSTEM_ACCESS_MODE_NOT_IN_SYS | ENABLE_ADVANCED_DRIVER_MODEL | SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7) | CONTEXT1_IDENTITY_ACCESS_MODE(1)); WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE); WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | L2_CACHE_BIGK_FRAGMENT_SIZE(0)); /* setup context0 */ WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12); WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(rdev->dummy_page.addr >> 12)); WREG32(VM_CONTEXT0_CNTL2, 0); WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) | RANGE_PROTECTION_FAULT_ENABLE_DEFAULT)); WREG32(0x15D4, 0); WREG32(0x15D8, 0); WREG32(0x15DC, 0); /* empty context1-15 */ /* set vm size, must be a multiple of 4 */ WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0); WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn); /* Assign the pt base to something valid for now; the pts used for * the VMs are determined by the application and setup and assigned * on the fly in the vm part of radeon_gart.c */ for (i = 1; i < 16; i++) { if (i < 8) WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2), rdev->gart.table_addr >> 12); else WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2), rdev->gart.table_addr >> 12); } /* enable context1-15 */ WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(rdev->dummy_page.addr >> 12)); WREG32(VM_CONTEXT1_CNTL2, 4); WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) | RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT | RANGE_PROTECTION_FAULT_ENABLE_DEFAULT | DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT | DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT | PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT | PDE0_PROTECTION_FAULT_ENABLE_DEFAULT | VALID_PROTECTION_FAULT_ENABLE_INTERRUPT | VALID_PROTECTION_FAULT_ENABLE_DEFAULT | READ_PROTECTION_FAULT_ENABLE_INTERRUPT | READ_PROTECTION_FAULT_ENABLE_DEFAULT | WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT | WRITE_PROTECTION_FAULT_ENABLE_DEFAULT); si_pcie_gart_tlb_flush(rdev); DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", (unsigned)(rdev->mc.gtt_size >> 20), (unsigned long long)rdev->gart.table_addr); rdev->gart.ready = true; return 0; } static void si_pcie_gart_disable(struct radeon_device *rdev) { /* Disable all tables */ WREG32(VM_CONTEXT0_CNTL, 0); WREG32(VM_CONTEXT1_CNTL, 0); /* Setup TLB control */ WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS | SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7) | CONTEXT1_IDENTITY_ACCESS_MODE(1)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | L2_CACHE_BIGK_FRAGMENT_SIZE(0)); radeon_gart_table_vram_unpin(rdev); } static void si_pcie_gart_fini(struct radeon_device *rdev) { si_pcie_gart_disable(rdev); radeon_gart_table_vram_free(rdev); radeon_gart_fini(rdev); } /* vm parser */ static bool si_vm_reg_valid(u32 reg) { /* context regs are fine */ if (reg >= 0x28000) return true; /* check config regs */ switch (reg) { case GRBM_GFX_INDEX: case CP_STRMOUT_CNTL: case VGT_VTX_VECT_EJECT_REG: case VGT_CACHE_INVALIDATION: case VGT_ESGS_RING_SIZE: case VGT_GSVS_RING_SIZE: case VGT_GS_VERTEX_REUSE: case VGT_PRIMITIVE_TYPE: case VGT_INDEX_TYPE: case VGT_NUM_INDICES: case VGT_NUM_INSTANCES: case VGT_TF_RING_SIZE: case VGT_HS_OFFCHIP_PARAM: case VGT_TF_MEMORY_BASE: case PA_CL_ENHANCE: case PA_SU_LINE_STIPPLE_VALUE: case PA_SC_LINE_STIPPLE_STATE: case PA_SC_ENHANCE: case SQC_CACHES: case SPI_STATIC_THREAD_MGMT_1: case SPI_STATIC_THREAD_MGMT_2: case SPI_STATIC_THREAD_MGMT_3: case SPI_PS_MAX_WAVE_ID: case SPI_CONFIG_CNTL: case SPI_CONFIG_CNTL_1: case TA_CNTL_AUX: return true; default: DRM_ERROR("Invalid register 0x%x in CS\n", reg); return false; } } static int si_vm_packet3_ce_check(struct radeon_device *rdev, u32 *ib, struct radeon_cs_packet *pkt) { switch (pkt->opcode) { case PACKET3_NOP: case PACKET3_SET_BASE: case PACKET3_SET_CE_DE_COUNTERS: case PACKET3_LOAD_CONST_RAM: case PACKET3_WRITE_CONST_RAM: case PACKET3_WRITE_CONST_RAM_OFFSET: case PACKET3_DUMP_CONST_RAM: case PACKET3_INCREMENT_CE_COUNTER: case PACKET3_WAIT_ON_DE_COUNTER: case PACKET3_CE_WRITE: break; default: DRM_ERROR("Invalid CE packet3: 0x%x\n", pkt->opcode); return -EINVAL; } return 0; } static int si_vm_packet3_gfx_check(struct radeon_device *rdev, u32 *ib, struct radeon_cs_packet *pkt) { u32 idx = pkt->idx + 1; u32 idx_value = ib[idx]; u32 start_reg, end_reg, reg, i; u32 command, info; switch (pkt->opcode) { case PACKET3_NOP: case PACKET3_SET_BASE: case PACKET3_CLEAR_STATE: case PACKET3_INDEX_BUFFER_SIZE: case PACKET3_DISPATCH_DIRECT: case PACKET3_DISPATCH_INDIRECT: case PACKET3_ALLOC_GDS: case PACKET3_WRITE_GDS_RAM: case PACKET3_ATOMIC_GDS: case PACKET3_ATOMIC: case PACKET3_OCCLUSION_QUERY: case PACKET3_SET_PREDICATION: case PACKET3_COND_EXEC: case PACKET3_PRED_EXEC: case PACKET3_DRAW_INDIRECT: case PACKET3_DRAW_INDEX_INDIRECT: case PACKET3_INDEX_BASE: case PACKET3_DRAW_INDEX_2: case PACKET3_CONTEXT_CONTROL: case PACKET3_INDEX_TYPE: case PACKET3_DRAW_INDIRECT_MULTI: case PACKET3_DRAW_INDEX_AUTO: case PACKET3_DRAW_INDEX_IMMD: case PACKET3_NUM_INSTANCES: case PACKET3_DRAW_INDEX_MULTI_AUTO: case PACKET3_STRMOUT_BUFFER_UPDATE: case PACKET3_DRAW_INDEX_OFFSET_2: case PACKET3_DRAW_INDEX_MULTI_ELEMENT: case PACKET3_DRAW_INDEX_INDIRECT_MULTI: case PACKET3_MPEG_INDEX: case PACKET3_WAIT_REG_MEM: case PACKET3_MEM_WRITE: case PACKET3_PFP_SYNC_ME: case PACKET3_SURFACE_SYNC: case PACKET3_EVENT_WRITE: case PACKET3_EVENT_WRITE_EOP: case PACKET3_EVENT_WRITE_EOS: case PACKET3_SET_CONTEXT_REG: case PACKET3_SET_CONTEXT_REG_INDIRECT: case PACKET3_SET_SH_REG: case PACKET3_SET_SH_REG_OFFSET: case PACKET3_INCREMENT_DE_COUNTER: case PACKET3_WAIT_ON_CE_COUNTER: case PACKET3_WAIT_ON_AVAIL_BUFFER: case PACKET3_ME_WRITE: break; case PACKET3_COPY_DATA: if ((idx_value & 0xf00) == 0) { reg = ib[idx + 3] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_WRITE_DATA: if ((idx_value & 0xf00) == 0) { start_reg = ib[idx + 1] * 4; if (idx_value & 0x10000) { if (!si_vm_reg_valid(start_reg)) return -EINVAL; } else { for (i = 0; i < (pkt->count - 