/* * Copyright 2010 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "drmP.h" #include "nouveau_drv.h" #include #include "nouveau_hw.h" #include "nouveau_pm.h" #include "nouveau_hwsq.h" #include "nv50_display.h" enum clk_src { clk_src_crystal, clk_src_href, clk_src_hclk, clk_src_hclkm3, clk_src_hclkm3d2, clk_src_host, clk_src_nvclk, clk_src_sclk, clk_src_mclk, clk_src_vdec, clk_src_dom6 }; static u32 read_clk(struct drm_device *, enum clk_src); static u32 read_div(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; switch (dev_priv->chipset) { case 0x50: /* it exists, but only has bit 31, not the dividers.. */ case 0x84: case 0x86: case 0x98: case 0xa0: return nv_rd32(dev, 0x004700); case 0x92: case 0x94: case 0x96: return nv_rd32(dev, 0x004800); default: return 0x00000000; } } static u32 read_pll_src(struct drm_device *dev, u32 base) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 coef, ref = read_clk(dev, clk_src_crystal); u32 rsel = nv_rd32(dev, 0x00e18c); int P, N, M, id; switch (dev_priv->chipset) { case 0x50: case 0xa0: switch (base) { case 0x4020: case 0x4028: id = !!(rsel & 0x00000004); break; case 0x4008: id = !!(rsel & 0x00000008); break; case 0x4030: id = 0; break; default: NV_ERROR(dev, "ref: bad pll 0x%06x\n", base); return 0; } coef = nv_rd32(dev, 0x00e81c + (id * 0x0c)); ref *= (coef & 0x01000000) ? 2 : 4; P = (coef & 0x00070000) >> 16; N = ((coef & 0x0000ff00) >> 8) + 1; M = ((coef & 0x000000ff) >> 0) + 1; break; case 0x84: case 0x86: case 0x92: coef = nv_rd32(dev, 0x00e81c); P = (coef & 0x00070000) >> 16; N = (coef & 0x0000ff00) >> 8; M = (coef & 0x000000ff) >> 0; break; case 0x94: case 0x96: case 0x98: rsel = nv_rd32(dev, 0x00c050); switch (base) { case 0x4020: rsel = (rsel & 0x00000003) >> 0; break; case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break; case 0x4028: rsel = (rsel & 0x00001800) >> 11; break; case 0x4030: rsel = 3; break; default: NV_ERROR(dev, "ref: bad pll 0x%06x\n", base); return 0; } switch (rsel) { case 0: id = 1; break; case 1: return read_clk(dev, clk_src_crystal); case 2: return read_clk(dev, clk_src_href); case 3: id = 0; break; } coef = nv_rd32(dev, 0x00e81c + (id * 0x28)); P = (nv_rd32(dev, 0x00e824 + (id * 0x28)) >> 16) & 7; P += (coef & 0x00070000) >> 16; N = (coef & 0x0000ff00) >> 8; M = (coef & 0x000000ff) >> 0; break; default: BUG_ON(1); } if (M) return (ref * N / M) >> P; return 0; } static u32 read_pll_ref(struct drm_device *dev, u32 base) { u32 src, mast = nv_rd32(dev, 0x00c040); switch (base) { case 0x004028: src = !!(mast & 0x00200000); break; case 0x004020: src = !!(mast & 0x00400000); break; case 0x004008: src = !!(mast & 0x00010000); break; case 0x004030: src = !!(mast & 0x02000000); break; case 0x00e810: return read_clk(dev, clk_src_crystal); default: NV_ERROR(dev, "bad pll 0x%06x\n", base); return 0; } if (src) return read_clk(dev, clk_src_href); return read_pll_src(dev, base); } static u32 read_pll(struct drm_device *dev, u32 base) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 mast = nv_rd32(dev, 0x00c040); u32 ctrl = nv_rd32(dev, base + 0); u32 coef = nv_rd32(dev, base + 4); u32 ref = read_pll_ref(dev, base); u32 clk = 0; int N1, N2, M1, M2; if (base == 0x004028 && (mast & 0x00100000)) { /* wtf, appears to only disable post-divider