/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * */ #include #include "i915_drv.h" #include "intel_drv.h" #include "../../../platform/x86/intel_ips.h" #include /* FBC, or Frame Buffer Compression, is a technique employed to compress the * framebuffer contents in-memory, aiming at reducing the required bandwidth * during in-memory transfers and, therefore, reduce the power packet. * * The benefits of FBC are mostly visible with solid backgrounds and * variation-less patterns. * * FBC-related functionality can be enabled by the means of the * i915.i915_enable_fbc parameter */ static void i8xx_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 fbc_ctl; /* Disable compression */ fbc_ctl = I915_READ(FBC_CONTROL); if ((fbc_ctl & FBC_CTL_EN) == 0) return; fbc_ctl &= ~FBC_CTL_EN; I915_WRITE(FBC_CONTROL, fbc_ctl); /* Wait for compressing bit to clear */ if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) { DRM_DEBUG_KMS("FBC idle timed out\n"); return; } DRM_DEBUG_KMS("disabled FBC\n"); } static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int cfb_pitch; int plane, i; u32 fbc_ctl, fbc_ctl2; cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE; if (fb->pitches[0] < cfb_pitch) cfb_pitch = fb->pitches[0]; /* FBC_CTL wants 64B units */ cfb_pitch = (cfb_pitch / 64) - 1; plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB; /* Clear old tags */ for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++) I915_WRITE(FBC_TAG + (i * 4), 0); /* Set it up... */ fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE; fbc_ctl2 |= plane; I915_WRITE(FBC_CONTROL2, fbc_ctl2); I915_WRITE(FBC_FENCE_OFF, crtc->y); /* enable it... */ fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC; if (IS_I945GM(dev)) fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */ fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT; fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT; fbc_ctl |= obj->fence_reg; I915_WRITE(FBC_CONTROL, fbc_ctl); DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ", cfb_pitch, crtc->y, intel_crtc->plane); } static bool i8xx_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; return I915_READ(FBC_CONTROL) & FBC_CTL_EN; } static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB; unsigned long stall_watermark = 200; u32 dpfc_ctl; dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X; dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg; I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY); I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); I915_WRITE(DPFC_FENCE_YOFF, crtc->y); /* enable it... */ I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN); DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); } static void g4x_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 dpfc_ctl; /* Disable compression */ dpfc_ctl = I915_READ(DPFC_CONTROL); if (dpfc_ctl & DPFC_CTL_EN) { dpfc_ctl &= ~DPFC_CTL_EN; I915_WRITE(DPFC_CONTROL, dpfc_ctl); DRM_DEBUG_KMS("disabled FBC\n"); } } static bool g4x_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN; } static void sandybridge_blit_fbc_update(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 blt_ecoskpd; /* Make sure blitter notifies FBC of writes */ gen6_gt_force_wake_get(dev_priv); blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD); blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY << GEN6_BLITTER_LOCK_SHIFT; I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY; I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY << GEN6_BLITTER_LOCK_SHIFT); I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); POSTING_READ(GEN6_BLITTER_ECOSKPD); gen6_gt_force_wake_put(dev_priv); } static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB; unsigned long stall_watermark = 200; u32 dpfc_ctl; dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); dpfc_ctl &= DPFC_RESERVED; dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X); /* Set persistent mode for front-buffer rendering, ala X. */ dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE; dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg); I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY); I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y); I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID); /* enable it... */ I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); if (IS_GEN6(dev)) { I915_WRITE(SNB_DPFC_CTL_SA, SNB_CPU_FENCE_ENABLE | obj->fence_reg); I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y); sandybridge_blit_fbc_update(dev); } DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); } static void ironlake_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 dpfc_ctl; /* Disable compression */ dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); if (dpfc_ctl & DPFC_CTL_EN) { dpfc_ctl &= ~DPFC_CTL_EN; I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl); DRM_DEBUG_KMS("disabled FBC\n"); } } static bool ironlake_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN; } bool intel_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv->display.fbc_enabled) return false; return dev_priv->display.fbc_enabled(dev); } static void intel_fbc_work_fn(struct work_struct *__work) { struct intel_fbc_work *work = container_of(to_delayed_work(__work), struct intel_fbc_work, work); struct drm_device *dev = work->crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; mutex_lock(&dev->struct_mutex); if (work == dev_priv->fbc_work) { /* Double check that we haven't switched fb without cancelling * the prior work. */ if (work->crtc->fb == work->fb) { dev_priv->display.enable_fbc(work->crtc, work->interval); dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane; dev_priv->cfb_fb = work->crtc->fb->base.id; dev_priv->cfb_y = work->crtc->y; } dev_priv->fbc_work = NULL; } mutex_unlock(&dev->struct_mutex); kfree(work); } static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv) { if (dev_priv->fbc_work == NULL) return; DRM_DEBUG_KMS("cancelling pending FBC enable\n"); /* Synchronisation is provided by struct_mutex and checking of * dev_priv->fbc_work, so we can perform the cancellation * entirely asynchronously. */ if (cancel_delayed_work(&dev_priv->fbc_work->work)) /* tasklet was killed before being run, clean up */ kfree(dev_priv->fbc_work); /* Mark the work as no longer wanted so that if it does * wake-up (because the work was already running and waiting * for our mutex), it will discover that is no longer * necessary to run. */ dev_priv->fbc_work = NULL; } void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct intel_fbc_work *work; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv->display.enable_fbc) return; intel_cancel_fbc_work(dev_priv); work = kzalloc(sizeof *work, GFP_KERNEL); if (work == NULL) { dev_priv->display.enable_fbc(crtc, interval); return; } work->crtc = crtc; work->fb = crtc->fb; work->interval = interval; INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn); dev_priv->fbc_work = work; DRM_DEBUG_KMS("scheduling delayed FBC enable\n"); /* Delay the actual enabling to let pageflipping cease and the * display to settle before starting the compression. Note that * this delay also serves a second purpose: it allows for a * vblank to pass after disabling the FBC before we attempt * to modify the control registers. * * A more complicated solution would involve tracking vblanks * following the termination of the page-flipping sequence * and indeed performing the enable as a co-routine and not * waiting synchronously upon the vblank. */ schedule_delayed_work(&work->work, msecs_to_jiffies(50)); } void intel_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; intel_cancel_fbc_work(dev_priv); if (!dev_priv->display.disable_fbc) return; dev_priv->display.disable_fbc(dev); dev_priv->cfb_plane = -1; } /** * intel_update_fbc - enable/disable FBC as needed * @dev: the drm_device * * Set up the framebuffer compression hardware at mode set time. We * enable it if possible: * - plane A only (on pre-965) * - no pixel mulitply/line duplication * - no alpha buffer discard * - no dual wide * - framebuffer <= 2048 in width, 1536 in height * * We can't assume that any compression will take place (worst case), * so the compressed buffer has to be the same size as the uncompressed * one. It also must reside (along with the line length buffer) in * stolen memory. * * We need to enable/disable FBC on a global basis. */ void intel_update_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = NULL, *tmp_crtc; struct intel_crtc *intel_crtc; struct drm_framebuffer *fb; struct intel_framebuffer *intel_fb; struct drm_i915_gem_object *obj; int enable_fbc; if (!i915_powersave) return; if (!I915_HAS_FBC(dev)) return; /* * If FBC is already on, we just have to verify that we can * keep it that way... * Need to disable if: * - more than one pipe is active * - changing FBC params (stride, fence, mode) * - new fb is too large to fit in compressed buffer * - going to an unsupported config (interlace, pixel multiply, etc.) */ list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) { if (tmp_crtc->enabled && !to_intel_crtc(tmp_crtc)->primary_disabled && tmp_crtc->fb) { if (crtc) { DRM_DEBUG_KMS("more than one pipe active, disabling compression\n"); dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES; goto out_disable; } crtc = tmp_crtc; } } if (!crtc || crtc->fb == NULL) { DRM_DEBUG_KMS("no output, disabling\n"); dev_priv->no_fbc_reason = FBC_NO_OUTPUT; goto out_disable; } intel_crtc = to_intel_crtc(crtc); fb = crtc->fb; intel_fb = to_intel_framebuffer(fb); obj = intel_fb->obj; enable_fbc = i915_enable_fbc; if (enable_fbc < 0) { DRM_DEBUG_KMS("fbc set to per-chip default\n"); enable_fbc = 1; if (INTEL_INFO(dev)->gen <= 6) enable_fbc = 0; } if (!enable_fbc) { DRM_DEBUG_KMS("fbc disabled per module param\n"); dev_priv->no_fbc_reason = FBC_MODULE_PARAM; goto out_disable; } if (intel_fb->obj->base.size > dev_priv->cfb_size) { DRM_DEBUG_KMS("framebuffer too large, disabling " "compression\n"); dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL; goto out_disable; } if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) || (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) { DRM_DEBUG_KMS("mode incompatible with compression, " "disabling\n"); dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE; goto out_disable; } if ((crtc->mode.hdisplay > 2048) || (crtc->mode.vdisplay > 1536)) { DRM_DEBUG_KMS("mode too large for compression, disabling\n"); dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE; goto out_disable; } if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) { DRM_DEBUG_KMS("plane not 0, disabling compression\n"); dev_priv->no_fbc_reason = FBC_BAD_PLANE; goto out_disable; } /* The use of a CPU fence is mandatory in order to detect writes * by the CPU to the scanout and trigger updates to the FBC. */ if (obj->tiling_mode != I915_TILING_X || obj->fence_reg == I915_FENCE_REG_NONE) { DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n"); dev_priv->no_fbc_reason = FBC_NOT_TILED; goto out_disable; } /* If the kernel debugger is active, always disable compression */ if (in_dbg_master()) goto out_disable; /* If the scanout has not changed, don't modify the FBC settings. * Note that we make the fundamental assumption that the fb->obj * cannot be unpinned (and have its GTT offset and fence revoked) * without first being decoupled from the scanout and FBC disabled. */ if (dev_priv->cfb_plane == intel_crtc->plane && dev_priv->cfb_fb == fb->base.id && dev_priv->cfb_y == crtc->y) return; if (intel_fbc_enabled(dev)) { /* We update FBC along two paths, after changing fb/crtc * configuration (modeswitching) and after page-flipping * finishes. For the latter, we know that not only did * we disable the FBC at the start of the page-flip * sequence, but also more than one vblank has passed. * * For the former case of modeswitching, it is possible * to switch between two FBC valid configurations * instantaneously so we do need to disable the FBC * before we can modify its control registers. We also * have to wait for the next vblank for that to take * effect. However, since we delay enabling FBC we can * assume that a vblank has passed since disabling and * that we can safely alter the registers in the deferred * callback. * * In the scenario that we go from a valid to invalid * and then back to valid FBC configuration we have * no strict enforcement that a vblank occurred since * disabling the