/* * Intel e7xxx Memory Controller kernel module * (C) 2003 Linux Networx (http://lnxi.com) * This file may be distributed under the terms of the * GNU General Public License. * * See "enum e7xxx_chips" below for supported chipsets * * Written by Thayne Harbaugh * Based on work by Dan Hollis and others. * http://www.anime.net/~goemon/linux-ecc/ * * Contributors: * Eric Biederman (Linux Networx) * Tom Zimmerman (Linux Networx) * Jim Garlick (Lawrence Livermore National Labs) * Dave Peterson (Lawrence Livermore National Labs) * That One Guy (Some other place) * Wang Zhenyu (intel.com) * * $Id: edac_e7xxx.c,v 1.5.2.9 2005/10/05 00:43:44 dsp_llnl Exp $ * */ #include #include #include #include #include #include "edac_mc.h" #define E7XXX_REVISION " Ver: 2.0.0 " __DATE__ #define e7xxx_printk(level, fmt, arg...) \ edac_printk(level, "e7xxx", fmt, ##arg) #define e7xxx_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "e7xxx", fmt, ##arg) #ifndef PCI_DEVICE_ID_INTEL_7205_0 #define PCI_DEVICE_ID_INTEL_7205_0 0x255d #endif /* PCI_DEVICE_ID_INTEL_7205_0 */ #ifndef PCI_DEVICE_ID_INTEL_7205_1_ERR #define PCI_DEVICE_ID_INTEL_7205_1_ERR 0x2551 #endif /* PCI_DEVICE_ID_INTEL_7205_1_ERR */ #ifndef PCI_DEVICE_ID_INTEL_7500_0 #define PCI_DEVICE_ID_INTEL_7500_0 0x2540 #endif /* PCI_DEVICE_ID_INTEL_7500_0 */ #ifndef PCI_DEVICE_ID_INTEL_7500_1_ERR #define PCI_DEVICE_ID_INTEL_7500_1_ERR 0x2541 #endif /* PCI_DEVICE_ID_INTEL_7500_1_ERR */ #ifndef PCI_DEVICE_ID_INTEL_7501_0 #define PCI_DEVICE_ID_INTEL_7501_0 0x254c #endif /* PCI_DEVICE_ID_INTEL_7501_0 */ #ifndef PCI_DEVICE_ID_INTEL_7501_1_ERR #define PCI_DEVICE_ID_INTEL_7501_1_ERR 0x2541 #endif /* PCI_DEVICE_ID_INTEL_7501_1_ERR */ #ifndef PCI_DEVICE_ID_INTEL_7505_0 #define PCI_DEVICE_ID_INTEL_7505_0 0x2550 #endif /* PCI_DEVICE_ID_INTEL_7505_0 */ #ifndef PCI_DEVICE_ID_INTEL_7505_1_ERR #define PCI_DEVICE_ID_INTEL_7505_1_ERR 0x2551 #endif /* PCI_DEVICE_ID_INTEL_7505_1_ERR */ #define E7XXX_NR_CSROWS 8 /* number of csrows */ #define E7XXX_NR_DIMMS 8 /* FIXME - is this correct? */ /* E7XXX register addresses - device 0 function 0 */ #define E7XXX_DRB 0x60 /* DRAM row boundary register (8b) */ #define E7XXX_DRA 0x70 /* DRAM row attribute register (8b) */ /* * 31 Device width row 7 0=x8 1=x4 * 27 Device width row 6 * 23 Device width row 5 * 19 Device width row 4 * 15 Device width row 3 * 11 Device width row 2 * 7 Device width row 1 * 3 Device width row 0 */ #define E7XXX_DRC 0x7C /* DRAM controller mode reg (32b) */ /* * 22 Number channels 0=1,1=2 * 19:18 DRB Granularity 32/64MB */ #define E7XXX_TOLM 0xC4 /* DRAM top of low memory reg (16b) */ #define E7XXX_REMAPBASE 0xC6 /* DRAM remap base address reg (16b) */ #define E7XXX_REMAPLIMIT 0xC8 /* DRAM remap limit address reg (16b) */ /* E7XXX register addresses - device 0 function 1 */ #define E7XXX_DRAM_FERR 0x80 /* DRAM first error register (8b) */ #define E7XXX_DRAM_NERR 0x82 /* DRAM next error register (8b) */ #define E7XXX_DRAM_CELOG_ADD 0xA0 /* DRAM first correctable memory */ /* error address register (32b) */ /* * 31:28 Reserved * 27:6 CE address (4k block 33:12) * 5:0 Reserved */ #define E7XXX_DRAM_UELOG_ADD 0xB0 /* DRAM first uncorrectable memory */ /* error address register (32b) */ /* * 31:28 Reserved * 27:6 CE address (4k block 33:12) * 5:0 Reserved */ #define E7XXX_DRAM_CELOG_SYNDROME 0xD0 /* DRAM first correctable memory */ /* error syndrome register (16b) */ enum e7xxx_chips { E7500 = 