on nva0 */ if (dev_priv->chipset != 0xa0) return read_clk(dev, clk_src_dom6); } N2 = (coef & 0xff000000) >> 24; M2 = (coef & 0x00ff0000) >> 16; N1 = (coef & 0x0000ff00) >> 8; M1 = (coef & 0x000000ff); if ((ctrl & 0x80000000) && M1) { clk = ref * N1 / M1; if ((ctrl & 0x40000100) == 0x40000000) { if (M2) clk = clk * N2 / M2; else clk = 0; } } return clk; } static u32 read_clk(struct drm_device *dev, enum clk_src src) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 mast = nv_rd32(dev, 0x00c040); u32 P = 0; switch (src) { case clk_src_crystal: return dev_priv->crystal; case clk_src_href: return 100000; /* PCIE reference clock */ case clk_src_hclk: return read_clk(dev, clk_src_href) * 27778 / 10000; case clk_src_hclkm3: return read_clk(dev, clk_src_hclk) * 3; case clk_src_hclkm3d2: return read_clk(dev, clk_src_hclk) * 3 / 2; case clk_src_host: switch (mast & 0x30000000) { case 0x00000000: return read_clk(dev, clk_src_href); case 0x10000000: break; case 0x20000000: /* !0x50 */ case 0x30000000: return read_clk(dev, clk_src_hclk); } break; case clk_src_nvclk: if (!(mast & 0x00100000)) P = (nv_rd32(dev, 0x004028) & 0x00070000) >> 16; switch (mast & 0x00000003) { case 0x00000000: return read_clk(dev, clk_src_crystal) >> P; case 0x00000001: return read_clk(dev, clk_src_dom6); case 0x00000002: return read_pll(dev, 0x004020) >> P; case 0x00000003: return read_pll(dev, 0x004028) >> P; } break; case clk_src_sclk: P = (nv_rd32(dev, 0x004020) & 0x00070000) >> 16; switch (mast & 0x00000030) { case 0x00000000: if (mast & 0x00000080) return read_clk(dev, clk_src_host) >> P; return read_clk(dev, clk_src_crystal) >> P; case 0x00000010: break; case 0x00000020: return read_pll(dev, 0x004028) >> P; case 0x00000030: return read_pll(dev, 0x004020) >> P; } break; case clk_src_mclk: P = (nv_rd32(dev, 0x004008) & 0x00070000) >> 16; if (nv_rd32(dev, 0x004008) & 0x00000200) { switch (mast & 0x0000c000) { case 0x00000000: return read_clk(dev, clk_src_crystal) >> P; case 0x00008000: case 0x0000c000: return read_clk(dev, clk_src_href) >> P; } } else { return read_pll(dev, 0x004008) >> P; } break; case clk_src_vdec: P = (read_div(dev) & 0x00000700) >> 8; switch (dev_priv->chipset) { case 0x84: case 0x86: case 0x92: case 0x94: case 0x96: case 0xa0: switch (mast & 0x00000c00) { case 0x00000000: if (dev_priv->chipset == 0xa0) /* wtf?? */ return read_clk(dev, clk_src_nvclk) >> P; return read_clk(dev, clk_src_crystal) >> P; case 0x00000400: return 0; case 0x00000800: if (mast & 0x01000000) return read_pll(dev, 0x004028) >> P; return read_pll(dev, 0x004030) >> P; case 0x00000c00: return read_clk(dev, clk_src_nvclk) >> P; } break; case 0x98: switch (mast & 0x00000c00) { case 0x00000000: return read_clk(dev, clk_src_nvclk) >> P; case 0x00000400: return 0; case 0x00000800: return read_clk(dev, clk_src_hclkm3d2) >> P; case 0x00000c00: return read_clk(dev, clk_src_mclk) >> P; } break; } break; case clk_src_dom6: switch (dev_priv->chipset) { case 0x50: case 0xa0: return read_pll(dev, 0x00e810) >> 2; case 0x84: case 0x86: case 0x92: case 0x94: case 0x96: case 0x98: P = (read_div(dev) & 0x00000007) >> 0; switch (mast & 0x0c000000) { case 0x00000000: return read_clk(dev, clk_src_href); case 0x04000000: break; case 0x08000000: return read_clk(dev, clk_src_hclk); case 