2); i++) { reg = start_reg + (4 * i); if (!si_vm_reg_valid(reg)) return -EINVAL; } } } break; case PACKET3_COND_WRITE: if (idx_value & 0x100) { reg = ib[idx + 5] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_COPY_DW: if (idx_value & 0x2) { reg = ib[idx + 3] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_SET_CONFIG_REG: start_reg = (idx_value << 2) + PACKET3_SET_CONFIG_REG_START; end_reg = 4 * pkt->count + start_reg - 4; if ((start_reg < PACKET3_SET_CONFIG_REG_START) || (start_reg >= PACKET3_SET_CONFIG_REG_END) || (end_reg >= PACKET3_SET_CONFIG_REG_END)) { DRM_ERROR("bad PACKET3_SET_CONFIG_REG\n"); return -EINVAL; } for (i = 0; i < pkt->count; i++) { reg = start_reg + (4 * i); if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_CP_DMA: command = ib[idx + 4]; info = ib[idx + 1]; if (command & PACKET3_CP_DMA_CMD_SAS) { /* src address space is register */ if (((info & 0x60000000) >> 29) == 0) { start_reg = idx_value << 2; if (command & PACKET3_CP_DMA_CMD_SAIC) { reg = start_reg; if (!si_vm_reg_valid(reg)) { DRM_ERROR("CP DMA Bad SRC register\n"); return -EINVAL; } } else { for (i = 0; i < (command & 0x1fffff); i++) { reg = start_reg + (4 * i); if (!si_vm_reg_valid(reg)) { DRM_ERROR("CP DMA Bad SRC register\n"); return -EINVAL; } } } } } if (command & PACKET3_CP_DMA_CMD_DAS) { /* dst address space is register */ if (((info & 0x00300000) >> 20) == 0) { start_reg = ib[idx + 2]; if (command & PACKET3_CP_DMA_CMD_DAIC) { reg = start_reg; if (!si_vm_reg_valid(reg)) { DRM_ERROR("CP DMA Bad DST register\n"); return -EINVAL; } } else { for (i = 0; i < (command & 0x1fffff); i++) { reg = start_reg + (4 * i); if (!si_vm_reg_valid(reg)) { DRM_ERROR("CP DMA Bad DST register\n"); return -EINVAL; } } } } } break; default: DRM_ERROR("Invalid GFX packet3: 0x%x\n", pkt->opcode); return -EINVAL; } return 0; } static int si_vm_packet3_compute_check(struct radeon_device *rdev, u32 *ib, struct radeon_cs_packet *pkt) { u32 idx = pkt->idx + 1; u32 idx_value = ib[idx]; u32 start_reg, reg, i; switch (pkt->opcode) { case PACKET3_NOP: case PACKET3_SET_BASE: case PACKET3_CLEAR_STATE: case PACKET3_DISPATCH_DIRECT: case PACKET3_DISPATCH_INDIRECT: case PACKET3_ALLOC_GDS: case PACKET3_WRITE_GDS_RAM: case PACKET3_ATOMIC_GDS: case PACKET3_ATOMIC: case PACKET3_OCCLUSION_QUERY: case PACKET3_SET_PREDICATION: case PACKET3_COND_EXEC: case PACKET3_PRED_EXEC: case PACKET3_CONTEXT_CONTROL: case PACKET3_STRMOUT_BUFFER_UPDATE: case PACKET3_WAIT_REG_MEM: case PACKET3_MEM_WRITE: case PACKET3_PFP_SYNC_ME: case PACKET3_SURFACE_SYNC: case PACKET3_EVENT_WRITE: case PACKET3_EVENT_WRITE_EOP: case PACKET3_EVENT_WRITE_EOS: case PACKET3_SET_CONTEXT_REG: case PACKET3_SET_CONTEXT_REG_INDIRECT: case PACKET3_SET_SH_REG: case PACKET3_SET_SH_REG_OFFSET: case PACKET3_INCREMENT_DE_COUNTER: case PACKET3_WAIT_ON_CE_COUNTER: case PACKET3_WAIT_ON_AVAIL_BUFFER: case PACKET3_ME_WRITE: break; case PACKET3_COPY_DATA: if ((idx_value & 0xf00) == 0) { reg = ib[idx + 3] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_WRITE_DATA: if ((idx_value & 0xf00) == 0) { start_reg = ib[idx + 1] * 4; if (idx_value & 0x10000) { if (!si_vm_reg_valid(start_reg)) return -EINVAL; } else { for (i = 0; i < (pkt->count - 2); i++) { reg = start_reg + (4 * i); if (!si_vm_reg_valid(reg)) return -EINVAL; } } } break; case PACKET3_COND_WRITE: if (idx_value & 0x100) { reg = ib[idx + 5] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_COPY_DW: if (idx_value & 0x2) { reg = ib[idx + 3] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; default: DRM_ERROR("Invalid Compute packet3: 0x%x\n", pkt->opcode); return -EINVAL; } return 0; } int si_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib) { int ret = 0; u32 idx = 0; struct radeon_cs_packet pkt; do { pkt.idx = idx; pkt.type = RADEON_CP_PACKET_GET_TYPE(ib->ptr[idx]); pkt.count = RADEON_CP_PACKET_GET_COUNT(ib->ptr[idx]); pkt.one_reg_wr = 0; switch (pkt.type) { case RADEON_PACKET_TYPE0: dev_err(rdev->dev, "Packet0 not allowed!\n"); ret = -EINVAL; break; case RADEON_PACKET_TYPE2: idx += 1; break; case RADEON_PACKET_TYPE3: pkt.opcode = RADEON_CP_PACKET3_GET_OPCODE(ib->ptr[idx]); if (ib->is_const_ib) ret = si_vm_packet3_ce_check(rdev, ib->ptr, &pkt); else { switch (ib->ring) { case RADEON_RING_TYPE_GFX_INDEX: ret = si_vm_packet3_gfx_check(rdev, ib->ptr, &pkt); break; case CAYMAN_RING_TYPE_CP1_INDEX: case CAYMAN_RING_TYPE_CP2_INDEX: ret = si_vm_packet3_compute_check(rdev, ib->ptr, &pkt); break; default: dev_err(rdev->dev, "Non-PM4 ring %d !\n", ib->ring); ret = -EINVAL; break; } } idx += pkt.count + 2; break; default: dev_err(rdev->dev, "Unknown packet type %d !\n", pkt.type); ret = -EINVAL; break; } if (ret) break; } while (idx < ib->length_dw); return ret; } /* * vm */ int si_vm_init(struct radeon_device *rdev) { /* number of VMs */ rdev->vm_manager.nvm = 16; /* base offset of vram pages */ rdev->vm_manager.vram_base_offset = 0; return 0; } void si_vm_fini(struct radeon_device *rdev) { } /** * si_vm_set_page - update the page tables using the CP * * @rdev: radeon_device pointer * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update the page tables using the CP (SI). */ void si_vm_set_page(struct radeon_device *rdev, struct radeon_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint32_t flags) { uint32_t r600_flags = cayman_vm_page_flags(rdev, flags); uint64_t value; unsigned ndw; if (rdev->asic->vm.pt_ring_index == RADEON_RING_TYPE_GFX_INDEX) { while (count) { ndw = 2 + count * 2; if (ndw > 0x3FFE) ndw = 0x3FFE; ib->ptr[ib->length_dw++] = PACKET3(PACKET3_WRITE_DATA, ndw); ib->ptr[ib->length_dw++] = (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(1)); ib->ptr[ib->length_dw++] = pe; ib->ptr[ib->length_dw++] = upper_32_bits(pe); for (; ndw > 2; ndw -= 2, --count, pe += 8) { if (flags & RADEON_VM_PAGE_SYSTEM) { value = radeon_vm_map_gart(rdev, addr); value &= 0xFFFFFFFFFFFFF000ULL; } else if (flags & RADEON_VM_PAGE_VALID) { value = addr; } else { value = 0; } addr += incr; value |= r600_flags; ib->ptr[ib->length_dw++] = value; ib->ptr[ib->length_dw++] = upper_32_bits(value); } } } else { /* DMA */ if (flags & RADEON_VM_PAGE_SYSTEM) { while (count) { ndw = count * 2; if (ndw > 0xFFFFE) ndw = 0xFFFFE; /* for non-physically contiguous pages (system) */ ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 0, ndw); ib->ptr[ib->length_dw++] = pe; ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff; for (; ndw > 0; ndw -= 2, --count, pe += 8) { if (flags & RADEON_VM_PAGE_SYSTEM) { value = radeon_vm_map_gart(rdev, addr); value &= 0xFFFFFFFFFFFFF000ULL; } else if (flags & RADEON_VM_PAGE_VALID) { value = addr; } else { value = 0; } addr += incr; value |= r600_flags; ib->ptr[ib->length_dw++] = value; ib->ptr[ib->length_dw++] = upper_32_bits(value); } } } else { while (count) { ndw = count * 2; if (ndw > 0xFFFFE) ndw = 0xFFFFE; if (flags & RADEON_VM_PAGE_VALID) value = addr; else value = 0; /* for physically contiguous pages (vram) */ ib->ptr[ib->length_dw++] = DMA_PTE_PDE_PACKET(ndw); ib->ptr[ib->length_dw++] = pe; /* dst addr */ ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff; ib->ptr[ib->length_dw++] = r600_flags; /* mask */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = value; /* value */ ib->ptr[ib->length_dw++] = upper_32_bits(value); ib->ptr[ib->length_dw++] = incr; /* increment size */ ib->ptr[ib->length_dw++] = 0; pe += ndw * 4; addr += (ndw / 2) * incr; count -= ndw / 2; } } while (ib->length_dw & 0x7) ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0); } } void si_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm) { struct radeon_ring *ring = &rdev->ring[ridx]; if (vm == NULL) return; /* write new base address */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); if (vm->id < 8) { radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2); } else { radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2); } radeon_ring_write(ring, 0); radeon_ring_write(ring, vm->pd_gpu_addr >> 12); /* flush hdp cache */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0x1); /* bits 0-15 are the VM contexts0-15 */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 1 << vm->id); /* sync PFP to ME, otherwise we might get invalid PFP reads */ radeon_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0)); radeon_ring_write(ring, 0x0); } void si_dma_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm) { struct radeon_ring *ring = &rdev->ring[ridx]; if (vm == NULL) return; radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0, 0)); if (vm->id < 8) { radeon_ring_write(ring, (0xf << 16) | ((VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2)); } else { radeon_ring_write(ring, (0xf << 16) | ((VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2)); } radeon_ring_write(ring, vm->pd_gpu_addr >> 12); /* flush hdp cache */ radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0, 0)); radeon_ring_write(ring, (0xf << 16) | (HDP_MEM_COHERENCY_FLUSH_CNTL >> 2)); radeon_ring_write(ring, 1); /* bits 0-7 are the VM contexts0-7 */ radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0, 0)); radeon_ring_write(ring, (0xf << 16) | (VM_INVALIDATE_REQUEST >> 2)); radeon_ring_write(ring, 1 << vm->id); } /* * RLC */ void si_rlc_fini(struct radeon_device *rdev) { int r; /* save restore block */ if (rdev->rlc.save_restore_obj) { r = radeon_bo_reserve(rdev->rlc.save_restore_obj, false); if (unlikely(r != 0)) dev_warn(rdev->dev, "(%d) reserve RLC sr bo failed\n", r); radeon_bo_unpin(rdev->rlc.save_restore_obj); radeon_bo_unreserve(rdev->rlc.save_restore_obj); radeon_bo_unref(&rdev->rlc.save_restore_obj); rdev->rlc.save_restore_obj = NULL; } /* clear state block */ if (rdev->rlc.clear_state_obj) { r = radeon_bo_reserve(rdev->rlc.clear_state_obj, false); if (unlikely(r != 0)) dev_warn(rdev->dev, "(%d) reserve RLC c bo failed\n", r); radeon_bo_unpin(rdev->rlc.clear_state_obj); radeon_bo_unreserve(rdev->rlc.clear_state_obj); radeon_bo_unref(&rdev->rlc.clear_state_obj); rdev->rlc.clear_state_obj = NULL; } } int si_rlc_init(struct radeon_device *rdev) { int r; /* save restore block */ if (rdev->rlc.save_restore_obj == NULL) { r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, NULL, &rdev->rlc.save_restore_obj); if (r) { dev_warn(rdev->dev, "(%d) create RLC sr bo failed\n", r); return r; } } r = radeon_bo_reserve(rdev->rlc.save_restore_obj, false); if (unlikely(r != 0)) { si_rlc_fini(rdev); return r; } r = radeon_bo_pin(rdev->rlc.save_restore_obj, RADEON_GEM_DOMAIN_VRAM, &rdev->rlc.save_restore_gpu_addr); radeon_bo_unreserve(rdev->rlc.save_restore_obj); if (r) { dev_warn(rdev->dev, "(%d) pin RLC sr bo failed\n", r); si_rlc_fini(rdev); return r; } /* clear state block */ if (rdev->rlc.clear_state_obj == NULL) { r = radeon_bo_create(rdev, RADEON_GPU_PAGE_SIZE, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, NULL, &rdev->rlc.clear_state_obj); if (r) { dev_warn(rdev->dev, "(%d) create RLC c bo failed\n", r); si_rlc_fini(rdev); return r; } } r = radeon_bo_reserve(rdev->rlc.clear_state_obj, false); if (unlikely(r != 0)) { si_rlc_fini(rdev); return r; } r = radeon_bo_pin(rdev->rlc.clear_state_obj, RADEON_GEM_DOMAIN_VRAM, &rdev->rlc.clear_state_gpu_addr); radeon_bo_unreserve(rdev->rlc.clear_state_obj); if (r) { dev_warn(rdev->dev, "(%d) pin RLC c bo failed\n", r); si_rlc_fini(rdev); return r; } return 0; } static void si_rlc_stop(struct radeon_device *rdev) { WREG32(RLC_CNTL, 0); } static void si_rlc_start(struct radeon_device *rdev) { WREG32(RLC_CNTL, RLC_ENABLE); } static int si_rlc_resume(struct radeon_device *rdev) { u32 i; const __be32 *fw_data; if (!rdev->rlc_fw) return -EINVAL; si_rlc_stop(rdev); WREG32(RLC_RL_BASE, 0); WREG32(RLC_RL_SIZE, 0); WREG32(RLC_LB_CNTL, 0); WREG32(RLC_LB_CNTR_MAX, 0xffffffff); WREG32(RLC_LB_CNTR_INIT, 0); WREG32(RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8); WREG32(RLC_CLEAR_STATE_RESTORE_BASE, rdev->rlc.clear_state_gpu_addr >> 8); WREG32(RLC_MC_CNTL, 0); WREG32(RLC_UCODE_CNTL, 0); fw_data = (const __be32 *)rdev->rlc_fw->data; for (i = 0; i < SI_RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } WREG32(RLC_UCODE_ADDR, 0); si_rlc_start(rdev); return 0; } static void