FBC. However, along all current pipe * disabling paths we do need to wait for a vblank at * some point. And we wait before enabling FBC anyway. */ DRM_DEBUG_KMS("disabling active FBC for update\n"); intel_disable_fbc(dev); } intel_enable_fbc(crtc, 500); return; out_disable: /* Multiple disables should be harmless */ if (intel_fbc_enabled(dev)) { DRM_DEBUG_KMS("unsupported config, disabling FBC\n"); intel_disable_fbc(dev); } } static void i915_pineview_get_mem_freq(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; u32 tmp; tmp = I915_READ(CLKCFG); switch (tmp & CLKCFG_FSB_MASK) { case CLKCFG_FSB_533: dev_priv->fsb_freq = 533; /* 133*4 */ break; case CLKCFG_FSB_800: dev_priv->fsb_freq = 800; /* 200*4 */ break; case CLKCFG_FSB_667: dev_priv->fsb_freq = 667; /* 167*4 */ break; case CLKCFG_FSB_400: dev_priv->fsb_freq = 400; /* 100*4 */ break; } switch (tmp & CLKCFG_MEM_MASK) { case CLKCFG_MEM_533: dev_priv->mem_freq = 533; break; case CLKCFG_MEM_667: dev_priv->mem_freq = 667; break; case CLKCFG_MEM_800: dev_priv->mem_freq = 800; break; } /* detect pineview DDR3 setting */ tmp = I915_READ(CSHRDDR3CTL); dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; } static void i915_ironlake_get_mem_freq(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; u16 ddrpll, csipll; ddrpll = I915_READ16(DDRMPLL1); csipll = I915_READ16(CSIPLL0); switch (ddrpll & 0xff) { case 0xc: dev_priv->mem_freq = 800; break; case 0x10: dev_priv->mem_freq = 1066; break; case 0x14: dev_priv->mem_freq = 1333; break; case 0x18: dev_priv->mem_freq = 1600; break; default: DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n", ddrpll & 0xff); dev_priv->mem_freq = 0; break; } dev_priv->r_t = dev_priv->mem_freq; switch (csipll & 0x3ff) { case 0x00c: dev_priv->fsb_freq = 3200; break; case 0x00e: dev_priv->fsb_freq = 3733; break; case 0x010: dev_priv->fsb_freq = 4266; break; case 0x012: dev_priv->fsb_freq = 4800; break; case 0x014: dev_priv->fsb_freq = 5333; break; case 0x016: dev_priv->fsb_freq = 5866; break; case 0x018: dev_priv->fsb_freq = 6400; break; default: DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n", csipll & 0x3ff); dev_priv->fsb_freq = 0; break; } if (dev_priv->fsb_freq == 3200) { dev_priv->c_m = 0; } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) { dev_priv->c_m = 1; } else { dev_priv->c_m = 2; } } static const struct cxsr_latency cxsr_latency_table[] = { {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ }; static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3, int fsb, int mem) { const struct cxsr_latency *latency; int i; if (fsb == 0 || mem == 0) return NULL; for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { latency = &cxsr_latency_table[i]; if (is_desktop == latency->is_desktop && is_ddr3 == latency->is_ddr3 && fsb == latency->fsb_freq && mem == latency->mem_freq) return latency; } DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); return NULL; } static void pineview_disable_cxsr(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* deactivate cxsr */ I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN); } /* * Latency for FIFO fetches is dependent on several factors: * - memory configuration (speed, channels) * - chipset * - current MCH state * It can be fairly high in some situations, so here we assume a fairly * pessimal value. It's a tradeoff between extra memory fetches (if we * set this value too high, the FIFO will fetch frequently to stay full) * and power consumption (set it too low to save power and we might see * FIFO underruns and display "flicker"). * * A value of 5us seems to be a good balance; safe for very low end * platforms but not overly aggressive on lower latency configs. */ static const int latency_ns = 5000; static int i9xx_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; if (plane) size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } static int i85x_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x1ff; if (plane) size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; size >>= 1; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } static int i845_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; size >>= 2; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } static int i830_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; size >>= 1; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } /* Pineview has different values for various configs */ static const struct intel_watermark_params pineview_display_wm = { PINEVIEW_DISPLAY_FIFO, PINEVIEW_MAX_WM, PINEVIEW_DFT_WM, PINEVIEW_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE }; static const struct intel_watermark_params pineview_display_hplloff_wm = { PINEVIEW_DISPLAY_FIFO, PINEVIEW_MAX_WM, PINEVIEW_DFT_HPLLOFF_WM, PINEVIEW_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE }; static const struct intel_watermark_params pineview_cursor_wm = { PINEVIEW_CURSOR_FIFO, PINEVIEW_CURSOR_MAX_WM, PINEVIEW_CURSOR_DFT_WM, PINEVIEW_CURSOR_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pineview_cursor_hplloff_wm = { PINEVIEW_CURSOR_FIFO, PINEVIEW_CURSOR_MAX_WM, PINEVIEW_CURSOR_DFT_WM, PINEVIEW_CURSOR_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE }; static const struct intel_watermark_params g4x_wm_info = { G4X_FIFO_SIZE, G4X_MAX_WM, G4X_MAX_WM, 2, G4X_FIFO_LINE_SIZE, }; static const struct intel_watermark_params g4x_cursor_wm_info = { I965_CURSOR_FIFO, I965_CURSOR_MAX_WM, I965_CURSOR_DFT_WM, 2, G4X_FIFO_LINE_SIZE, }; static const struct intel_watermark_params valleyview_wm_info = { VALLEYVIEW_FIFO_SIZE, VALLEYVIEW_MAX_WM, VALLEYVIEW_MAX_WM, 2, G4X_FIFO_LINE_SIZE, }; static const struct intel_watermark_params valleyview_cursor_wm_info = { I965_CURSOR_FIFO, VALLEYVIEW_CURSOR_MAX_WM, I965_CURSOR_DFT_WM, 2, G4X_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i965_cursor_wm_info = { I965_CURSOR_FIFO, I965_CURSOR_MAX_WM, I965_CURSOR_DFT_WM, 2, I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i945_wm_info = { I945_FIFO_SIZE, I915_MAX_WM, 1, 2, I915_FIFO_LINE_SIZE }; static const struct intel_watermark_params i915_wm_info = { I915_FIFO_SIZE, I915_MAX_WM, 1, 2, I915_FIFO_LINE_SIZE }; static const struct intel_watermark_params i855_wm_info = { I855GM_FIFO_SIZE, I915_MAX_WM, 1, 2, I830_FIFO_LINE_SIZE }; static const struct intel_watermark_params i830_wm_info = { I830_FIFO_SIZE, I915_MAX_WM, 1, 2, I830_FIFO_LINE_SIZE }; static const struct intel_watermark_params ironlake_display_wm_info = { ILK_DISPLAY_FIFO, ILK_DISPLAY_MAXWM, ILK_DISPLAY_DFTWM, 2, ILK_FIFO_LINE_SIZE }; static const struct intel_watermark_params ironlake_cursor_wm_info = { ILK_CURSOR_FIFO, ILK_CURSOR_MAXWM, ILK_CURSOR_DFTWM, 2, ILK_FIFO_LINE_SIZE }; static const struct intel_watermark_params ironlake_display_srwm_info = { ILK_DISPLAY_SR_FIFO, ILK_DISPLAY_MAX_SRWM, ILK_DISPLAY_DFT_SRWM, 2, ILK_FIFO_LINE_SIZE }; static const struct intel_watermark_params ironlake_cursor_srwm_info = { ILK_CURSOR_SR_FIFO, ILK_CURSOR_MAX_SRWM, ILK_CURSOR_DFT_SRWM, 2, ILK_FIFO_LINE_SIZE }; static const struct intel_watermark_params sandybridge_display_wm_info = { SNB_DISPLAY_FIFO, SNB_DISPLAY_MAXWM, SNB_DISPLAY_DFTWM, 2, SNB_FIFO_LINE_SIZE }; static const struct intel_watermark_params sandybridge_cursor_wm_info = { SNB_CURSOR_FIFO, SNB_CURSOR_MAXWM, SNB_CURSOR_DFTWM, 2, SNB_FIFO_LINE_SIZE }; static const struct intel_watermark_params sandybridge_display_srwm_info = { SNB_DISPLAY_SR_FIFO, SNB_DISPLAY_MAX_SRWM, SNB_DISPLAY_DFT_SRWM, 2, SNB_FIFO_LINE_SIZE }; static const struct intel_watermark_params sandybridge_cursor_srwm_info = { SNB_CURSOR_SR_FIFO, SNB_CURSOR_MAX_SRWM, SNB_CURSOR_DFT_SRWM, 2, SNB_FIFO_LINE_SIZE }; /** * intel_calculate_wm - calculate watermark level * @clock_in_khz: pixel clock * @wm: chip FIFO params * @pixel_size: display pixel size * @latency_ns: memory latency for the platform * * Calculate the watermark level (the level at which the display plane will * start fetching from memory again). Each chip has a different display * FIFO size and allocation, so the caller needs to figure that out and pass * in the correct intel_watermark_params structure. * * As the pixel clock runs, the FIFO will be drained at a rate that depends * on the pixel size. When it reaches the watermark level, it'll start * fetching FIFO line sized based chunks from memory until the FIFO fills * past the watermark point. If the FIFO drains completely, a FIFO underrun * will occur, and a display engine hang could result. */ static unsigned long intel_calculate_wm(unsigned long clock_in_khz, const struct intel_watermark_params *wm, int fifo_size, int pixel_size, unsigned long latency_ns) { long entries_required, wm_size; /* * Note: we need to make sure we don't overflow for various clock & * latency values. * clocks go from a few thousand to several hundred thousand. * latency is usually a few thousand */ entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) / 1000; entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size); DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required); wm_size = fifo_size - (entries_required + wm->guard_size); DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size); /* Don't promote wm_size to unsigned... */ if (wm_size > (long)wm->max_wm) wm_size = wm->max_wm; if (wm_size <= 0) wm_size = wm->default_wm; return wm_size; } static struct drm_crtc *single_enabled_crtc(struct drm_device *dev) { struct drm_crtc *crtc, *enabled = NULL; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { if (crtc->enabled && crtc->fb) { if (enabled) return NULL; enabled = crtc; } } return enabled; } static void pineview_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; const struct cxsr_latency *latency; u32 reg; unsigned long wm; latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, dev_priv->fsb_freq, dev_priv->mem_freq); if (!latency) { DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); pineview_disable_cxsr(dev); return; } crtc = single_enabled_crtc(dev); if (crtc) { int clock = crtc->mode.clock; int pixel_size = crtc->fb->bits_per_pixel / 8; /* Display SR */ wm = intel_calculate_wm(clock, &pineview_display_wm, pineview_display_wm.fifo_size, pixel_size, latency->display_sr); reg = I915_READ(DSPFW1); reg &= ~DSPFW_SR_MASK; reg |= wm << DSPFW_SR_SHIFT; I915_WRITE(DSPFW1, reg); DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg); /* cursor SR */ wm = intel_calculate_wm(clock, &pineview_cursor_wm, pineview_display_wm.fifo_size, pixel_size, latency->cursor_sr); reg = I915_READ(DSPFW3); reg &= ~DSPFW_CURSOR_SR_MASK; reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT; I915_WRITE(DSPFW3, reg); /* Display HPLL off SR */ wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm, pineview_display_hplloff_wm.fifo_size, pixel_size, latency->display_hpll_disable); reg = I915_READ(DSPFW3); reg &= ~DSPFW_HPLL_SR_MASK; reg |= wm & DSPFW_HPLL_SR_MASK; I915_WRITE(DSPFW3, reg); /* cursor HPLL off SR */ wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pineview_display_hplloff_wm.fifo_size, pixel_size, latency->cursor_hpll_disable); reg = I915_READ(DSPFW3); reg &= ~DSPFW_HPLL_CURSOR_MASK; reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT; I915_WRITE(DSPFW3, reg); DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg); /* activate cxsr */ I915_WRITE(DSPFW3, I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN); DRM_DEBUG_KMS("Self-refresh is enabled\n"); } else { pineview_disable_cxsr(dev); DRM_DEBUG_KMS("Self-refresh is disabled\n"); } } static bool g4x_compute_wm0(struct drm_device *dev, int plane, const struct intel_watermark_params *display, int display_latency_ns, const struct intel_watermark_params *cursor, int cursor_latency_ns, int *plane_wm, int *cursor_wm) { struct drm_crtc *crtc; int htotal, hdisplay, clock, pixel_size; int line_time_us, line_count; int entries, tlb_miss; crtc = intel_get_crtc_for_plane(dev, plane); if (crtc->fb == NULL || !crtc->enabled) { *cursor_wm = cursor->guard_size; *plane_wm = display->guard_size; return false; } htotal = crtc->mode.htotal; hdisplay = crtc->mode.hdisplay; clock = crtc->mode.clock; pixel_size = crtc->fb->bits_per_pixel / 8; /* Use the small buffer method to calculate plane watermark */ entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000; tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8; if (tlb_miss > 0) entries += tlb_miss; entries = DIV_ROUND_UP(entries, display->cacheline_size); *plane_wm = entries + display->guard_size; if (*plane_wm > (int)display->max_wm) *plane_wm = display->max_wm; /* Use the large buffer method to calculate cursor watermark */ line_time_us = ((htotal * 1000) / clock); line_count = (cursor_latency_ns / line_time_us + 1000) / 1000; entries = line_count * 64 * pixel_size; tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8; if (tlb_miss > 0) entries += tlb_miss; entries = DIV_ROUND_UP(entries, cursor->cacheline_size); *cursor_wm = entries + cursor->guard_size; if (*cursor_wm > (int)cursor->max_wm) *cursor_wm = (int)cursor->max_wm; return true; } /* * Check the wm result. * * If any calculated watermark values is larger than the maximum value that * can be programmed into the associated watermark register, that watermark * must be disabled. */ static bool g4x_check_srwm(struct drm_device *dev, int display_wm, int cursor_wm, const struct intel_watermark_params *display, const struct intel_watermark_params *cursor) { DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n", display_wm, cursor_wm); if (display_wm > display->max_wm) { DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n", display_wm, display->max_wm); return false; } if (cursor_wm > cursor->max_wm) { DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n", cursor_wm, cursor->max_wm); return false; } if (!