0x0c000000: return read_clk(dev, clk_src_hclkm3) >> P; } break; default: break; } default: break; } NV_DEBUG(dev, "unknown clock source %d 0x%08x\n", src, mast); return 0; } int nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl) { struct drm_nouveau_private *dev_priv = dev->dev_private; if (dev_priv->chipset == 0xaa || dev_priv->chipset == 0xac) return 0; perflvl->core = read_clk(dev, clk_src_nvclk); perflvl->shader = read_clk(dev, clk_src_sclk); perflvl->memory = read_clk(dev, clk_src_mclk); if (dev_priv->chipset != 0x50) { perflvl->vdec = read_clk(dev, clk_src_vdec); perflvl->dom6 = read_clk(dev, clk_src_dom6); } return 0; } struct nv50_pm_state { struct nouveau_pm_level *perflvl; struct hwsq_ucode eclk_hwsq; struct hwsq_ucode mclk_hwsq; u32 mscript; u32 mmast; u32 mctrl; u32 mcoef; }; static u32 calc_pll(struct drm_device *dev, u32 reg, struct nvbios_pll *pll, u32 clk, int *N1, int *M1, int *log2P) { struct nouveau_pll_vals coef; int ret; ret = get_pll_limits(dev, reg, pll); if (ret) return 0; pll->vco2.max_freq = 0; pll->refclk = read_pll_ref(dev, reg); if (!pll->refclk) return 0; ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef); if (ret == 0) return 0; *N1 = coef.N1; *M1 = coef.M1; *log2P = coef.log2P; return ret; } static inline u32 calc_div(u32 src, u32 target, int *div) { u32 clk0 = src, clk1 = src; for (*div = 0; *div <= 7; (*div)++) { if (clk0 <= target) { clk1 = clk0 << (*div ? 1 : 0); break; } clk0 >>= 1; } if (target - clk0 <= clk1 - target) return clk0; (*div)--; return clk1; } static inline u32 clk_same(u32 a, u32 b) { return ((a / 1000) == (b / 1000)); } static void mclk_precharge(struct nouveau_mem_exec_func *exec) { struct nv50_pm_state *info = exec->priv; struct hwsq_ucode *hwsq = &info->mclk_hwsq; hwsq_wr32(hwsq, 0x1002d4, 0x00000001); } static void mclk_refresh(struct nouveau_mem_exec_func *exec) { struct nv50_pm_state *info = exec->priv; struct hwsq_ucode *hwsq = &info->mclk_hwsq; hwsq_wr32(hwsq, 0x1002d0, 0x00000001); } static void mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable) { struct nv50_pm_state *info = exec->priv; struct hwsq_ucode *hwsq = &info->mclk_hwsq; hwsq_wr32(hwsq, 0x100210, enable ? 0x80000000 : 0x00000000); } static void mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable) { struct nv50_pm_state *info = exec->priv; struct hwsq_ucode *hwsq = &info->mclk_hwsq; hwsq_wr32(hwsq, 0x1002dc, enable ? 0x00000001 : 0x00000000); } static void mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec) { struct nv50_pm_state *info = exec->priv; struct hwsq_ucode *hwsq = &info->mclk_hwsq; if (nsec > 1000) hwsq_usec(hwsq, (nsec + 500) / 1000); } static u32 mclk_mrg(struct nouveau_mem_exec_func *exec, int mr) { if (mr <= 1) return nv_rd32(exec->dev, 0x1002c0 + ((mr - 0) * 4)); if (mr <= 3) return nv_rd32(exec->dev, 0x1002e0 + ((mr - 2) * 4)); return 0; } static void mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data) { struct nv50_pm_state *info = exec->priv; struct hwsq_ucode *hwsq = &info->mclk_hwsq; if (mr <= 1) { if (nvfb_vram_rank_B(exec->dev)) hwsq_wr32(hwsq, 0x1002c8 + ((mr - 0) * 4), data); hwsq_wr32(hwsq, 0x1002c0 + ((mr - 0) * 4), data); } else if (mr <= 3) { if (nvfb_vram_rank_B(exec->dev)) hwsq_wr32(hwsq, 0x1002e8 + ((mr - 2) * 4), data); hwsq_wr32(hwsq, 