si_enable_interrupts(struct radeon_device *rdev) { u32 ih_cntl = RREG32(IH_CNTL); u32 ih_rb_cntl = RREG32(IH_RB_CNTL); ih_cntl |= ENABLE_INTR; ih_rb_cntl |= IH_RB_ENABLE; WREG32(IH_CNTL, ih_cntl); WREG32(IH_RB_CNTL, ih_rb_cntl); rdev->ih.enabled = true; } static void si_disable_interrupts(struct radeon_device *rdev) { u32 ih_rb_cntl = RREG32(IH_RB_CNTL); u32 ih_cntl = RREG32(IH_CNTL); ih_rb_cntl &= ~IH_RB_ENABLE; ih_cntl &= ~ENABLE_INTR; WREG32(IH_RB_CNTL, ih_rb_cntl); WREG32(IH_CNTL, ih_cntl); /* set rptr, wptr to 0 */ WREG32(IH_RB_RPTR, 0); WREG32(IH_RB_WPTR, 0); rdev->ih.enabled = false; rdev->ih.rptr = 0; } static void si_disable_interrupt_state(struct radeon_device *rdev) { u32 tmp; WREG32(CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); WREG32(CP_INT_CNTL_RING1, 0); WREG32(CP_INT_CNTL_RING2, 0); tmp = RREG32(DMA_CNTL + DMA0_REGISTER_OFFSET) & ~TRAP_ENABLE; WREG32(DMA_CNTL + DMA0_REGISTER_OFFSET, tmp); tmp = RREG32(DMA_CNTL + DMA1_REGISTER_OFFSET) & ~TRAP_ENABLE; WREG32(DMA_CNTL + DMA1_REGISTER_OFFSET, tmp); WREG32(GRBM_INT_CNTL, 0); WREG32(INT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, 0); WREG32(INT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, 0); if (rdev->num_crtc >= 4) { WREG32(INT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, 0); WREG32(INT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, 0); } if (rdev->num_crtc >= 6) { WREG32(INT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, 0); WREG32(INT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, 0); } WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET, 0); WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET, 0); if (rdev->num_crtc >= 4) { WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET, 0); WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET, 0); } if (rdev->num_crtc >= 6) { WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET, 0); WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET, 0); } WREG32(DACA_AUTODETECT_INT_CONTROL, 0); tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD1_INT_CONTROL, tmp); tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD2_INT_CONTROL, tmp); tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD3_INT_CONTROL, tmp); tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD4_INT_CONTROL, tmp); tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD5_INT_CONTROL, tmp); tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD6_INT_CONTROL, tmp); } static int si_irq_init(struct radeon_device *rdev) { int ret = 0; int rb_bufsz; u32 interrupt_cntl, ih_cntl, ih_rb_cntl; /* allocate ring */ ret = r600_ih_ring_alloc(rdev); if (ret) return ret; /* disable irqs */ si_disable_interrupts(rdev); /* init rlc */ ret = si_rlc_resume(rdev); if (ret) { r600_ih_ring_fini(rdev); return ret; } /* setup interrupt control */ /* set dummy read address to ring address */ WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8); interrupt_cntl = RREG32(INTERRUPT_CNTL); /* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi * IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN */ interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE; /* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */ interrupt_cntl &= ~IH_REQ_NONSNOOP_EN; WREG32(INTERRUPT_CNTL, interrupt_cntl); WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8); rb_bufsz = drm_order(rdev->ih.ring_size / 4); ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE | IH_WPTR_OVERFLOW_CLEAR | (rb_bufsz << 1)); if (rdev->wb.enabled) ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE; /* set the writeback address whether it's enabled or not */ WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC); WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF); WREG32(IH_RB_CNTL, ih_rb_cntl); /* set rptr, wptr to 0 */ WREG32(IH_RB_RPTR, 0); WREG32(IH_RB_WPTR, 0); /* Default settings for IH_CNTL (disabled at first) */ ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10) | MC_VMID(0); /* RPTR_REARM only works if msi's are enabled */ if (rdev->msi_enabled) ih_cntl |= RPTR_REARM; WREG32(IH_CNTL, ih_cntl); /* force the active interrupt state to all disabled */ si_disable_interrupt_state(rdev); pci_set_master(rdev->pdev); /* enable irqs */ si_enable_interrupts(rdev); return ret; } int si_irq_set(struct radeon_device *rdev) { u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE; u32 cp_int_cntl1 = 0, cp_int_cntl2 = 0; u32 crtc1 = 0, crtc2 = 0, crtc3 = 0, crtc4 = 0, crtc5 = 0, crtc6 = 0; u32 hpd1, hpd2, hpd3, hpd4, hpd5, hpd6; u32 grbm_int_cntl = 0; u32 grph1 = 0, grph2 = 0, grph3 = 0, grph4 = 0, grph5 = 0, grph6 = 0; u32 dma_cntl, dma_cntl1; if (!rdev->irq.installed) { WARN(1, "Can't enable IRQ/MSI because no handler is installed\n"); return -EINVAL; } /* don't enable anything if the ih is disabled */ if (!rdev->ih.enabled) { si_disable_interrupts(rdev); /* force the active interrupt state to all disabled */ si_disable_interrupt_state(rdev); return 0; } hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN; dma_cntl = RREG32(DMA_CNTL + DMA0_REGISTER_OFFSET) & ~TRAP_ENABLE; dma_cntl1 = RREG32(DMA_CNTL + DMA1_REGISTER_OFFSET) & ~TRAP_ENABLE; /* enable CP interrupts on all rings */ if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) { DRM_DEBUG("si_irq_set: sw int gfx\n"); cp_int_cntl |= TIME_STAMP_INT_ENABLE; } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP1_INDEX])) { DRM_DEBUG("si_irq_set: sw int cp1\n"); cp_int_cntl1 |= TIME_STAMP_INT_ENABLE; } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP2_INDEX])) { DRM_DEBUG("si_irq_set: sw int cp2\n"); cp_int_cntl2 |= TIME_STAMP_INT_ENABLE; } if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) { DRM_DEBUG("si_irq_set: sw int dma\n"); dma_cntl |= TRAP_ENABLE; } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_DMA1_INDEX])) { DRM_DEBUG("si_irq_set: sw int dma1\n"); dma_cntl1 |= TRAP_ENABLE; } if (rdev->irq.crtc_vblank_int[0] || atomic_read(&rdev->irq.pflip[0])) { DRM_DEBUG("si_irq_set: vblank 0\n"); crtc1 |= VBLANK_INT_MASK; } if (rdev->irq.crtc_vblank_int[1] || atomic_read(&rdev->irq.pflip[1])) { DRM_DEBUG("si_irq_set: vblank 1\n"); crtc2 |= VBLANK_INT_MASK; } if (rdev->irq.crtc_vblank_int[2] || atomic_read(&rdev->irq.pflip[2])) { DRM_DEBUG("si_irq_set: vblank 2\n"); crtc3 |= VBLANK_INT_MASK; } if (rdev->irq.crtc_vblank_int[3] || atomic_read(&rdev->irq.pflip[3])) { DRM_DEBUG("si_irq_set: vblank 3\n"); crtc4 |= VBLANK_INT_MASK; } if (rdev->irq.crtc_vblank_int[4] || atomic_read(&rdev->irq.pflip[4])) { DRM_DEBUG("si_irq_set: vblank 4\n"); crtc5 |= VBLANK_INT_MASK; } if (rdev->irq.crtc_vblank_int[5] || atomic_read(&rdev->irq.pflip[5])) { DRM_DEBUG("si_irq_set: vblank 5\n"); crtc6 |= VBLANK_INT_MASK; } if (rdev->irq.hpd[0]) { DRM_DEBUG("si_irq_set: hpd 1\n"); hpd1 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[1]) { DRM_DEBUG("si_irq_set: hpd 2\n"); hpd2 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[2]) { DRM_DEBUG("si_irq_set: hpd 3\n"); hpd3 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[3]) { DRM_DEBUG("si_irq_set: hpd 4\n"); hpd4 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[4]) { DRM_DEBUG("si_irq_set: hpd 5\n"); hpd5 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[5]) { DRM_DEBUG("si_irq_set: hpd 6\n"); hpd6 |= DC_HPDx_INT_EN; } WREG32(CP_INT_CNTL_RING0, cp_int_cntl); WREG32(CP_INT_CNTL_RING1, cp_int_cntl1); WREG32(CP_INT_CNTL_RING2, cp_int_cntl2); WREG32(DMA_CNTL + DMA0_REGISTER_OFFSET, dma_cntl); WREG32(DMA_CNTL + DMA1_REGISTER_OFFSET, dma_cntl1); WREG32(GRBM_INT_CNTL, grbm_int_cntl); WREG32(INT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, crtc1); WREG32(INT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, crtc2); if (rdev->num_crtc >= 4) { WREG32(INT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, crtc3); WREG32(INT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, crtc4); } if (rdev->num_crtc >= 6) { WREG32(INT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, crtc5); WREG32(INT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, crtc6); } WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET, grph1); WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET, grph2); if (rdev->num_crtc >= 4) { WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET, grph3); WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET, grph4); } if (rdev->num_crtc >= 6) { WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET, grph5); WREG32(GRPH_INT_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET, grph6); } WREG32(DC_HPD1_INT_CONTROL, hpd1); WREG32(DC_HPD2_INT_CONTROL, hpd2); WREG32(DC_HPD3_INT_CONTROL, hpd3); WREG32(DC_HPD4_INT_CONTROL, hpd4); WREG32(DC_HPD5_INT_CONTROL, hpd5); WREG32(DC_HPD6_INT_CONTROL, hpd6); return 0; } static inline void si_irq_ack(struct radeon_device *rdev) { u32 tmp; rdev->irq.stat_regs.evergreen.disp_int = RREG32(DISP_INTERRUPT_STATUS); rdev->irq.stat_regs.evergreen.disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE); rdev->irq.stat_regs.evergreen.disp_int_cont2 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE2); rdev->irq.stat_regs.evergreen.disp_int_cont3 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE3); rdev->irq.stat_regs.evergreen.disp_int_cont4 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE4); rdev->irq.stat_regs.evergreen.disp_int_cont5 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE5); rdev->irq.stat_regs.evergreen.d1grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET); rdev->irq.stat_regs.evergreen.d2grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET); if (rdev->num_crtc >= 4) { rdev->irq.stat_regs.evergreen.d3grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET); rdev->irq.stat_regs.evergreen.d4grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET); } if (rdev->num_crtc >= 6) { rdev->irq.stat_regs.evergreen.d5grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET); rdev->irq.stat_regs.evergreen.d6grph_int = RREG32(GRPH_INT_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET); } if (rdev->irq.stat_regs.evergreen.d1grph_int & GRPH_PFLIP_INT_OCCURRED) WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR); if (rdev->irq.stat_regs.evergreen.d2grph_int & GRPH_PFLIP_INT_OCCURRED) WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR); if (rdev->irq.stat_regs.evergreen.disp_int & LB_D1_VBLANK_INTERRUPT) WREG32(VBLANK_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.evergreen.disp_int & LB_D1_VLINE_INTERRUPT) WREG32(VLINE_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VLINE_ACK); if (rdev->irq.stat_regs.evergreen.disp_int_cont & LB_D2_VBLANK_INTERRUPT) WREG32(VBLANK_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.evergreen.disp_int_cont & LB_D2_VLINE_INTERRUPT) WREG32(VLINE_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VLINE_ACK); if (rdev->num_crtc >= 4) { if (rdev->irq.stat_regs.evergreen.d3grph_int & GRPH_PFLIP_INT_OCCURRED) WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR); if (rdev->irq.stat_regs.evergreen.d4grph_int & GRPH_PFLIP_INT_OCCURRED) WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR); if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) WREG32(VBLANK_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) WREG32(VLINE_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VLINE_ACK); if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) WREG32(VBLANK_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) WREG32(VLINE_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VLINE_ACK); } if (rdev->num_crtc >= 6) { if (rdev->irq.stat_regs.evergreen.d5grph_int & GRPH_PFLIP_INT_OCCURRED) WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR); if (rdev->irq.stat_regs.evergreen.d6grph_int & GRPH_PFLIP_INT_OCCURRED) WREG32(GRPH_INT_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, GRPH_PFLIP_INT_CLEAR); if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) WREG32(VBLANK_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) WREG32(VLINE_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VLINE_ACK); if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) WREG32(VBLANK_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) WREG32(VLINE_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VLINE_ACK); } if (rdev->irq.stat_regs.evergreen.disp_int & DC_HPD1_INTERRUPT) { tmp = RREG32(DC_HPD1_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD1_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.evergreen.disp_int_cont & DC_HPD2_INTERRUPT) { tmp = RREG32(DC_HPD2_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD2_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & DC_HPD3_INTERRUPT) { tmp = RREG32(DC_HPD3_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD3_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & DC_HPD4_INTERRUPT) { tmp = RREG32(DC_HPD4_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD4_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & DC_HPD5_INTERRUPT) { tmp = RREG32(DC_HPD5_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD5_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & DC_HPD6_INTERRUPT) { tmp = RREG32(DC_HPD5_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD6_INT_CONTROL, tmp); } } static void si_irq_disable(struct radeon_device *rdev) { si_disable_interrupts(rdev); /* Wait and acknowledge irq */ mdelay(1); si_irq_ack(rdev); si_disable_interrupt_state(rdev); } static void si_irq_suspend(struct radeon_device *rdev) { si_irq_disable(rdev); si_rlc_stop(rdev); } static void si_irq_fini(struct radeon_device *rdev) { si_irq_suspend(rdev); r600_ih_ring_fini(rdev); } static inline u32 si_get_ih_wptr(struct radeon_device *rdev) { u32 wptr, tmp; if (rdev->wb.enabled) wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]); else wptr = RREG32(IH_RB_WPTR); if (wptr & RB_OVERFLOW) { /* When a ring buffer overflow happen start parsing interrupt * from the last not overwritten vector (wptr + 16). Hopefully * this should allow us to catchup. */ dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n", wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask); rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask; tmp = RREG32(IH_RB_CNTL); tmp |= IH_WPTR_OVERFLOW_CLEAR; WREG32(IH_RB_CNTL, tmp); } return (wptr & rdev->ih.ptr_mask); } /* SI IV Ring * Each IV ring entry is 128 bits: * [7:0] - interrupt source id * [31:8] - reserved * [59:32] - interrupt source data * [63:60] - reserved * [71:64] - RINGID * [79:72] - VMID * [127:80] - reserved */ int si_irq_process(struct radeon_device *rdev) { u32 wptr; u32 rptr; u32 src_id, src_data, ring_id; u32 ring_index; bool queue_hotplug = false; if (!rdev->ih.enabled || rdev->shutdown) return IRQ_NONE; wptr = si_get_ih_wptr(rdev); restart_ih: /* is somebody else already processing irqs? */ if (atomic_xchg(&rdev->ih.lock, 1)) return IRQ_NONE; rptr = rdev->ih.rptr; DRM_DEBUG("si_irq_process start: rptr %d, wptr %d\n", rptr, wptr); /* Order reading of wptr vs. reading of IH ring data */ rmb(); /* display interrupts */ si_irq_ack(rdev); while (rptr != wptr) { /* wptr/rptr are in bytes! */ ring_index = rptr / 4; src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff; src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff; ring_id = le32_to_cpu(rdev->ih.ring[ring_index + 2]) & 0xff; switch (src_id) { case 1: /* D1 vblank/vline */ switch (src_data) { case 0: /* D1 vblank */ if (rdev->irq.stat_regs.evergreen.disp_int & LB_D1_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[0]) { drm_handle_vblank(rdev->ddev, 0); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[0])) radeon_crtc_handle_flip(rdev, 0); rdev->irq.stat_regs.evergreen.disp_int &= ~LB_D1_VBLANK_INTERRUPT; DRM_DEBUG("IH: D1 vblank\n"); } break; case 1: /* D1 vline */ if (rdev->irq.stat_regs.evergreen.disp_int & LB_D1_VLINE_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int &= ~LB_D1_VLINE_INTERRUPT; DRM_DEBUG("IH: D1 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 2: /* D2 vblank/vline */ switch (src_data) { case 0: /* D2 vblank */ if (rdev->irq.stat_regs.evergreen.disp_int_cont & LB_D2_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[1]) { drm_handle_vblank(rdev->ddev, 1); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[1])) radeon_crtc_handle_flip(rdev, 1); rdev->irq.stat_regs.evergreen.disp_int_cont &= ~LB_D2_VBLANK_INTERRUPT; DRM_DEBUG("IH: D2 vblank\n"); } break; case 1: /* D2 vline */ if (rdev->irq.stat_regs.evergreen.disp_int_cont & LB_D2_VLINE_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int_cont &= ~LB_D2_VLINE_INTERRUPT; DRM_DEBUG("IH: D2 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 3: /* D3 vblank/vline */ switch (src_data) { case 0: /* D3 vblank */ if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[2]) { drm_handle_vblank(rdev->ddev, 2); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[2])) radeon_crtc_handle_flip(rdev, 2); rdev->irq.stat_regs.evergreen.disp_int_cont2 &= ~LB_D3_VBLANK_INTERRUPT; DRM_DEBUG("IH: D3 vblank\n"); } break; case 1: /* D3 vline */ if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int_cont2 &= ~LB_D3_VLINE_INTERRUPT; DRM_DEBUG("IH: D3 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 4: /* D4 vblank/vline */ switch (src_data) { case 0: /* D4 vblank */ if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[3]) { drm_handle_vblank(rdev->ddev, 3); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[3])) radeon_crtc_handle_flip(rdev, 3); rdev->irq.stat_regs.evergreen.disp_int_cont3 &= ~LB_D4_VBLANK_INTERRUPT; DRM_DEBUG("IH: D4 vblank\n"); } break; case 1: /* D4 vline */ if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int_cont3 &= ~LB_D4_VLINE_INTERRUPT; DRM_DEBUG("IH: D4 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 5: /* D5 vblank/vline */ switch (src_data) { case 0: /* D5 vblank */ if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[4]) { drm_handle_vblank(rdev->ddev, 4); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[4])) radeon_crtc_handle_flip(rdev, 4); rdev->irq.stat_regs.evergreen.disp_int_cont4 &= ~LB_D5_VBLANK_INTERRUPT; DRM_DEBUG("IH: D5 vblank\n"); } break; case 1: /* D5 vline */ if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int_cont4 &= ~LB_D5_VLINE_INTERRUPT; DRM_DEBUG("IH: D5 