(display_wm || cursor_wm)) { DRM_DEBUG_KMS("SR latency is 0, disabling\n"); return false; } return true; } static bool g4x_compute_srwm(struct drm_device *dev, int plane, int latency_ns, const struct intel_watermark_params *display, const struct intel_watermark_params *cursor, int *display_wm, int *cursor_wm) { struct drm_crtc *crtc; int hdisplay, htotal, pixel_size, clock; unsigned long line_time_us; int line_count, line_size; int small, large; int entries; if (!latency_ns) { *display_wm = *cursor_wm = 0; return false; } crtc = intel_get_crtc_for_plane(dev, plane); hdisplay = crtc->mode.hdisplay; htotal = crtc->mode.htotal; clock = crtc->mode.clock; pixel_size = crtc->fb->bits_per_pixel / 8; line_time_us = (htotal * 1000) / clock; line_count = (latency_ns / line_time_us + 1000) / 1000; line_size = hdisplay * pixel_size; /* Use the minimum of the small and large buffer method for primary */ small = ((clock * pixel_size / 1000) * latency_ns) / 1000; large = line_count * line_size; entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); *display_wm = entries + display->guard_size; /* calculate the self-refresh watermark for display cursor */ entries = line_count * pixel_size * 64; entries = DIV_ROUND_UP(entries, cursor->cacheline_size); *cursor_wm = entries + cursor->guard_size; return g4x_check_srwm(dev, *display_wm, *cursor_wm, display, cursor); } static bool vlv_compute_drain_latency(struct drm_device *dev, int plane, int *plane_prec_mult, int *plane_dl, int *cursor_prec_mult, int *cursor_dl) { struct drm_crtc *crtc; int clock, pixel_size; int entries; crtc = intel_get_crtc_for_plane(dev, plane); if (crtc->fb == NULL || !crtc->enabled) return false; clock = crtc->mode.clock; /* VESA DOT Clock */ pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */ entries = (clock / 1000) * pixel_size; *plane_prec_mult = (entries > 256) ? DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16; *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) * pixel_size); entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */ *cursor_prec_mult = (entries > 256) ? DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16; *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4); return true; } /* * Update drain latency registers of memory arbiter * * Valleyview SoC has a new memory arbiter and needs drain latency registers * to be programmed. Each plane has a drain latency multiplier and a drain * latency value. */ static void vlv_update_drain_latency(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int planea_prec, planea_dl, planeb_prec, planeb_dl; int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl; int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is either 16 or 32 */ /* For plane A, Cursor A */ if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl, &cursor_prec_mult, &cursora_dl)) { cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ? DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16; planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ? DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16; I915_WRITE(VLV_DDL1, cursora_prec | (cursora_dl << DDL_CURSORA_SHIFT) | planea_prec | planea_dl); } /* For plane B, Cursor B */ if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl, &cursor_prec_mult, &cursorb_dl)) { cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ? DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16; planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ? DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16; I915_WRITE(VLV_DDL2, cursorb_prec | (cursorb_dl << DDL_CURSORB_SHIFT) | planeb_prec | planeb_dl); } } #define single_plane_enabled(mask) is_power_of_2(mask) static void valleyview_update_wm(struct drm_device *dev) { static const int sr_latency_ns = 12000; struct drm_i915_private *dev_priv = dev->dev_private; int planea_wm, planeb_wm, cursora_wm, cursorb_wm; int plane_sr, cursor_sr; unsigned int enabled = 0; vlv_update_drain_latency(dev); if (g4x_compute_wm0(dev, 0, &valleyview_wm_info, latency_ns, &valleyview_cursor_wm_info, latency_ns, &planea_wm, &cursora_wm)) enabled |= 1; if (g4x_compute_wm0(dev, 1, &valleyview_wm_info, latency_ns, &valleyview_cursor_wm_info, latency_ns, &planeb_wm, &cursorb_wm)) enabled |= 2; plane_sr = cursor_sr = 0; if (single_plane_enabled(enabled) && g4x_compute_srwm(dev, ffs(enabled) - 1, sr_latency_ns, &valleyview_wm_info, &valleyview_cursor_wm_info, &plane_sr, &cursor_sr)) I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN); else I915_WRITE(FW_BLC_SELF_VLV, I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN); DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n", planea_wm, cursora_wm, planeb_wm, cursorb_wm, plane_sr, cursor_sr); I915_WRITE(DSPFW1, (plane_sr << DSPFW_SR_SHIFT) | (cursorb_wm << DSPFW_CURSORB_SHIFT) | (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm); I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) | (cursora_wm << DSPFW_CURSORA_SHIFT)); I915_WRITE(DSPFW3, (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT))); } static void g4x_update_wm(struct drm_device *dev) { static const int sr_latency_ns = 12000; struct drm_i915_private *dev_priv = dev->dev_private; int planea_wm, planeb_wm, cursora_wm, cursorb_wm; int plane_sr, cursor_sr; unsigned int enabled = 0; if (g4x_compute_wm0(dev, 0, &g4x_wm_info, latency_ns, &g4x_cursor_wm_info, latency_ns, &planea_wm, &cursora_wm)) enabled |= 1; if (g4x_compute_wm0(dev, 1, &g4x_wm_info, latency_ns, &g4x_cursor_wm_info, latency_ns, &planeb_wm, &cursorb_wm)) enabled |= 2; plane_sr = cursor_sr = 0; if (single_plane_enabled(enabled) && g4x_compute_srwm(dev, ffs(enabled) - 1, sr_latency_ns, &g4x_wm_info, &g4x_cursor_wm_info, &plane_sr, &cursor_sr)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); else I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN); DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n", planea_wm, cursora_wm, planeb_wm, cursorb_wm, plane_sr, cursor_sr); I915_WRITE(DSPFW1, (plane_sr << DSPFW_SR_SHIFT) | (cursorb_wm << DSPFW_CURSORB_SHIFT) | (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm); I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) | (cursora_wm << DSPFW_CURSORA_SHIFT)); /* HPLL off in SR has some issues on G4x... disable it */ I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); } static void i965_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; int srwm = 1; int cursor_sr = 16; /* Calc sr entries for one plane configs */ crtc = single_enabled_crtc(dev); if (crtc) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 12000; int clock = crtc->mode.clock; int htotal = crtc->mode.htotal; int hdisplay = crtc->mode.hdisplay; int pixel_size = crtc->fb->bits_per_pixel / 8; unsigned long line_time_us; int entries; line_time_us = ((htotal * 1000) / clock); /* Use ns/us then divide to preserve precision */ entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * hdisplay; entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); srwm = I965_FIFO_SIZE - entries; if (srwm < 0) srwm = 1; srwm &= 0x1ff; DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n", entries, srwm); entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * 64; entries = DIV_ROUND_UP(entries, i965_cursor_wm_info.cacheline_size); cursor_sr = i965_cursor_wm_info.fifo_size - (entries + i965_cursor_wm_info.guard_size); if (cursor_sr > i965_cursor_wm_info.max_wm) cursor_sr = i965_cursor_wm_info.max_wm; DRM_DEBUG_KMS("self-refresh watermark: display plane %d " "cursor %d\n", srwm, cursor_sr); if (IS_CRESTLINE(dev)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); } else { /* Turn off self refresh if both pipes are enabled */ if (IS_CRESTLINE(dev)) I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN); } DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", srwm); /* 965 has limitations... */ I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) | (8 << 0)); I915_WRITE(DSPFW2, (8 << 8) | (8 << 0)); /* update cursor SR watermark */ I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); } static void i9xx_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; const struct intel_watermark_params *wm_info; uint32_t fwater_lo; uint32_t fwater_hi; int cwm, srwm = 1; int fifo_size; int planea_wm, planeb_wm; struct drm_crtc *crtc, *enabled = NULL; if (IS_I945GM(dev)) wm_info = &i945_wm_info; else if (!IS_GEN2(dev)) wm_info = &i915_wm_info; else wm_info = &i855_wm_info; fifo_size = dev_priv->display.get_fifo_size(dev, 0); crtc = intel_get_crtc_for_plane(dev, 0); if (crtc->enabled && crtc->fb) { planea_wm = intel_calculate_wm(crtc->mode.clock, wm_info, fifo_size, crtc->fb->bits_per_pixel / 8, latency_ns); enabled = crtc; } else planea_wm = fifo_size - wm_info->guard_size; fifo_size = dev_priv->display.get_fifo_size(dev, 1); crtc = intel_get_crtc_for_plane(dev, 1); if (crtc->enabled && crtc->fb) { planeb_wm = intel_calculate_wm(crtc->mode.clock, wm_info, fifo_size, crtc->fb->bits_per_pixel / 8, latency_ns); if (enabled == NULL) enabled = crtc; else enabled = NULL; } else planeb_wm = fifo_size - wm_info->guard_size; DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); /* * Overlay gets an aggressive default since video jitter is bad. */ cwm = 2; /* Play safe and disable self-refresh before adjusting watermarks. */ if (IS_I945G(dev) || IS_I945GM(dev)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0); else if (IS_I915GM(dev)) I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN); /* Calc sr entries for one plane configs */ if (HAS_FW_BLC(dev) && enabled) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 6000; int clock = enabled->mode.clock; int htotal = enabled->mode.htotal; int hdisplay = enabled->mode.hdisplay; int pixel_size = enabled->fb->bits_per_pixel / 8; unsigned long line_time_us; int entries; line_time_us = (htotal * 1000) / clock; /* Use ns/us then divide to preserve precision */ entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * hdisplay; entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); DRM_DEBUG_KMS("self-refresh entries: %d\n", entries); srwm = wm_info->fifo_size - entries; if (srwm < 0) srwm = 1; if (IS_I945G(dev) || IS_I945GM(dev)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); else if (IS_I915GM(dev)) I915_WRITE(FW_BLC_SELF, srwm & 0x3f); } DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", planea_wm, planeb_wm, cwm, srwm); fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); fwater_hi = (cwm & 0x1f); /* Set request length to 8 cachelines per fetch */ fwater_lo = fwater_lo | (1 << 24) | (1 << 8); fwater_hi = fwater_hi | (1 << 8); I915_WRITE(FW_BLC, fwater_lo); I915_WRITE(FW_BLC2, fwater_hi); if (HAS_FW_BLC(dev)) { if (enabled) { if (IS_I945G(dev) || IS_I945GM(dev)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN); else if (IS_I915GM(dev)) I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN); DRM_DEBUG_KMS("memory self refresh enabled\n"); } else DRM_DEBUG_KMS("memory self refresh disabled\n"); } } static void i830_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; uint32_t fwater_lo; int planea_wm; crtc = single_enabled_crtc(dev); if (crtc == NULL) return; planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info, dev_priv->display.get_fifo_size(dev, 0), crtc->fb->bits_per_pixel / 8, latency_ns); fwater_lo = I915_READ(FW_BLC) & ~0xfff; fwater_lo |= (3<<8) | planea_wm; DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm); I915_WRITE(FW_BLC, fwater_lo); } #define ILK_LP0_PLANE_LATENCY 700 #define ILK_LP0_CURSOR_LATENCY 1300 /* * Check the wm result. * * If any calculated watermark values is larger than the maximum value that * can be programmed into the associated watermark register, that watermark * must be disabled. */ static bool ironlake_check_srwm(struct drm_device *dev, int level, int fbc_wm, int display_wm, int cursor_wm, const struct intel_watermark_params *display, const struct intel_watermark_params *cursor) { struct drm_i915_private *dev_priv = dev->dev_private; DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d," " cursor %d\n", level, display_wm, fbc_wm, cursor_wm); if (fbc_wm > SNB_FBC_MAX_SRWM) { DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n", fbc_wm, SNB_FBC_MAX_SRWM, level); /* fbc has it's own way to disable FBC WM */ I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS); return false; } if (display_wm > display->max_wm) { DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n", display_wm, SNB_DISPLAY_MAX_SRWM, level); return false; } if (cursor_wm > cursor->max_wm) { DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n", cursor_wm, SNB_CURSOR_MAX_SRWM, level); return false; } if (!