0x1002e0 + ((mr - 2) * 4), data); } } static void mclk_clock_set(struct nouveau_mem_exec_func *exec) { struct nv50_pm_state *info = exec->priv; struct hwsq_ucode *hwsq = &info->mclk_hwsq; u32 ctrl = nv_rd32(exec->dev, 0x004008); info->mmast = nv_rd32(exec->dev, 0x00c040); info->mmast &= ~0xc0000000; /* get MCLK_2 from HREF */ info->mmast |= 0x0000c000; /* use MCLK_2 as MPLL_BYPASS clock */ hwsq_wr32(hwsq, 0xc040, info->mmast); hwsq_wr32(hwsq, 0x4008, ctrl | 0x00000200); /* bypass MPLL */ if (info->mctrl & 0x80000000) hwsq_wr32(hwsq, 0x400c, info->mcoef); hwsq_wr32(hwsq, 0x4008, info->mctrl); } static void mclk_timing_set(struct nouveau_mem_exec_func *exec) { struct drm_device *dev = exec->dev; struct nv50_pm_state *info = exec->priv; struct nouveau_pm_level *perflvl = info->perflvl; struct hwsq_ucode *hwsq = &info->mclk_hwsq; int i; for (i = 0; i < 9; i++) { u32 reg = 0x100220 + (i * 4); u32 val = nv_rd32(dev, reg); if (val != perflvl->timing.reg[i]) hwsq_wr32(hwsq, reg, perflvl->timing.reg[i]); } } static int calc_mclk(struct drm_device *dev, struct nouveau_pm_level *perflvl, struct nv50_pm_state *info) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 crtc_mask = nv50_display_active_crtcs(dev); struct nouveau_mem_exec_func exec = { .dev = dev, .precharge = mclk_precharge, .refresh = mclk_refresh, .refresh_auto = mclk_refresh_auto, .refresh_self = mclk_refresh_self, .wait = mclk_wait, .mrg = mclk_mrg, .mrs = mclk_mrs, .clock_set = mclk_clock_set, .timing_set = mclk_timing_set, .priv = info }; struct hwsq_ucode *hwsq = &info->mclk_hwsq; struct nvbios_pll pll; int N, M, P; int ret; /* use pcie refclock if possible, otherwise use mpll */ info->mctrl = nv_rd32(dev, 0x004008); info->mctrl &= ~0x81ff0200; if (clk_same(perflvl->memory, read_clk(dev, clk_src_href))) { info->mctrl |= 0x00000200 | (pll.bias_p << 19); } else { ret = calc_pll(dev, 0x4008, &pll, perflvl->memory, &N, &M, &P); if (ret == 0) return -EINVAL; info->mctrl |= 0x80000000 | (P << 22) | (P << 16); info->mctrl |= pll.bias_p << 19; info->mcoef = (N << 8) | M; } /* build the ucode which will reclock the memory for us */ hwsq_init(hwsq); if (crtc_mask) { hwsq_op5f(hwsq, crtc_mask, 0x00); /* wait for scanout */ hwsq_op5f(hwsq, crtc_mask, 0x01); /* wait for vblank */ } if (dev_priv->chipset >= 0x92) hwsq_wr32(hwsq, 0x611200, 0x00003300); /* disable scanout */ hwsq_setf(hwsq, 0x10, 0); /* disable bus access */ hwsq_op5f(hwsq, 0x00, 0x01); /* no idea :s */ ret = nouveau_mem_exec(&exec, perflvl); if (ret) return ret; hwsq_setf(hwsq, 0x10, 1); /* enable bus access */ hwsq_op5f(hwsq, 0x00, 0x00); /* no idea, reverse of 0x00, 0x01? */ if (dev_priv->chipset >= 0x92) hwsq_wr32(hwsq, 0x611200, 0x00003330); /* enable scanout */ hwsq_fini(hwsq); return 0; } void * nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nv50_pm_state *info; struct hwsq_ucode *hwsq; struct nvbios_pll pll; u32 out, mast, divs, ctrl; int clk, ret = -EINVAL; int N, M, P1, P2; if (dev_priv->chipset == 0xaa || dev_priv->chipset == 0xac) return ERR_PTR(-ENODEV); info = kmalloc(sizeof(*info), GFP_KERNEL); if (!info) return ERR_PTR(-ENOMEM); info->perflvl = perflvl; /* memory: build hwsq ucode which we'll use to reclock memory. * use pcie refclock if possible, otherwise use mpll */ info->mclk_hwsq.len = 0; if (perflvl->memory) { ret = calc_mclk(dev, perflvl, info); if (ret) goto error; info->mscript = perflvl->memscript; } divs = read_div(dev); mast = info->mmast; /* start building HWSQ script for engine reclocking */ hwsq = &info->eclk_hwsq; hwsq_init(hwsq); hwsq_setf(hwsq, 0x10, 0); /* disable bus access */ hwsq_op5f(hwsq, 0x00, 0x01); /* wait for access disabled? */ /* vdec/dom6: switch to "safe" clocks temporarily */ if (perflvl->vdec) { mast &= ~0x00000c00; divs &= ~0x00000700; } if (perflvl->dom6) { mast &= ~0x0c000000; divs &= ~0x00000007; } hwsq_wr32(hwsq, 0x00c040, mast); /* vdec: avoid modifying xpll until we know exactly how the other * clock domains work, i suspect at least some of them can also be * tied to xpll... */ if (perflvl->vdec) { /* see how close we can get using nvclk as a source */ clk = calc_div(perflvl->core, perflvl->vdec, &P1); /* see how close we can get using xpll/hclk as a source */ if (dev_priv->chipset != 0x98) out = read_pll(dev, 0x004030); else out = read_clk(dev, clk_src_hclkm3d2); out = calc_div(out, perflvl->vdec, &P2); /* select whichever gets us closest */ if (abs((int)perflvl->vdec - clk) <= abs((int)perflvl->vdec - out)) { if (dev_priv->chipset != 0x98) mast |= 0x00000c00; divs |= P1 << 8; } else { mast |= 0x00000800; divs |= P2 << 8; } } /* dom6: nfi what this is, but we're limited to various combinations * of the host clock frequency */ if (perflvl->dom6) { if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) { mast |= 0x00000000; } else if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) { mast |= 0x08000000; } else { clk = read_clk(dev, clk_src_hclk) * 3; clk = calc_div(clk, perflvl->dom6, &P1); mast |= 0x0c000000; divs |= P1; } } /* vdec/dom6: complete switch to new clocks */ switch (dev_priv->chipset) { case 0x92: case 0x94: case 0x96: hwsq_wr32(hwsq, 0x004800, divs); break; default: hwsq_wr32(hwsq, 0x004700, divs); break; } hwsq_wr32(hwsq, 0x00c040, mast); /* core/shader: make sure sclk/nvclk are disconnected from their * PLLs (nvclk to dom6, sclk to hclk) */ if (dev_priv->chipset < 0x92) mast = (mast & ~0x001000b0) | 0x00100080; else mast = (mast & ~0x000000b3) | 0x00000081; hwsq_wr32(hwsq, 0x00c040, mast); /* core: for the moment at least, always use nvpll */ clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1); if (clk == 0) goto error; ctrl = nv_rd32(dev, 0x004028) & ~0xc03f0100; mast &= ~0x00100000; mast |= 3; hwsq_wr32(hwsq, 0x004028, 0x80000000 | (P1 << 19) | (P1 << 16) | ctrl); hwsq_wr32(hwsq, 0x00402c, (N << 8) | M); /* shader: tie to nvclk if possible, otherwise use spll. have to be * very careful that the shader clock is at least twice the core, or * some chipsets will be very unhappy. i expect most or all of these * cases will be handled by tying to nvclk, but it's possible there's * corners */ ctrl = nv_rd32(dev, 0x004020) & ~0xc03f0100; if (P1-- && perflvl->shader == (perflvl->core << 1)) { hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl); hwsq_wr32(hwsq, 0x00c040, 0x00000020 | mast); } else { clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1); if (clk == 0) goto error; ctrl |= 0x80000000; hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl); hwsq_wr32(hwsq, 0x004024, (N << 8) | M); hwsq_wr32(hwsq, 0x00c040, 