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 6: /* D6 vblank/vline */ switch (src_data) { case 0: /* D6 vblank */ if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[5]) { drm_handle_vblank(rdev->ddev, 5); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[5])) radeon_crtc_handle_flip(rdev, 5); rdev->irq.stat_regs.evergreen.disp_int_cont5 &= ~LB_D6_VBLANK_INTERRUPT; DRM_DEBUG("IH: D6 vblank\n"); } break; case 1: /* D6 vline */ if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int_cont5 &= ~LB_D6_VLINE_INTERRUPT; DRM_DEBUG("IH: D6 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 42: /* HPD hotplug */ switch (src_data) { case 0: if (rdev->irq.stat_regs.evergreen.disp_int & DC_HPD1_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int &= ~DC_HPD1_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD1\n"); } break; case 1: if (rdev->irq.stat_regs.evergreen.disp_int_cont & DC_HPD2_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int_cont &= ~DC_HPD2_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD2\n"); } break; case 2: if (rdev->irq.stat_regs.evergreen.disp_int_cont2 & DC_HPD3_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int_cont2 &= ~DC_HPD3_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD3\n"); } break; case 3: if (rdev->irq.stat_regs.evergreen.disp_int_cont3 & DC_HPD4_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int_cont3 &= ~DC_HPD4_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD4\n"); } break; case 4: if (rdev->irq.stat_regs.evergreen.disp_int_cont4 & DC_HPD5_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int_cont4 &= ~DC_HPD5_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD5\n"); } break; case 5: if (rdev->irq.stat_regs.evergreen.disp_int_cont5 & DC_HPD6_INTERRUPT) { rdev->irq.stat_regs.evergreen.disp_int_cont5 &= ~DC_HPD6_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD6\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 146: case 147: dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data); dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR)); dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS)); /* reset addr and status */ WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1); break; case 176: /* RINGID0 CP_INT */ radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 177: /* RINGID1 CP_INT */ radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX); break; case 178: /* RINGID2 CP_INT */ radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX); break; case 181: /* CP EOP event */ DRM_DEBUG("IH: CP EOP\n"); switch (ring_id) { case 0: radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 1: radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX); break; case 2: radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX); break; } break; case 224: /* DMA trap event */ DRM_DEBUG("IH: DMA trap\n"); radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX); break; case 233: /* GUI IDLE */ DRM_DEBUG("IH: GUI idle\n"); break; case 244: /* DMA trap event */ DRM_DEBUG("IH: DMA1 trap\n"); radeon_fence_process(rdev, CAYMAN_RING_TYPE_DMA1_INDEX); break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } /* wptr/rptr are in bytes! */ rptr += 16; rptr &= rdev->ih.ptr_mask; } if (queue_hotplug) schedule_work(&rdev->hotplug_work); rdev->ih.rptr = rptr; WREG32(IH_RB_RPTR, rdev->ih.rptr); atomic_set(&rdev->ih.lock, 0); /* make sure wptr hasn't changed while processing */ wptr = si_get_ih_wptr(rdev); if (wptr != rptr) goto restart_ih; return IRQ_HANDLED; } /** * si_copy_dma - copy pages using the DMA engine * * @rdev: radeon_device pointer * @src_offset: src GPU address * @dst_offset: dst GPU address * @num_gpu_pages: number of GPU pages to xfer * @fence: radeon fence object * * Copy GPU paging using the DMA engine (SI). * Used by the radeon ttm implementation to move pages if * registered as the asic copy callback. */ int si_copy_dma(struct radeon_device *rdev, uint64_t src_offset, uint64_t dst_offset, unsigned num_gpu_pages, struct radeon_fence **fence) { struct radeon_semaphore *sem = NULL; int ring_index = rdev->asic->copy.dma_ring_index; struct radeon_ring *ring = &rdev->ring[ring_index]; u32 size_in_bytes, cur_size_in_bytes; int i, num_loops; int r = 0; r = radeon_semaphore_create(rdev, &sem); if (r) { DRM_ERROR("radeon: moving bo (%d).\n", r); return r; } size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT); num_loops = DIV_ROUND_UP(size_in_bytes, 0xfffff); r = radeon_ring_lock(rdev, ring, num_loops * 5 + 11); if (r) { DRM_ERROR("radeon: moving bo (%d).\n", r); radeon_semaphore_free(rdev, &sem, NULL); return r; } if (radeon_fence_need_sync(*fence, ring->idx)) { radeon_semaphore_sync_rings(rdev, sem, (*fence)->ring, ring->idx); radeon_fence_note_sync(*fence, ring->idx); } else { radeon_semaphore_free(rdev, &sem, NULL); } for (i = 0; i < num_loops; i++) { cur_size_in_bytes = size_in_bytes; if (cur_size_in_bytes > 0xFFFFF) cur_size_in_bytes = 0xFFFFF; size_in_bytes -= cur_size_in_bytes; radeon_ring_write(ring, DMA_PACKET(DMA_PACKET_COPY, 1, 0, 0, cur_size_in_bytes)); radeon_ring_write(ring, dst_offset & 0xffffffff); radeon_ring_write(ring, src_offset & 0xffffffff); radeon_ring_write(ring, upper_32_bits(dst_offset) & 0xff); radeon_ring_write(ring, upper_32_bits(src_offset) & 0xff); src_offset += cur_size_in_bytes; dst_offset += cur_size_in_bytes; } r = radeon_fence_emit(rdev, fence, ring->idx); if (r) { radeon_ring_unlock_undo(rdev, ring); return r; } radeon_ring_unlock_commit(rdev, ring); radeon_semaphore_free(rdev, &sem, *fence); return r; } /* * startup/shutdown callbacks */ static int si_startup(struct radeon_device *rdev) { struct radeon_ring *ring; int r; if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw || !rdev->rlc_fw || !rdev->mc_fw) { r = si_init_microcode(rdev); if (r) { DRM_ERROR("Failed to load firmware!\n"); return r; } } r = si_mc_load_microcode(rdev); if (r) { DRM_ERROR("Failed to load MC firmware!