(fbc_wm || display_wm || cursor_wm)) { DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level); return false; } return true; } /* * Compute watermark values of WM[1-3], */ static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane, int latency_ns, const struct intel_watermark_params *display, const struct intel_watermark_params *cursor, int *fbc_wm, int *display_wm, int *cursor_wm) { struct drm_crtc *crtc; unsigned long line_time_us; int hdisplay, htotal, pixel_size, clock; int line_count, line_size; int small, large; int entries; if (!latency_ns) { *fbc_wm = *display_wm = *cursor_wm = 0; return false; } crtc = intel_get_crtc_for_plane(dev, plane); hdisplay = crtc->mode.hdisplay; htotal = crtc->mode.htotal; clock = crtc->mode.clock; pixel_size = crtc->fb->bits_per_pixel / 8; line_time_us = (htotal * 1000) / clock; line_count = (latency_ns / line_time_us + 1000) / 1000; line_size = hdisplay * pixel_size; /* Use the minimum of the small and large buffer method for primary */ small = ((clock * pixel_size / 1000) * latency_ns) / 1000; large = line_count * line_size; entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); *display_wm = entries + display->guard_size; /* * Spec says: * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2 */ *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2; /* calculate the self-refresh watermark for display cursor */ entries = line_count * pixel_size * 64; entries = DIV_ROUND_UP(entries, cursor->cacheline_size); *cursor_wm = entries + cursor->guard_size; return ironlake_check_srwm(dev, level, *fbc_wm, *display_wm, *cursor_wm, display, cursor); } static void ironlake_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int fbc_wm, plane_wm, cursor_wm; unsigned int enabled; enabled = 0; if (g4x_compute_wm0(dev, 0, &ironlake_display_wm_info, ILK_LP0_PLANE_LATENCY, &ironlake_cursor_wm_info, ILK_LP0_CURSOR_LATENCY, &plane_wm, &cursor_wm)) { I915_WRITE(WM0_PIPEA_ILK, (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); DRM_DEBUG_KMS("FIFO watermarks For pipe A -" " plane %d, " "cursor: %d\n", plane_wm, cursor_wm); enabled |= 1; } if (g4x_compute_wm0(dev, 1, &ironlake_display_wm_info, ILK_LP0_PLANE_LATENCY, &ironlake_cursor_wm_info, ILK_LP0_CURSOR_LATENCY, &plane_wm, &cursor_wm)) { I915_WRITE(WM0_PIPEB_ILK, (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); DRM_DEBUG_KMS("FIFO watermarks For pipe B -" " plane %d, cursor: %d\n", plane_wm, cursor_wm); enabled |= 2; } /* * Calculate and update the self-refresh watermark only when one * display plane is used. */ I915_WRITE(WM3_LP_ILK, 0); I915_WRITE(WM2_LP_ILK, 0); I915_WRITE(WM1_LP_ILK, 0); if (!single_plane_enabled(enabled)) return; enabled = ffs(enabled) - 1; /* WM1 */ if (!ironlake_compute_srwm(dev, 1, enabled, ILK_READ_WM1_LATENCY() * 500, &ironlake_display_srwm_info, &ironlake_cursor_srwm_info, &fbc_wm, &plane_wm, &cursor_wm)) return; I915_WRITE(WM1_LP_ILK, WM1_LP_SR_EN | (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) | (fbc_wm << WM1_LP_FBC_SHIFT) | (plane_wm << WM1_LP_SR_SHIFT) | cursor_wm); /* WM2 */ if (!ironlake_compute_srwm(dev, 2, enabled, ILK_READ_WM2_LATENCY() * 500, &ironlake_display_srwm_info, &ironlake_cursor_srwm_info, &fbc_wm, &plane_wm, &cursor_wm)) return; I915_WRITE(WM2_LP_ILK, WM2_LP_EN | (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) | (fbc_wm << WM1_LP_FBC_SHIFT) | (plane_wm << WM1_LP_SR_SHIFT) | cursor_wm); /* * WM3 is unsupported on ILK, probably because we don't have latency * data for that power state */ } static void sandybridge_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */ u32 val; int fbc_wm, plane_wm, cursor_wm; unsigned int enabled; enabled = 0; if (g4x_compute_wm0(dev, 0, &sandybridge_display_wm_info, latency, &sandybridge_cursor_wm_info, latency, &plane_wm, &cursor_wm)) { val = I915_READ(WM0_PIPEA_ILK); val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); I915_WRITE(WM0_PIPEA_ILK, val | ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); DRM_DEBUG_KMS("FIFO watermarks For pipe A -" " plane %d, " "cursor: %d\n", plane_wm, cursor_wm); enabled |= 1; } if (g4x_compute_wm0(dev, 1, &sandybridge_display_wm_info, latency, &sandybridge_cursor_wm_info, latency, &plane_wm, &cursor_wm)) { val = I915_READ(WM0_PIPEB_ILK); val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); I915_WRITE(WM0_PIPEB_ILK, val | ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); DRM_DEBUG_KMS("FIFO watermarks For pipe B -" " plane %d, cursor: %d\n", plane_wm, cursor_wm); enabled |= 2; } if ((dev_priv->num_pipe == 3) && g4x_compute_wm0(dev, 2, &sandybridge_display_wm_info, latency, &sandybridge_cursor_wm_info, latency, &plane_wm, &cursor_wm)) { val = I915_READ(WM0_PIPEC_IVB); val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); I915_WRITE(WM0_PIPEC_IVB, val | ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); DRM_DEBUG_KMS("FIFO watermarks For pipe C -" " plane %d, cursor: %d\n", plane_wm, cursor_wm); enabled |= 3; } /* * Calculate and update the self-refresh watermark only when one * display plane is used. * * SNB support 3 levels of watermark. * * WM1/WM2/WM2 watermarks have to be enabled in the ascending order, * and disabled in the descending order * */ I915_WRITE(WM3_LP_ILK, 0); I915_WRITE(WM2_LP_ILK, 0); I915_WRITE(WM1_LP_ILK, 0); if (!single_plane_enabled(enabled) || dev_priv->sprite_scaling_enabled) return; enabled = ffs(enabled) - 1; /* WM1 */ if (!ironlake_compute_srwm(dev, 1, enabled, SNB_READ_WM1_LATENCY() * 500, &sandybridge_display_srwm_info, &sandybridge_cursor_srwm_info, &fbc_wm, &plane_wm, &cursor_wm)) return; I915_WRITE(WM1_LP_ILK, WM1_LP_SR_EN | (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) | (fbc_wm << WM1_LP_FBC_SHIFT) | (plane_wm << WM1_LP_SR_SHIFT) | cursor_wm); /* WM2 */ if (!ironlake_compute_srwm(dev, 2, enabled, SNB_READ_WM2_LATENCY() * 500, &sandybridge_display_srwm_info, &sandybridge_cursor_srwm_info, &fbc_wm, &plane_wm, &cursor_wm)) return; I915_WRITE(WM2_LP_ILK, WM2_LP_EN | (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) | (fbc_wm << WM1_LP_FBC_SHIFT) | (plane_wm << WM1_LP_SR_SHIFT) | cursor_wm); /* WM3 */ if (!ironlake_compute_srwm(dev, 3, enabled, SNB_READ_WM3_LATENCY() * 500, &sandybridge_display_srwm_info, &sandybridge_cursor_srwm_info, &fbc_wm, &plane_wm, &cursor_wm)) return; I915_WRITE(WM3_LP_ILK, WM3_LP_EN | (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) | (fbc_wm << WM1_LP_FBC_SHIFT) | (plane_wm << WM1_LP_SR_SHIFT) | cursor_wm); } static void haswell_update_linetime_wm(struct drm_device *dev, int pipe, struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = dev->dev_private; u32 temp; temp = I915_READ(PIPE_WM_LINETIME(pipe)); temp &= ~PIPE_WM_LINETIME_MASK; /* The WM are computed with base on how long it takes to fill a single * row at the given clock rate, multiplied by 8. * */ temp |= PIPE_WM_LINETIME_TIME( ((mode->crtc_hdisplay * 1000) / mode->clock) * 8); /* IPS watermarks are only used by pipe A, and are ignored by * pipes B and C. They are calculated similarly to the common * linetime values, except that we are using CD clock frequency * in MHz instead of pixel rate for the division. * * This is a placeholder for the IPS watermark calculation code. */ I915_WRITE(PIPE_WM_LINETIME(pipe), temp); } static bool sandybridge_compute_sprite_wm(struct drm_device *dev, int plane, uint32_t sprite_width, int pixel_size, const struct intel_watermark_params *display, int display_latency_ns, int *sprite_wm) { struct drm_crtc *crtc; int clock; int entries, tlb_miss; crtc = intel_get_crtc_for_plane(dev, plane); if (crtc->fb == NULL || !crtc->enabled) { *sprite_wm = display->guard_size; return false; } clock = crtc->mode.clock; /* Use the small buffer method to calculate the sprite watermark */ entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000; tlb_miss = display->fifo_size*display->cacheline_size - sprite_width * 8; if (tlb_miss > 0) entries += tlb_miss; entries = DIV_ROUND_UP(entries, display->cacheline_size); *sprite_wm = entries + display->guard_size; if (*sprite_wm > (int)display->max_wm) *sprite_wm = display->max_wm; return true; } static bool sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane, uint32_t sprite_width, int pixel_size, const struct intel_watermark_params *display, int latency_ns, int *sprite_wm) { struct drm_crtc *crtc; unsigned long line_time_us; int clock; int line_count, line_size; int small, large; int entries; if (!latency_ns) { *sprite_wm = 0; return false; } crtc = intel_get_crtc_for_plane(dev, plane); clock = crtc->mode.clock; if (!clock) { *sprite_wm = 0; return false; } line_time_us = (sprite_width * 1000) / clock; if (!line_time_us) { *sprite_wm = 0; return false; } line_count = (latency_ns / line_time_us + 1000) / 1000; line_size = sprite_width * pixel_size; /* Use the minimum of the small and large buffer method for primary */ small = ((clock * pixel_size / 1000) * latency_ns) / 1000; large = line_count * line_size; entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); *sprite_wm = entries + display->guard_size; return *sprite_wm > 0x3ff ? false : true; } static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe, uint32_t sprite_width, int pixel_size) { struct drm_i915_private *dev_priv = dev->dev_private; int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */ u32 val; int sprite_wm, reg; int ret; switch (pipe) { case 0: reg = WM0_PIPEA_ILK; break; case 1: reg = WM0_PIPEB_ILK; break; case 2: reg = WM0_PIPEC_IVB; break; default: return; /* bad pipe */ } ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size, &sandybridge_display_wm_info, latency, &sprite_wm); if (!ret) { DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n", pipe); return; } val = I915_READ(reg); val &= ~WM0_PIPE_SPRITE_MASK; I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT)); DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm); ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width, pixel_size, &sandybridge_display_srwm_info, SNB_READ_WM1_LATENCY() * 500, &sprite_wm); if (!ret) { DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n", pipe); return; } I915_WRITE(WM1S_LP_ILK, sprite_wm); /* Only IVB has two more LP watermarks for sprite */ if (!IS_IVYBRIDGE(dev)) return; ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width, pixel_size, &sandybridge_display_srwm_info, SNB_READ_WM2_LATENCY() * 500, &sprite_wm); if (!ret) { DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n", pipe); return; } I915_WRITE(WM2S_LP_IVB, sprite_wm); ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width, pixel_size, &sandybridge_display_srwm_info, SNB_READ_WM3_LATENCY() * 500, &sprite_wm); if (!ret) { DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n", pipe); return; } I915_WRITE(WM3S_LP_IVB, sprite_wm); } /** * intel_update_watermarks - update FIFO watermark values based on current modes * * Calculate watermark values for the various WM regs based on current mode * and plane configuration. * * There are several cases to deal with here: * - normal (i.e. non-self-refresh) * - self-refresh (SR) mode * - lines are large relative to FIFO size (buffer can hold up to 2) * - lines are small relative to FIFO size (buffer can hold more than 2 * lines), so need to account for TLB latency * * The normal calculation is: * watermark = dotclock * bytes per pixel * latency * where latency is platform & configuration dependent (we assume pessimal * values here). * * The SR calculation is: * watermark = (trunc(latency/line time)+1) * surface width * * bytes per pixel * where * line time = htotal / dotclock * surface width = hdisplay for normal plane and 64 for cursor * and latency is assumed to be high, as above. * * The final value programmed to the register should always be rounded up, * and include an extra 2 entries to account for clock crossings. * * We don't use the sprite, so we can ignore that. And on Crestline we have * to set the non-SR watermarks to 8. */ void intel_update_watermarks(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->display.update_wm) dev_priv->display.update_wm(dev); } void intel_update_linetime_watermarks(struct drm_device *dev, int pipe, struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->display.update_linetime_wm) dev_priv->display.update_linetime_wm(dev, pipe, mode); } void intel_update_sprite_watermarks(struct drm_device *dev, int pipe, uint32_t sprite_width, int pixel_size) { struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->display.update_sprite_wm) dev_priv->display.update_sprite_wm(dev, pipe, sprite_width, pixel_size); } static struct drm_i915_gem_object * intel_alloc_context_page(struct drm_device *dev) { struct drm_i915_gem_object *ctx; int ret; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); ctx = i915_gem_alloc_object(dev, 4096); if (!ctx) { DRM_DEBUG("failed to alloc power context, RC6 disabled\n"); return NULL; } ret = i915_gem_object_pin(ctx, 4096, true); if (ret) { DRM_ERROR("failed to pin power context: %d\n", ret); goto err_unref; } ret = i915_gem_object_set_to_gtt_domain(ctx, 1); if (ret) { DRM_ERROR("failed to set-domain on power context: %d\n", ret); goto err_unpin; } return ctx; err_unpin: i915_gem_object_unpin(ctx); err_unref: drm_gem_object_unreference(&ctx->base); mutex_unlock(&dev->struct_mutex); return NULL; } bool ironlake_set_drps(struct drm_device *dev, u8 val) { struct drm_i915_private *dev_priv = dev->dev_private; u16 rgvswctl; rgvswctl = I915_READ16(MEMSWCTL); if (rgvswctl & MEMCTL_CMD_STS) { DRM_DEBUG("gpu busy, RCS change rejected\n"); return false; /* still busy with another command */ } rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; I915_WRITE16(MEMSWCTL, rgvswctl); POSTING_READ16(MEMSWCTL); rgvswctl |= MEMCTL_CMD_STS; I915_WRITE16(MEMSWCTL, rgvswctl); return true; } static void ironlake_enable_drps(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 rgvmodectl = I915_READ(MEMMODECTL); u8 fmax, fmin, fstart, vstart; /* Enable temp reporting */ I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN); I915_WRITE16(TSC1, I915_READ(TSC1) | TSE); /* 100ms RC evaluation intervals */ I915_WRITE(RCUPEI, 100000); I915_WRITE(RCDNEI, 100000); /* Set max/min thresholds to 90ms and 80ms respectively */ I915_WRITE(RCBMAXAVG, 90000); I915_WRITE(RCBMINAVG, 80000); I915_WRITE(MEMIHYST, 1); /* Set up min, max, and cur for interrupt handling */ fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; fmin = (rgvmodectl & MEMMODE_FMIN_MASK); fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT; vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; dev_priv->fmax = fmax; /* IPS callback will increase this */ dev_priv->fstart = fstart; dev_priv->max_delay = fstart; dev_priv->min_delay = fmin; dev_priv->cur_delay = fstart; DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin, fstart); I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); /* * Interrupts will be enabled in ironlake_irq_postinstall */ I915_WRITE(VIDSTART, vstart); POSTING_READ(VIDSTART); rgvmodectl |= MEMMODE_SWMODE_EN; I915_WRITE(MEMMODECTL, rgvmodectl); if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10)) DRM_ERROR("stuck trying to change perf mode\n"); msleep(1); ironlake_set_drps(dev, fstart); dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) + I915_READ(0x112e0); dev_priv->last_time1 = jiffies_to_msecs(jiffies); dev_priv->last_count2 = I915_READ(0x112f4); getrawmonotonic(&dev_priv->last_time2); } static void ironlake_disable_drps(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u16 rgvswctl = I915_READ16(MEMSWCTL); /* Ack interrupts, disable EFC interrupt */ I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN); I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG); I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT); I915_WRITE(DEIIR, DE_PCU_EVENT); I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT); /* Go back to the starting frequency */ ironlake_set_drps(dev, dev_priv->fstart); msleep(1); rgvswctl |= MEMCTL_CMD_STS; I915_WRITE(MEMSWCTL, rgvswctl); msleep(1); } void gen6_set_rps(struct drm_device *dev, u8 val) { struct drm_i915_private *dev_priv = dev->dev_private; u32 limits; limits = 0; if (val >= dev_priv->max_delay) val = dev_priv->max_delay; else limits |= dev_priv->max_delay << 24; if (val <= dev_priv->min_delay) val = dev_priv->min_delay; else limits |= dev_priv->min_delay << 16; if (val == dev_priv->cur_delay) return; I915_WRITE(GEN6_RPNSWREQ, GEN6_FREQUENCY(val) | GEN6_OFFSET(0) | GEN6_AGGRESSIVE_TURBO); /* Make sure we continue to get interrupts * until we hit the minimum or maximum frequencies. */ I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits); dev_priv->cur_delay = val; } static void gen6_disable_rps(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(GEN6_RC_CONTROL, 0); I915_WRITE(GEN6_RPNSWREQ, 1 << 31); I915_WRITE(GEN6_PMINTRMSK, 0xffffffff); I915_WRITE(GEN6_PMIER, 0); /* Complete PM interrupt masking here doesn't race with the rps work * item again unmasking PM interrupts because that is using a different * register (PMIMR) to mask PM interrupts. The only risk is in leaving * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */ spin_lock_irq(&dev_priv->rps_lock); dev_priv->pm_iir = 0; spin_unlock_irq(&dev_priv->rps_lock); I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR)); } int intel_enable_rc6(const struct drm_device *dev) { /* * Respect the kernel parameter if it is set */ if (i915_enable_rc6 >= 0) return i915_enable_rc6; /* * Disable RC6 on Ironlake */ if (INTEL_INFO(dev)->gen == 5) return 0; /* On Haswell, only RC6 is available. So let's enable it by default to * provide better testing and coverage since the beginning. */ if (IS_HASWELL(dev)) return INTEL_RC6_ENABLE; /* * Disable rc6 on Sandybridge */ if (INTEL_INFO(dev)->gen == 6) { DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n"); return INTEL_RC6_ENABLE; } DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n"); return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE); } static void gen6_enable_rps(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; u32 rp_state_cap; u32 gt_perf_status; u32 pcu_mbox, rc6_mask = 0; u32 gtfifodbg; int rc6_mode; int i; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); /* Here begins a magic sequence of register writes to enable * auto-downclocking. * * Perhaps there might be some value in exposing these to * userspace... */ I915_WRITE(GEN6_RC_STATE, 0); /* Clear the DBG now so we don't confuse earlier errors */ if ((gtfifodbg = I915_READ(GTFIFODBG))) { DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg); I915_WRITE(GTFIFODBG, gtfifodbg); } gen6_gt_force_wake_get(dev_priv); rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); /* In units of 100MHz */ dev_priv->max_delay = rp_state_cap & 0xff; dev_priv->min_delay = (rp_state_cap & 0xff0000) >> 16; dev_priv->cur_delay = 0; /* disable the counters and set deterministic thresholds */ I915_WRITE(GEN6_RC_CONTROL, 0); I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16); I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30); I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30); I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); for_each_ring(ring, dev_priv, i) I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10); I915_WRITE(GEN6_RC_SLEEP, 0); I915_WRITE(GEN6_RC1e_THRESHOLD, 1000); I915_WRITE(GEN6_RC6_THRESHOLD, 50000); I915_WRITE(GEN6_RC6p_THRESHOLD, 100000); I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */ /* Check if we are enabling RC6 */ rc6_mode = intel_enable_rc6(dev_priv->dev); if (rc6_mode & INTEL_RC6_ENABLE) rc6_mask |= GEN6_RC_CTL_RC6_ENABLE; /* We don't use those on Haswell */ if (!IS_HASWELL(dev)) { if (rc6_mode & INTEL_RC6p_ENABLE) rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE; if (rc6_mode & INTEL_RC6pp_ENABLE) rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE; } DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off", (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off", (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off"); I915_WRITE(GEN6_RC_CONTROL, rc6_mask | GEN6_RC_CTL_EI_MODE(1) | GEN6_RC_CTL_HW_ENABLE); I915_WRITE(GEN6_RPNSWREQ, GEN6_FREQUENCY(10) | GEN6_OFFSET(0) | GEN6_AGGRESSIVE_TURBO); I915_WRITE(GEN6_RC_VIDEO_FREQ, GEN6_FREQUENCY(12)); I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000); I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, dev_priv->max_delay << 24 | dev_priv->min_delay << 16); if (IS_HASWELL(dev)) { I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400); I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000); I915_WRITE(GEN6_RP_UP_EI, 66000); I915_WRITE(GEN6_RP_DOWN_EI, 350000); } else { I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000); I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000); I915_WRITE(GEN6_RP_UP_EI, 100000); I915_WRITE(GEN6_RP_DOWN_EI, 5000000); } I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10); I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO | GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT)); if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500)) DRM_ERROR("timeout waiting for pcode mailbox to become idle\n"); I915_WRITE(GEN6_PCODE_DATA, 0); I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | GEN6_PCODE_WRITE_MIN_FREQ_TABLE); if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500)) DRM_ERROR("timeout waiting for pcode mailbox to finish\n"); /* Check for overclock support */ if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500)) DRM_ERROR("timeout waiting for pcode mailbox to become idle\n"); I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS); pcu_mbox = I915_READ(GEN6_PCODE_DATA); if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500)) DRM_ERROR("timeout waiting for pcode mailbox to finish\n"); if (pcu_mbox & (1<<31)) { /* OC supported */ dev_priv->max_delay = pcu_mbox & 0xff; DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50); } gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8); /* requires MSI enabled */ I915_WRITE(GEN6_PMIER, GEN6_PM_MBOX_EVENT | GEN6_PM_THERMAL_EVENT | GEN6_PM_RP_DOWN_TIMEOUT | GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_EI_EXPIRED); spin_lock_irq(&dev_priv->rps_lock); WARN_ON(dev_priv->pm_iir != 0); I915_WRITE(GEN6_PMIMR, 0); spin_unlock_irq(&dev_priv->rps_lock); /* enable all PM interrupts */ I915_WRITE(GEN6_PMINTRMSK, 0); gen6_gt_force_wake_put(dev_priv); } static void gen6_update_ring_freq(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int min_freq = 15; int gpu_freq, ia_freq, max_ia_freq; int scaling_factor = 180; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); max_ia_freq = cpufreq_quick_get_max(0); /* * Default to measured freq if none found, PCU will ensure we don't go * over */ if (!max_ia_freq) max_ia_freq = tsc_khz; /* Convert from kHz to MHz */ max_ia_freq /= 1000; /* * For each potential GPU frequency, load a ring frequency we'd like * to use for memory access. We do this by specifying the IA frequency * the PCU should use as a reference to determine the ring frequency. */ for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay; gpu_freq--) { int diff = dev_priv->max_delay - gpu_freq; /* * For GPU frequencies less than 750MHz, just use the lowest * ring freq. */ if (gpu_freq < min_freq) ia_freq = 800; else ia_freq = max_ia_freq - ((diff * scaling_factor) / 2); ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100); I915_WRITE(GEN6_PCODE_DATA, (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) | gpu_freq); I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | GEN6_PCODE_WRITE_MIN_FREQ_TABLE); if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 10)) { DRM_ERROR("pcode write of freq table timed out\n"); continue; } } } void ironlake_teardown_rc6(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->renderctx) { i915_gem_object_unpin(dev_priv->renderctx); drm_gem_object_unreference(&dev_priv->renderctx->base); dev_priv->renderctx = NULL; } if (dev_priv->pwrctx) { i915_gem_object_unpin(dev_priv->pwrctx); drm_gem_object_unreference(&dev_priv->pwrctx->base); dev_priv->pwrctx = NULL; } } static void ironlake_disable_rc6(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (I915_READ(PWRCTXA)) { /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */ I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT); wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON), 50); I915_WRITE(PWRCTXA, 0); POSTING_READ(PWRCTXA); I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT); POSTING_READ(RSTDBYCTL); } } static int ironlake_setup_rc6(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->renderctx == NULL) dev_priv->renderctx = intel_alloc_context_page(dev); if (!dev_priv->renderctx) return -ENOMEM; if (dev_priv->pwrctx == NULL) dev_priv->pwrctx = intel_alloc_context_page(dev); if (!dev_priv->pwrctx) { ironlake_teardown_rc6(dev); return -ENOMEM; } return 0; } static void ironlake_enable_rc6(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; int ret; /* rc6 disabled by default due to repeated reports of hanging during * boot and resume. */ if (!intel_enable_rc6(dev)) return; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); ret = ironlake_setup_rc6(dev); if (ret) return; /* * GPU can automatically power down the render unit if given a page * to save state. */ ret = intel_ring_begin(ring, 6); if (ret) { ironlake_teardown_rc6(dev); return; } intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN); intel_ring_emit(ring, MI_SET_CONTEXT); intel_ring_emit(ring, dev_priv->renderctx->gtt_offset | MI_MM_SPACE_GTT | MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN | MI_RESTORE_INHIBIT); intel_ring_emit(ring, MI_SUSPEND_FLUSH); intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_FLUSH); intel_ring_advance(ring); /* * Wait for the command parser to advance past MI_SET_CONTEXT. The HW * does an implicit flush, combined with MI_FLUSH above, it should be * safe to assume that renderctx is valid */ ret = intel_wait_ring_idle(ring); if (ret) { DRM_ERROR("failed to enable ironlake power power savings\n"); ironlake_teardown_rc6(dev); return; } I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN); I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT); } static unsigned long intel_pxfreq(u32 vidfreq) { unsigned long freq; int div = (vidfreq & 0x3f0000) >> 16; int post = (vidfreq & 0x3000) >> 12; int pre = (vidfreq & 0x7); if (!pre) return 0; freq = ((div * 133333) / ((1<last_time1; /* Prevent division-by-zero if we are asking too fast. * Also, we don't get interesting results if we are polling * faster than once in 10ms, so just return the saved value * in such cases. */ if (diff1 <= 10) return dev_priv->chipset_power; count1 = I915_READ(DMIEC); count2 = I915_READ(DDREC); count3 = I915_READ(CSIEC); total_count = count1 + count2 + count3; /* FIXME: handle per-counter overflow */ if (total_count < dev_priv->last_count1) { diff = ~0UL - dev_priv->last_count1; diff += total_count; } else { diff = total_count - dev_priv->last_count1; } for (i = 0; i < ARRAY_SIZE(cparams); i++) { if (cparams[i].i == dev_priv->c_m && cparams[i].t == dev_priv->r_t) { m = cparams[i].m; c = cparams[i].c; break; } } diff = div_u64(diff, diff1); ret = ((m * diff) + c); ret = div_u64(ret, 10); dev_priv->last_count1 = total_count; dev_priv->last_time1 = now; dev_priv->chipset_power = ret; return ret; } unsigned long i915_mch_val(struct drm_i915_private *dev_priv) { unsigned long m, x, b; u32 tsfs; tsfs = I915_READ(TSFS); m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT); x = I915_READ8(TR1); b = tsfs & TSFS_INTR_MASK; return ((m * x) / 127) - b; } static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid) { static const struct v_table { u16 vd; /* in .1 mil */ u16 vm; /* in .1 mil */ } v_table[] = { { 0, 0, }, { 375, 0, }, { 500, 0, }, { 625, 0, }, { 750, 0, }, { 875, 0, }, { 1000, 0, }, { 1125, 0, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4125, 3000, }, { 4250, 3125, }, { 4375, 3250, }, { 4500, 3375, }, { 4625, 3500, }, { 4750, 3625, }, { 4875, 3750, }, { 5000, 3875, }, { 5125, 4000, }, { 5250, 4125, }, { 5375, 4250, }, { 5500, 4375, }, { 5625, 4500, }, { 5750, 4625, }, { 5875, 4750, }, { 6000, 4875, }, { 6125, 5000, }, { 6250, 5125, }, { 6375, 5250, }, { 6500, 5375, }, { 6625, 5500, }, { 6750, 5625, }, { 6875, 5750, }, { 7000, 5875, }, { 7125, 6000, }, { 7250, 6125, }, { 7375, 6250, }, { 7500, 6375, }, { 7625, 6500, }, { 7750, 6625, }, { 7875, 6750, }, { 8000, 6875, }, { 8125, 7000, }, { 8250, 7125, }, { 8375, 7250, }, { 8500, 7375, }, { 8625, 7500, }, { 8750, 7625, }, { 8875, 7750, }, { 9000, 7875, }, { 9125, 8000, }, { 9250, 8125, }, { 9375, 8250, }, { 9500, 8375, }, { 9625, 8500, }, { 9750, 8625, }, { 9875, 8750, }, { 10000, 8875, }, { 10125, 9000, }, { 10250, 9125, }, { 10375, 9250, }, { 10500, 9375, }, { 10625, 9500, }, { 10750, 9625, }, { 10875, 9750, }, { 11000, 9875, }, { 11125, 10000, }, { 11250, 10125, }, { 11375, 10250, }, { 11500, 10375, }, { 11625, 10500, }, { 11750, 10625, }, { 11875, 10750, }, { 12000, 10875, }, { 12125, 11000, }, { 12250, 11125, }, { 12375, 11250, }, { 12500, 11375, }, { 12625, 11500, }, { 12750, 11625, }, { 12875, 11750, }, { 13000, 11875, }, { 13125, 12000, }, { 13250, 12125, }, { 13375, 12250, }, { 13500, 12375, }, { 13625, 12500, }, { 13750, 12625, }, { 13875, 12750, }, { 14000, 12875, }, { 14125, 13000, }, { 14250, 13125, }, { 14375, 13250, }, { 14500, 13375, }, { 14625, 13500, }, { 14750, 13625, }, { 14875, 13750, }, { 15000, 13875, }, { 15125, 14000, }, { 15250, 14125, }, { 15375, 14250, }, { 15500, 14375, }, { 15625, 14500, }, { 15750, 14625, }, { 15875, 14750, }, { 16000, 14875, }, { 16125, 15000, }, }; if (dev_priv->info->is_mobile) return v_table[pxvid].vm; else return v_table[pxvid].vd; } void i915_update_gfx_val(struct drm_i915_private *dev_priv) { struct timespec now, diff1; u64 diff; unsigned long diffms; u32 count; if (dev_priv->info->gen != 5) return; getrawmonotonic(&now); diff1 = timespec_sub(now, dev_priv->last_time2); /* Don't divide by 0 */ diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000; if (!diffms) return; count = I915_READ(GFXEC); if (count < dev_priv->last_count2) { diff = ~0UL - dev_priv->last_count2; diff += count; } else { diff = count - dev_priv->last_count2; } dev_priv->last_count2 = count; dev_priv->last_time2 = now; /* More magic constants... */ diff = diff * 1181; diff = div_u64(diff, diffms * 10); dev_priv->gfx_power = diff; } unsigned long i915_gfx_val(struct drm_i915_private *dev_priv) { unsigned long t, corr, state1, corr2, state2; u32 pxvid, ext_v; pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->cur_delay * 4)); pxvid = (pxvid >> 24) & 0x7f; ext_v = pvid_to_extvid(dev_priv, pxvid); state1 = ext_v; t = i915_mch_val(dev_priv); /* Revel in the empirically derived constants */ /* Correction factor in 1/100000 units */ if (t > 80) corr = ((t * 2349) + 135940); else if (t >= 50) corr = ((t * 964) + 29317); else /* < 50 */ corr = ((t * 301) + 1004); corr = corr * ((150142 * state1) / 10000 - 78642); corr /= 100000; corr2 = (corr * dev_priv->corr); state2 = (corr2 * state1) / 10000; state2 /= 100; /* convert to mW */ i915_update_gfx_val(dev_priv); return dev_priv->gfx_power + state2; } /* Global for IPS driver to get at the current i915 device */ static struct drm_i915_private *i915_mch_dev; /* * Lock protecting IPS related data structures * - i915_mch_dev * - dev_priv->max_delay * - dev_priv->min_delay * - dev_priv->fmax * - dev_priv->gpu_busy */ static DEFINE_SPINLOCK(mchdev_lock); /** * i915_read_mch_val - return value for IPS use * * Calculate and return a value for the IPS driver to use when deciding whether * we have thermal and power headroom to increase CPU or GPU power budget. */ unsigned long i915_read_mch_val(void) { struct drm_i915_private *dev_priv; unsigned long chipset_val, graphics_val, ret = 0; spin_lock(&mchdev_lock); if (!i915_mch_dev) goto out_unlock; dev_priv = i915_mch_dev; chipset_val = i915_chipset_val(dev_priv); graphics_val = i915_gfx_val(dev_priv); ret = chipset_val + graphics_val; out_unlock: spin_unlock(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_read_mch_val); /** * i915_gpu_raise - raise GPU frequency limit * * Raise the limit; IPS indicates we have thermal headroom. */ bool i915_gpu_raise(void) { struct drm_i915_private *dev_priv; bool ret = true; spin_lock(&mchdev_lock); if (!i915_mch_dev) { ret = false; goto out_unlock; } dev_priv = i915_mch_dev; if (dev_priv->max_delay > dev_priv->fmax) dev_priv->max_delay--; out_unlock: spin_unlock(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_raise); /** * i915_gpu_lower - lower GPU frequency limit * * IPS indicates we're close to a thermal limit, so throttle back the GPU * frequency maximum. */ bool i915_gpu_lower(void) { struct drm_i915_private *dev_priv; bool ret = true; spin_lock(&mchdev_lock); if (!i915_mch_dev) { ret = false; goto out_unlock; } dev_priv = i915_mch_dev; if (dev_priv->max_delay < dev_priv->min_delay) dev_priv->max_delay++; out_unlock: spin_unlock(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_lower); /** * i915_gpu_busy - indicate GPU business to IPS * * Tell the IPS driver whether or not the GPU is busy. */ bool i915_gpu_busy(void) { struct drm_i915_private *dev_priv; bool ret = false; spin_lock(&mchdev_lock); if (!i915_mch_dev) goto out_unlock; dev_priv = i915_mch_dev; ret = dev_priv->busy; out_unlock: spin_unlock(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_busy); /** * i915_gpu_turbo_disable - disable graphics turbo * * Disable graphics turbo by resetting the max frequency and setting the * current frequency to the default. */ bool i915_gpu_turbo_disable(void) { struct drm_i915_private *dev_priv; bool ret = true; spin_lock(&mchdev_lock); if (!i915_mch_dev) { ret = false; goto out_unlock; } dev_priv = i915_mch_dev; dev_priv->max_delay = dev_priv->fstart; if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart)) ret = false; out_unlock: spin_unlock(&mchdev_lock); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable); /** * Tells the intel_ips driver that the i915 driver is now loaded, if * IPS got loaded first. * * This awkward dance is so that neither module has to depend on the * other in order for IPS to do the appropriate communication of * GPU turbo limits to i915. */ static void ips_ping_for_i915_load(void) { void (*link)(void); link = symbol_get(ips_link_to_i915_driver); if (link) { link(); symbol_put(ips_link_to_i915_driver); } } void intel_gpu_ips_init(struct drm_i915_private *dev_priv) { spin_lock(&mchdev_lock); i915_mch_dev = dev_priv; dev_priv->mchdev_lock = &mchdev_lock; spin_unlock(&mchdev_lock); ips_ping_for_i915_load(); } void intel_gpu_ips_teardown(void) { spin_lock(&mchdev_lock); i915_mch_dev = NULL; spin_unlock(&mchdev_lock); } static void intel_init_emon(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 lcfuse; u8 pxw[16]; int i; /* Disable to program */ I915_WRITE(ECR, 0); POSTING_READ(ECR); /* Program energy weights for various events */ I915_WRITE(SDEW, 0x15040d00); I915_WRITE(CSIEW0, 0x007f0000); I915_WRITE(CSIEW1, 0x1e220004); I915_WRITE(CSIEW2, 0x04000004); for (i = 0; i < 5; i++) I915_WRITE(PEW + (i * 4), 0); for (i = 0; i < 3; i++) I915_WRITE(DEW + (i * 4), 0); /* Program P-state weights to account for frequency power adjustment */ for (i = 0; i < 16; i++) { u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4)); unsigned long freq = intel_pxfreq(pxvidfreq); unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; unsigned long val; val = vid * vid; val *= (freq / 1000); val *= 255; val /= (127*127*900); if (val > 0xff) DRM_ERROR("bad pxval: %ld\n", val); pxw[i] = val; } /* Render standby states get 0 weight */ pxw[14] = 0; pxw[15] = 0; for (i = 0; i < 4; i++) { u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) | (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]); I915_WRITE(PXW + (i * 4), val); } /* Adjust magic regs to magic values (more experimental results) */ I915_WRITE(OGW0, 0); I915_WRITE(OGW1, 0); I915_WRITE(EG0, 0x00007f00); I915_WRITE(EG1, 0x0000000e); I915_WRITE(EG2, 0x000e0000); I915_WRITE(EG3, 0x68000300); I915_WRITE(EG4, 0x42000000); I915_WRITE(EG5, 0x00140031); I915_WRITE(EG6, 0); I915_WRITE(EG7, 0); for (i = 0; i < 8; i++) I915_WRITE(PXWL + (i * 4), 0); /* Enable PMON + select events */ I915_WRITE(ECR, 0x80000019); lcfuse = I915_READ(LCFUSE02); dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK); } void intel_disable_gt_powersave(struct drm_device *dev) { if (IS_IRONLAKE_M(dev)) { ironlake_disable_drps(dev); ironlake_disable_rc6(dev); } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) { gen6_disable_rps(dev); } } void intel_enable_gt_powersave(struct drm_device *dev) { if (IS_IRONLAKE_M(dev)) { ironlake_enable_drps(dev); ironlake_enable_rc6(dev); intel_init_emon(dev); } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) { gen6_enable_rps(dev); gen6_update_ring_freq(dev); } } static void ironlake_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE; /* Required for FBC */ dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE | DPFCRUNIT_CLOCK_GATE_DISABLE | DPFDUNIT_CLOCK_GATE_DISABLE; /* Required for CxSR */ dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE; I915_WRITE(PCH_3DCGDIS0, MARIUNIT_CLOCK_GATE_DISABLE | SVSMUNIT_CLOCK_GATE_DISABLE); I915_WRITE(PCH_3DCGDIS1, VFMUNIT_CLOCK_GATE_DISABLE); I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate); /* * According to the spec the following bits should be set in * order to enable memory self-refresh * The bit 22/21 of 0x42004 * The bit 5 of 0x42020 * The bit 15 of 0x45000 */ I915_WRITE(ILK_DISPLAY_CHICKEN2, (I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE | ILK_VSDPFD_FULL)); I915_WRITE(ILK_DSPCLK_GATE, (I915_READ(ILK_DSPCLK_GATE) | ILK_DPARB_CLK_GATE)); I915_WRITE(DISP_ARB_CTL, (I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS)); I915_WRITE(WM3_LP_ILK, 0); I915_WRITE(WM2_LP_ILK, 0); I915_WRITE(WM1_LP_ILK, 0); /* * Based on the document from hardware guys the following bits * should be set unconditionally in order to enable FBC. * The bit 22 of 0x42000 * The bit 22 of 0x42004 * The bit 7,8,9 of 0x42020. */ if (IS_IRONLAKE_M(dev)) { I915_WRITE(ILK_DISPLAY_CHICKEN1, I915_READ(ILK_DISPLAY_CHICKEN1) | ILK_FBCQ_DIS); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE); I915_WRITE(ILK_DSPCLK_GATE, I915_READ(ILK_DSPCLK_GATE) | ILK_DPFC_DIS1 | ILK_DPFC_DIS2 | ILK_CLK_FBC); } I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_ELPIN_409_SELECT); I915_WRITE(_3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED << 16 | _3D_CHICKEN2_WM_READ_PIPELINED); } static void gen6_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE; I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_ELPIN_409_SELECT); I915_WRITE(WM3_LP_ILK, 0); I915_WRITE(WM2_LP_ILK, 0); I915_WRITE(WM1_LP_ILK, 0); I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB)); I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | GEN6_BLBUNIT_CLOCK_GATE_DISABLE | GEN6_CSUNIT_CLOCK_GATE_DISABLE); /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock * gating disable must be set. Failure to set it results in * flickering pixels due to Z write ordering failures after * some amount of runtime in the Mesa "fire" demo, and Unigine * Sanctuary and Tropics, and apparently anything else with * alpha test or pixel discard. * * According to the spec, bit 11 (RCCUNIT) must also be set, * but we didn't debug actual testcases to find it out. * * Also apply WaDisableVDSUnitClockGating and * WaDisableRCPBUnitClockGating. */ I915_WRITE(GEN6_UCGCTL2, GEN7_VDSUNIT_CLOCK_GATE_DISABLE | GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | GEN6_RCCUNIT_CLOCK_GATE_DISABLE); /* Bspec says we need to always set all mask bits. */ I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) | _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL); /* * According to the spec the following bits should be * set in order to enable memory self-refresh and fbc: * The bit21 and bit22 of 0x42000 * The bit21 and bit22 of 0x42004 * The bit5 and bit7 of 0x42020 * The bit14 of 0x70180 * The bit14 of 0x71180 */ I915_WRITE(ILK_DISPLAY_CHICKEN1, I915_READ(ILK_DISPLAY_CHICKEN1) | ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE | ILK_VSDPFD_FULL); I915_WRITE(ILK_DSPCLK_GATE, I915_READ(ILK_DSPCLK_GATE) | ILK_DPARB_CLK_GATE | ILK_DPFD_CLK_GATE); I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) | GEN6_MBCTL_ENABLE_BOOT_FETCH); for_each_pipe(pipe) { I915_WRITE(DSPCNTR(pipe), I915_READ(DSPCNTR(pipe)) | DISPPLANE_TRICKLE_FEED_DISABLE); intel_flush_display_plane(dev_priv, pipe); } } static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv) { uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE); reg &= ~GEN7_FF_SCHED_MASK; reg |= GEN7_FF_TS_SCHED_HW; reg |= GEN7_FF_VS_SCHED_HW; reg |= GEN7_FF_DS_SCHED_HW; I915_WRITE(GEN7_FF_THREAD_MODE, reg); } static void haswell_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE; I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate); I915_WRITE(WM3_LP_ILK, 0); I915_WRITE(WM2_LP_ILK, 0); I915_WRITE(WM1_LP_ILK, 0); /* According to the spec, bit 13 (RCZUNIT) must be set on IVB. * This implements the WaDisableRCZUnitClockGating workaround. */ I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE); I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE); I915_WRITE(IVB_CHICKEN3, CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | CHICKEN3_DGMG_DONE_FIX_DISABLE); /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */ I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1, GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */ I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); /* This is required by WaCatErrorRejectionIssue */ I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); for_each_pipe(pipe) { I915_WRITE(DSPCNTR(pipe), I915_READ(DSPCNTR(pipe)) | DISPPLANE_TRICKLE_FEED_DISABLE); intel_flush_display_plane(dev_priv, pipe); } gen7_setup_fixed_func_scheduler(dev_priv); /* WaDisable4x2SubspanOptimization */ I915_WRITE(CACHE_MODE_1, _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); /* XXX: This is a workaround for early silicon revisions and should be * removed later. */ I915_WRITE(WM_DBG, I915_READ(WM_DBG) | WM_DBG_DISALLOW_MULTIPLE_LP | WM_DBG_DISALLOW_SPRITE | WM_DBG_DISALLOW_MAXFIFO); } static void ivybridge_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE; uint32_t snpcr; I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate); I915_WRITE(WM3_LP_ILK, 0); I915_WRITE(WM2_LP_ILK, 0); I915_WRITE(WM1_LP_ILK, 0); I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE); I915_WRITE(IVB_CHICKEN3, CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | CHICKEN3_DGMG_DONE_FIX_DISABLE); /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */ I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1, GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */ I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock * gating disable must be set. Failure to set it results in * flickering pixels due to Z write ordering failures after * some amount of runtime in the Mesa "fire" demo, and Unigine * Sanctuary and Tropics, and apparently anything else with * alpha test or pixel discard. * * According to the spec, bit 11 (RCCUNIT) must also be set, * but we didn't debug actual testcases to find it out. * * According to the spec, bit 13 (RCZUNIT) must be set on IVB. * This implements the WaDisableRCZUnitClockGating workaround. */ I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE | GEN6_RCCUNIT_CLOCK_GATE_DISABLE); /* This is required by WaCatErrorRejectionIssue */ I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); for_each_pipe(pipe) { I915_WRITE(DSPCNTR(pipe), I915_READ(DSPCNTR(pipe)) | DISPPLANE_TRICKLE_FEED_DISABLE); intel_flush_display_plane(dev_priv, pipe); } I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) | GEN6_MBCTL_ENABLE_BOOT_FETCH); gen7_setup_fixed_func_scheduler(dev_priv); /* WaDisable4x2SubspanOptimization */ I915_WRITE(CACHE_MODE_1, _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); snpcr &= ~GEN6_MBC_SNPCR_MASK; snpcr |= GEN6_MBC_SNPCR_MED; I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); } static void valleyview_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE; I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate); I915_WRITE(WM3_LP_ILK, 0); I915_WRITE(WM2_LP_ILK, 0); I915_WRITE(WM1_LP_ILK, 0); I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE); I915_WRITE(IVB_CHICKEN3, CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | CHICKEN3_DGMG_DONE_FIX_DISABLE); /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */ I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1, GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */ I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); /* This is required by WaCatErrorRejectionIssue */ I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) | GEN6_MBCTL_ENABLE_BOOT_FETCH); /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock * gating disable must be set. Failure to set it results in * flickering pixels due to Z write ordering failures after * some amount of runtime in the Mesa "fire" demo, and Unigine * Sanctuary and Tropics, and apparently anything else with * alpha test or pixel discard. * * According to the spec, bit 11 (RCCUNIT) must also be set, * but we didn't debug actual testcases to find it out. * * According to the spec, bit 13 (RCZUNIT) must be set on IVB. * This implements the WaDisableRCZUnitClockGating workaround. * * Also apply WaDisableVDSUnitClockGating and * WaDisableRCPBUnitClockGating. */ I915_WRITE(GEN6_UCGCTL2, GEN7_VDSUNIT_CLOCK_GATE_DISABLE | GEN7_TDLUNIT_CLOCK_GATE_DISABLE | GEN6_RCZUNIT_CLOCK_GATE_DISABLE | GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | GEN6_RCCUNIT_CLOCK_GATE_DISABLE); I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE); for_each_pipe(pipe) { I915_WRITE(DSPCNTR(pipe), I915_READ(DSPCNTR(pipe)) | DISPPLANE_TRICKLE_FEED_DISABLE); intel_flush_display_plane(dev_priv, pipe); } I915_WRITE(CACHE_MODE_1, _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE)); /* * On ValleyView, the GUnit needs to signal the GT * when flip and other events complete. So enable * all the GUnit->GT interrupts here */ I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN | PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN | SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN | PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN | PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN | SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN | PLANEA_FLIPDONE_INT_EN); } static void g4x_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dspclk_gate; I915_WRITE(RENCLK_GATE_D1, 0); I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | GS_UNIT_CLOCK_GATE_DISABLE | CL_UNIT_CLOCK_GATE_DISABLE); I915_WRITE(RAMCLK_GATE_D, 0); dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | OVRUNIT_CLOCK_GATE_DISABLE | OVCUNIT_CLOCK_GATE_DISABLE; if (IS_GM45(dev)) dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; I915_WRITE(DSPCLK_GATE_D, dspclk_gate); } static void crestline_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); I915_WRITE(RENCLK_GATE_D2, 0); I915_WRITE(DSPCLK_GATE_D, 0); I915_WRITE(RAMCLK_GATE_D, 0); I915_WRITE16(DEUC, 0); } static void broadwater_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | I965_RCC_CLOCK_GATE_DISABLE | I965_RCPB_CLOCK_GATE_DISABLE | I965_ISC_CLOCK_GATE_DISABLE | I965_FBC_CLOCK_GATE_DISABLE); I915_WRITE(RENCLK_GATE_D2, 0); } static void gen3_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 dstate = I915_READ(D_STATE); dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | DSTATE_DOT_CLOCK_GATING; I915_WRITE(D_STATE, dstate); if (IS_PINEVIEW(dev)) I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY)); } static void i85x_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); } static void i830_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE); } static void ibx_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* * On Ibex Peak and Cougar Point, we need to disable clock * gating for the panel power sequencer or it will fail to * start up when no ports are active. */ I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); } static void cpt_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int pipe; /* * On Ibex Peak and Cougar Point, we need to disable clock * gating for the panel power sequencer or it will fail to * start up when no ports are active. */ I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) | DPLS_EDP_PPS_FIX_DIS); /* Without this, mode sets may fail silently on FDI */ for_each_pipe(pipe) I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS); } void intel_init_clock_gating(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->display.init_clock_gating(dev); if (dev_priv->display.init_pch_clock_gating) dev_priv->display.init_pch_clock_gating(dev); } static void gen6_sanitize_pm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 limits, delay, old; gen6_gt_force_wake_get(dev_priv); old = limits = I915_READ(GEN6_RP_INTERRUPT_LIMITS); /* Make sure we continue to get interrupts * until we hit the minimum or maximum frequencies. */ limits &= ~(0x3f << 16 | 0x3f << 24); delay = dev_priv->cur_delay; if (delay < dev_priv->max_delay) limits |= (dev_priv->max_delay & 0x3f) << 24; if (delay > dev_priv->min_delay) limits |= (dev_priv->min_delay & 0x3f) << 16; if (old != limits) { /* Note that the known failure case is to read back 0. */ DRM_DEBUG_DRIVER("Power management discrepancy: GEN6_RP_INTERRUPT_LIMITS " "expected %08x, was %08x\n", limits, old); I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits); } gen6_gt_force_wake_put(dev_priv); } void intel_sanitize_pm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->display.sanitize_pm) dev_priv->display.sanitize_pm(dev); } /* Starting with Haswell, we have different power wells for * different parts of the GPU. This attempts to enable them all. */ void intel_init_power_wells(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long power_wells[] = { HSW_PWR_WELL_CTL1, HSW_PWR_WELL_CTL2, HSW_PWR_WELL_CTL4 }; int i; if (!IS_HASWELL(dev)) return; mutex_lock(&dev->struct_mutex); for (i = 0; i < ARRAY_SIZE(power_wells); i++) { int well = I915_READ(power_wells[i]); if ((well & HSW_PWR_WELL_STATE) == 0) { I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE); if (wait_for(I915_READ(power_wells[i] & HSW_PWR_WELL_STATE), 20)) DRM_ERROR("Error enabling power well %lx\n", power_wells[i]); } } mutex_unlock(&dev->struct_mutex); } /* Set up chip specific power management-related functions */ void intel_init_pm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (I915_HAS_FBC(dev)) { if (HAS_PCH_SPLIT(dev)) { dev_priv->display.fbc_enabled = ironlake_fbc_enabled; dev_priv->display.enable_fbc = ironlake_enable_fbc; dev_priv->display.disable_fbc = ironlake_disable_fbc; } else if (IS_GM45(dev)) { dev_priv->display.fbc_enabled = g4x_fbc_enabled; dev_priv->display.enable_fbc = g4x_enable_fbc; dev_priv->display.disable_fbc = g4x_disable_fbc; } else if (IS_CRESTLINE(dev)) { dev_priv->display.fbc_enabled = i8xx_fbc_enabled; dev_priv->display.enable_fbc = i8xx_enable_fbc; dev_priv->display.disable_fbc = i8xx_disable_fbc; } /* 855GM needs testing */ } /* For cxsr */ if (IS_PINEVIEW(dev)) i915_pineview_get_mem_freq(dev); else if (IS_GEN5(dev)) i915_ironlake_get_mem_freq(dev); /* For FIFO watermark updates */ if (HAS_PCH_SPLIT(dev)) { if (HAS_PCH_IBX(dev)) dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating; else if (HAS_PCH_CPT(dev)) dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating; if (IS_GEN5(dev)) { if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK) dev_priv->display.update_wm = ironlake_update_wm; else { DRM_DEBUG_KMS("Failed to get proper latency. " "Disable CxSR\n"); dev_priv->display.update_wm = NULL; } dev_priv->display.init_clock_gating = ironlake_init_clock_gating; } else if (IS_GEN6(dev)) { if (SNB_READ_WM0_LATENCY()) { dev_priv->display.update_wm = sandybridge_update_wm; dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm; } else { DRM_DEBUG_KMS("Failed to read display plane latency. " "Disable CxSR\n"); dev_priv->display.update_wm = NULL; } dev_priv->display.init_clock_gating = gen6_init_clock_gating; dev_priv->display.sanitize_pm = gen6_sanitize_pm; } else if (IS_IVYBRIDGE(dev)) { /* FIXME: detect B0+ stepping and use auto training */ if (SNB_READ_WM0_LATENCY()) { dev_priv->display.update_wm = sandybridge_update_wm; dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm; } else { DRM_DEBUG_KMS("Failed to read display plane latency. " "Disable CxSR\n"); dev_priv->display.update_wm = NULL; } dev_priv->display.init_clock_gating = ivybridge_init_clock_gating; dev_priv->display.sanitize_pm = gen6_sanitize_pm; } else if (IS_HASWELL(dev)) { if (SNB_READ_WM0_LATENCY()) { dev_priv->display.update_wm = sandybridge_update_wm; dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm; dev_priv->display.update_linetime_wm = haswell_update_linetime_wm; } else { DRM_DEBUG_KMS("Failed to read display plane latency. " "Disable CxSR\n"); dev_priv->display.update_wm = NULL; } dev_priv->display.init_clock_gating = haswell_init_clock_gating; dev_priv->display.sanitize_pm = gen6_sanitize_pm; } else dev_priv->display.update_wm = NULL; } else if (IS_VALLEYVIEW(dev)) { dev_priv->display.update_wm = valleyview_update_wm; dev_priv->display.init_clock_gating = valleyview_init_clock_gating; } else if (IS_PINEVIEW(dev)) { if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, dev_priv->fsb_freq, dev_priv->mem_freq)) { DRM_INFO("failed to find known CxSR latency " "(found ddr%s fsb freq %d, mem freq %d), " "disabling CxSR\n", (dev_priv->is_ddr3 == 1) ? "3" : "2", dev_priv->fsb_freq, dev_priv->mem_freq); /* Disable CxSR and never update its watermark again */ pineview_disable_cxsr(dev); dev_priv->display.update_wm = NULL; } else dev_priv->display.update_wm = pineview_update_wm; dev_priv->display.init_clock_gating = gen3_init_clock_gating; } else if (IS_G4X(dev)) { dev_priv->display.update_wm = g4x_update_wm; dev_priv->display.init_clock_gating = g4x_init_clock_gating; } else if (IS_GEN4(dev)) { dev_priv->display.update_wm = i965_update_wm; if (IS_CRESTLINE(dev)) dev_priv->display.init_clock_gating = crestline_init_clock_gating; else if (IS_BROADWATER(dev)) dev_priv->display.init_clock_gating = broadwater_init_clock_gating; } else if (IS_GEN3(dev)) { dev_priv->display.update_wm = i9xx_update_wm; dev_priv->display.get_fifo_size = i9xx_get_fifo_size; dev_priv->display.init_clock_gating = gen3_init_clock_gating; } else if (IS_I865G(dev)) { dev_priv->display.update_wm = i830_update_wm; dev_priv->display.init_clock_gating = i85x_init_clock_gating; dev_priv->display.get_fifo_size = i830_get_fifo_size; } else if (IS_I85X(dev)) { dev_priv->display.update_wm = i9xx_update_wm; dev_priv->display.get_fifo_size = i85x_get_fifo_size; dev_priv->display.init_clock_gating = i85x_init_clock_gating; } else { dev_priv->display.update_wm = i830_update_wm; dev_priv->display.init_clock_gating = i830_init_clock_gating; if (IS_845G(dev)) dev_priv->display.get_fifo_size = i845_get_fifo_size; else dev_priv->display.get_fifo_size = i830_get_fifo_size; } /* We attempt to init the necessary power wells early in the initialization * time, so the subsystems that expect power to be enabled can work. */ intel_init_power_wells(dev); } static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv) { u32 gt_thread_status_mask; if (IS_HASWELL(dev_priv->dev)) gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW; else gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK; /* w/a for a sporadic read returning 0 by waiting for the GT * thread to wake up. */ if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500)) DRM_ERROR("GT thread status wait timed out\n"); } static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv) { u32 forcewake_ack; if (IS_HASWELL(dev_priv->dev)) forcewake_ack = FORCEWAKE_ACK_HSW; else forcewake_ack = FORCEWAKE_ACK; if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1) == 0, 500)) DRM_ERROR("Force wake wait timed out\n"); I915_WRITE_NOTRACE(FORCEWAKE, 1); if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1), 500)) DRM_ERROR("Force wake wait timed out\n"); __gen6_gt_wait_for_thread_c0(dev_priv); } static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv) { u32 forcewake_ack; if (IS_HASWELL(dev_priv->dev)) forcewake_ack = FORCEWAKE_ACK_HSW; else forcewake_ack = FORCEWAKE_MT_ACK; if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1) == 0, 500)) DRM_ERROR("Force wake wait timed out\n"); I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(1)); if (wait_for_atomic_us((I915_READ_NOTRACE(forcewake_ack) & 1), 500)) DRM_ERROR("Force wake wait timed out\n"); __gen6_gt_wait_for_thread_c0(dev_priv); } /* * Generally this is called implicitly by the register read function. However, * if some sequence requires the GT to not power down then this function should * be called at the beginning of the sequence followed by a call to * gen6_gt_force_wake_put() at the end of the sequence. */ void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv) { unsigned long irqflags; spin_lock_irqsave(&dev_priv->gt_lock, irqflags); if (dev_priv->forcewake_count++ == 0) dev_priv->gt.force_wake_get(dev_priv); spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags); } void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv) { u32 gtfifodbg; gtfifodbg = I915_READ_NOTRACE(GTFIFODBG); if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK, "MMIO read or write has been dropped %x\n", gtfifodbg)) I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK); } static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv) { I915_WRITE_NOTRACE(FORCEWAKE, 0); /* The below doubles as a POSTING_READ */ gen6_gt_check_fifodbg(dev_priv); } static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv) { I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(1)); /* The below doubles as a POSTING_READ */ gen6_gt_check_fifodbg(dev_priv); } /* * see gen6_gt_force_wake_get() */ void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv) { unsigned long irqflags; spin_lock_irqsave(&dev_priv->gt_lock, irqflags); if (--dev_priv->forcewake_count == 0) dev_priv->gt.force_wake_put(dev_priv); spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags); } int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv) { int ret = 0; if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) { int loop = 500; u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES); while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) { udelay(10); fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES); } if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES)) ++ret; dev_priv->gt_fifo_count = fifo; } dev_priv->gt_fifo_count--; return ret; } static void vlv_force_wake_get(struct drm_i915_private *dev_priv) { /* Already awake? */ if ((I915_READ(0x130094) & 0xa1) == 0xa1) return; I915_WRITE_NOTRACE(FORCEWAKE_VLV, 0xffffffff); POSTING_READ(FORCEWAKE_VLV); if (wait_for_atomic_us((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1), 500)) DRM_ERROR("Force wake wait timed out\n"); __gen6_gt_wait_for_thread_c0(dev_priv); } static void vlv_force_wake_put(struct drm_i915_private *dev_priv) { I915_WRITE_NOTRACE(FORCEWAKE_VLV, 0xffff0000); /* FIXME: confirm VLV behavior with Punit folks */ POSTING_READ(FORCEWAKE_VLV); } void intel_gt_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; spin_lock_init(&dev_priv->gt_lock); if (IS_VALLEYVIEW(dev)) { dev_priv->gt.force_wake_get = vlv_force_wake_get; dev_priv->gt.force_wake_put = vlv_force_wake_put; } else if (INTEL_INFO(dev)->gen >= 6) { dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get; dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put; /* IVB configs may use multi-threaded forcewake */ if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) { u32 ecobus; /* A small trick here - if the bios hasn't configured * MT forcewake, and if the device is in RC6, then * force_wake_mt_get will not wake the device and the * ECOBUS read will return zero. Which will be * (correctly) interpreted by the test below as MT * forcewake being disabled. */ mutex_lock(&dev->struct_mutex); __gen6_gt_force_wake_mt_get(dev_priv); ecobus = I915_READ_NOTRACE(ECOBUS); __gen6_gt_force_wake_mt_put(dev_priv); mutex_unlock(&dev->struct_mutex); if (ecobus & FORCEWAKE_MT_ENABLE) { DRM_DEBUG_KMS("Using MT version of forcewake\n"); dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get; dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put; } } } }