0x00000030 | mast); } hwsq_setf(hwsq, 0x10, 1); /* enable bus access */ hwsq_op5f(hwsq, 0x00, 0x00); /* wait for access enabled? */ hwsq_fini(hwsq); return info; error: kfree(info); return ERR_PTR(ret); } static int prog_hwsq(struct drm_device *dev, struct hwsq_ucode *hwsq) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 hwsq_data, hwsq_kick; int i; if (dev_priv->chipset < 0x94) { hwsq_data = 0x001400; hwsq_kick = 0x00000003; } else { hwsq_data = 0x080000; hwsq_kick = 0x00000001; } /* upload hwsq ucode */ nv_mask(dev, 0x001098, 0x00000008, 0x00000000); nv_wr32(dev, 0x001304, 0x00000000); if (dev_priv->chipset >= 0x92) nv_wr32(dev, 0x001318, 0x00000000); for (i = 0; i < hwsq->len / 4; i++) nv_wr32(dev, hwsq_data + (i * 4), hwsq->ptr.u32[i]); nv_mask(dev, 0x001098, 0x00000018, 0x00000018); /* launch, and wait for completion */ nv_wr32(dev, 0x00130c, hwsq_kick); if (!nv_wait(dev, 0x001308, 0x00000100, 0x00000000)) { NV_ERROR(dev, "hwsq ucode exec timed out\n"); NV_ERROR(dev, "0x001308: 0x%08x\n", nv_rd32(dev, 0x001308)); for (i = 0; i < hwsq->len / 4; i++) { NV_ERROR(dev, "0x%06x: 0x%08x\n", 0x1400 + (i * 4), nv_rd32(dev, 0x001400 + (i * 4))); } return -EIO; } return 0; } int nv50_pm_clocks_set(struct drm_device *dev, void *data) { struct nv50_pm_state *info = data; struct bit_entry M; int ret = -EBUSY; /* halt and idle execution engines */ nv_mask(dev, 0x002504, 0x00000001, 0x00000001); if (!nv_wait(dev, 0x002504, 0x00000010, 0x00000010)) goto resume; if (!nv_wait(dev, 0x00251c, 0x0000003f, 0x0000003f)) goto resume; /* program memory clock, if necessary - must come before engine clock * reprogramming due to how we construct the hwsq scripts in pre() */ if (info->mclk_hwsq.len) { /* execute some scripts that do ??? from the vbios.. */ if (!bit_table(dev, 'M', &M) && M.version == 1) { if (M.length >= 6) nouveau_bios_init_exec(dev, ROM16(M.data[5])); if (M.length >= 8) nouveau_bios_init_exec(dev, ROM16(M.data[7])); if (M.length >= 10) nouveau_bios_init_exec(dev, ROM16(M.data[9])); nouveau_bios_init_exec(dev, info->mscript); } ret = prog_hwsq(dev, &info->mclk_hwsq); if (ret) goto resume; } /* program engine clocks */ ret = prog_hwsq(dev, &info->eclk_hwsq); resume: nv_mask(dev, 0x002504, 0x00000001, 0x00000000); kfree(info); return ret; } static int pwm_info(struct drm_device *dev, int *line, int *ctrl, int *indx) { if (*line == 0x04) { *ctrl = 0x00e100; *line = 4; *indx = 0; } else if (*line == 0x09) { *ctrl = 0x00e100; *line = 9; *indx = 1; } else if (*line == 0x10) { *ctrl = 0x00e28c; *line = 0; *indx = 0; } else { NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", *line); return -ENODEV; } return 0; } int nv50_pm_pwm_get(struct drm_device *dev, int line, u32 *divs, u32 *duty) { int ctrl, id, ret = pwm_info(dev, &line, &ctrl, &id); if (ret) return ret; if (nv_rd32(dev, ctrl) & (1 << line)) { *divs = nv_rd32(dev, 0x00e114 + (id * 8)); *duty = nv_rd32(dev, 0x00e118 + (id * 8)); return 0; } return -EINVAL; } int nv50_pm_pwm_set(struct drm_device *dev, int line, u32 divs, u32 duty) { int ctrl, id, ret = pwm_info(dev, &line, &ctrl, &id); if (ret) return ret; nv_mask(dev, ctrl, 0x00010001 << line, 0x00000001 << line); nv_wr32(dev, 0x00e114 + (id * 8), divs); nv_wr32(dev, 0x00e118 + (id * 8), duty | 0x80000000); return 0; }