\n"); return r; } r = r600_vram_scratch_init(rdev); if (r) return r; si_mc_program(rdev); r = si_pcie_gart_enable(rdev); if (r) return r; si_gpu_init(rdev); #if 0 r = evergreen_blit_init(rdev); if (r) { r600_blit_fini(rdev); rdev->asic->copy = NULL; dev_warn(rdev->dev, "failed blitter (%d) falling back to memcpy\n", r); } #endif /* allocate rlc buffers */ r = si_rlc_init(rdev); if (r) { DRM_ERROR("Failed to init rlc BOs!\n"); return r; } /* allocate wb buffer */ r = radeon_wb_init(rdev); if (r) return r; r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP1_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP2_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_DMA_INDEX); if (r) { dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_DMA1_INDEX); if (r) { dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r); return r; } /* Enable IRQ */ r = si_irq_init(rdev); if (r) { DRM_ERROR("radeon: IH init failed (%d).\n", r); radeon_irq_kms_fini(rdev); return r; } si_irq_set(rdev); ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET, CP_RB0_RPTR, CP_RB0_WPTR, 0, 0xfffff, RADEON_CP_PACKET2); if (r) return r; ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP1_RPTR_OFFSET, CP_RB1_RPTR, CP_RB1_WPTR, 0, 0xfffff, RADEON_CP_PACKET2); if (r) return r; ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP2_RPTR_OFFSET, CP_RB2_RPTR, CP_RB2_WPTR, 0, 0xfffff, RADEON_CP_PACKET2); if (r) return r; ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, R600_WB_DMA_RPTR_OFFSET, DMA_RB_RPTR + DMA0_REGISTER_OFFSET, DMA_RB_WPTR + DMA0_REGISTER_OFFSET, 2, 0x3fffc, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0)); if (r) return r; ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, CAYMAN_WB_DMA1_RPTR_OFFSET, DMA_RB_RPTR + DMA1_REGISTER_OFFSET, DMA_RB_WPTR + DMA1_REGISTER_OFFSET, 2, 0x3fffc, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0)); if (r) return r; r = si_cp_load_microcode(rdev); if (r) return r; r = si_cp_resume(rdev); if (r) return r; r = cayman_dma_resume(rdev); if (r) return r; r = radeon_ib_pool_init(rdev); if (r) { dev_err(rdev->dev, "IB initialization failed (%d).\n", r); return r; } r = radeon_vm_manager_init(rdev); if (r) { dev_err(rdev->dev, "vm manager initialization failed (%d).\n", r); return r; } return 0; } int si_resume(struct radeon_device *rdev) { int r; /* Do not reset GPU before posting, on rv770 hw unlike on r500 hw, * posting will perform necessary task to bring back GPU into good * shape. */ /* post card */ atom_asic_init(rdev->mode_info.atom_context); rdev->accel_working = true; r = si_startup(rdev); if (r) { DRM_ERROR("si startup failed on resume\n"); rdev->accel_working = false; return r; } return r; } int si_suspend(struct radeon_device *rdev) { si_cp_enable(rdev, false); cayman_dma_stop(rdev); si_irq_suspend(rdev); radeon_wb_disable(rdev); si_pcie_gart_disable(rdev); return 0; } /* Plan is to move initialization in that function and use * helper function so that radeon_device_init pretty much * do nothing more than calling asic specific function. This * should also allow to remove a bunch of callback function * like vram_info. */ int si_init(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; int r; /* Read BIOS */ if (!radeon_get_bios(rdev)) { if (ASIC_IS_AVIVO(rdev)) return -EINVAL; } /* Must be an ATOMBIOS */ if (!rdev->is_atom_bios) { dev_err(rdev->dev, "Expecting atombios for cayman GPU\n"); return -EINVAL; } r = radeon_atombios_init(rdev); if (r) return r; /* Post card if necessary */ if (!radeon_card_posted(rdev)) { if (!rdev->bios) { dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n"); return -EINVAL; } DRM_INFO("GPU not posted. posting now...\n"); atom_asic_init(rdev->mode_info.atom_context); } /* Initialize scratch registers */ si_scratch_init(rdev); /* Initialize surface registers */ radeon_surface_init(rdev); /* Initialize clocks */ radeon_get_clock_info(rdev->ddev); /* Fence driver */ r = radeon_fence_driver_init(rdev); if (r) return r; /* initialize memory controller */ r = si_mc_init(rdev); if (r) return r; /* Memory manager */ r = radeon_bo_init(rdev); if (r) return r; r = radeon_irq_kms_init(rdev); if (r) return r; ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 1024 * 1024); ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 1024 * 1024); ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 1024 * 1024); ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 64 * 1024); ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 64 * 1024); rdev->ih.ring_obj = NULL; r600_ih_ring_init(rdev, 64 * 1024); r = r600_pcie_gart_init(rdev); if (r) return r; rdev->accel_working = true; r = si_startup(rdev); if (r) { dev_err(rdev->dev, "disabling GPU acceleration\n"); si_cp_fini(rdev); cayman_dma_fini(rdev); si_irq_fini(rdev); si_rlc_fini(rdev); radeon_wb_fini(rdev); radeon_ib_pool_fini(rdev); radeon_vm_manager_fini(rdev); radeon_irq_kms_fini(rdev); si_pcie_gart_fini(rdev); rdev->accel_working = false; } /* Don't start up if the MC ucode is missing. * The default clocks and voltages before the MC ucode * is loaded are not suffient for advanced operations. */ if (!rdev->mc_fw) { DRM_ERROR("radeon: MC ucode required for NI+.\n"); return -EINVAL; } return 0; } void si_fini(struct radeon_device *rdev) { #if 0 r600_blit_fini(rdev); #endif si_cp_fini(rdev); cayman_dma_fini(rdev); si_irq_fini(rdev); si_rlc_fini(rdev); radeon_wb_fini(rdev); radeon_vm_manager_fini(rdev); radeon_ib_pool_fini(rdev); radeon_irq_kms_fini(rdev); si_pcie_gart_fini(rdev); r600_vram_scratch_fini(rdev); radeon_gem_fini(rdev); radeon_fence_driver_fini(rdev); radeon_bo_fini(rdev); radeon_atombios_fini(rdev); kfree(rdev->bios); rdev->bios = NULL; } /** * si_get_gpu_clock - return GPU clock counter snapshot * * @rdev: radeon_device pointer * * Fetches a GPU clock counter snapshot (SI). * Returns the 64 bit clock counter snapshot. */ uint64_t si_get_gpu_clock(struct radeon_device *rdev) { uint64_t clock; mutex_lock(&rdev->gpu_clock_mutex); WREG32(RLC_CAPTURE_GPU_CLOCK_COUNT, 1); clock = (uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_LSB) | ((uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_MSB) << 32ULL); mutex_unlock(&rdev->gpu_clock_mutex); return clock; }