0, E7501, E7505, E7205, }; struct e7xxx_pvt { struct pci_dev *bridge_ck; u32 tolm; u32 remapbase; u32 remaplimit; const struct e7xxx_dev_info *dev_info; }; struct e7xxx_dev_info { u16 err_dev; const char *ctl_name; }; struct e7xxx_error_info { u8 dram_ferr; u8 dram_nerr; u32 dram_celog_add; u16 dram_celog_syndrome; u32 dram_uelog_add; }; static const struct e7xxx_dev_info e7xxx_devs[] = { [E7500] = { .err_dev = PCI_DEVICE_ID_INTEL_7500_1_ERR, .ctl_name = "E7500" }, [E7501] = { .err_dev = PCI_DEVICE_ID_INTEL_7501_1_ERR, .ctl_name = "E7501" }, [E7505] = { .err_dev = PCI_DEVICE_ID_INTEL_7505_1_ERR, .ctl_name = "E7505" }, [E7205] = { .err_dev = PCI_DEVICE_ID_INTEL_7205_1_ERR, .ctl_name = "E7205" }, }; /* FIXME - is this valid for both SECDED and S4ECD4ED? */ static inline int e7xxx_find_channel(u16 syndrome) { debugf3("%s()\n", __func__); if ((syndrome & 0xff00) == 0) return 0; if ((syndrome & 0x00ff) == 0) return 1; if ((syndrome & 0xf000) == 0 || (syndrome & 0x0f00) == 0) return 0; return 1; } static unsigned long ctl_page_to_phys(struct mem_ctl_info *mci, unsigned long page) { u32 remap; struct e7xxx_pvt *pvt = (struct e7xxx_pvt *) mci->pvt_info; debugf3("%s()\n", __func__); if ((page < pvt->tolm) || ((page >= 0x100000) && (page < pvt->remapbase))) return page; remap = (page - pvt->tolm) + pvt->remapbase; if (remap < pvt->remaplimit) return remap; e7xxx_printk(KERN_ERR, "Invalid page %lx - out of range\n", page); return pvt->tolm - 1; } static void process_ce(struct mem_ctl_info *mci, struct e7xxx_error_info *info) { u32 error_1b, page; u16 syndrome; int row; int channel; debugf3("%s()\n", __func__); /* read the error address */ error_1b = info->dram_celog_add; /* FIXME - should use PAGE_SHIFT */ page = error_1b >> 6; /* convert the address to 4k page */ /* read the syndrome */ syndrome = info->dram_celog_syndrome; /* FIXME - check for -1 */ row = edac_mc_find_csrow_by_page(mci, page); /* convert syndrome to channel */ channel = e7xxx_find_channel(syndrome); edac_mc_handle_ce(mci, page, 0, syndrome, row, channel, "e7xxx CE"); } static void process_ce_no_info(struct mem_ctl_info *mci) { debugf3("%s()\n", __func__); edac_mc_handle_ce_no_info(mci, "e7xxx CE log register overflow"); } static void process_ue(struct mem_ctl_info *mci, struct e7xxx_error_info *info) { u32 error_2b, block_page; int row; debugf3("%s()\n", __func__); /* read the error address */ error_2b = info->dram_uelog_add; /* FIXME - should use PAGE_SHIFT */ block_page = error_2b >> 6; /* convert to 4k address */ row = edac_mc_find_csrow_by_page(mci, block_page); edac_mc_handle_ue(mci, block_page, 0, row, "e7xxx UE"); } static void process_ue_no_info(struct mem_ctl_info *mci) { debugf3("%s()\n", __func__); edac_mc_handle_ue_no_info(mci, "e7xxx UE log register overflow"); } static void e7xxx_get_error_info (struct mem_ctl_info *mci, struct e7xxx_error_info *info) { struct e7xxx_pvt *pvt; pvt = (struct e7xxx_pvt *) mci->pvt_info; pci_read_config_byte(pvt->bridge_ck, E7XXX_DRAM_FERR, &info->dram_ferr); pci_read_config_byte(pvt->bridge_ck, E7XXX_DRAM_NERR, &info->dram_nerr); if ((info->dram_ferr & 1) || (info->dram_nerr & 1)) { pci_read_config_dword(pvt->bridge_ck, E7XXX_DRAM_CELOG_ADD, &info->dram_celog_add); pci_read_config_word(pvt->bridge_ck, E7XXX_DRAM_CELOG_SYNDROME, &info->dram_celog_syndrome); } if ((info->dram_ferr & 2) || (info->dram_nerr & 2)) pci_read_config_dword(pvt->bridge_ck, E7XXX_DRAM_UELOG_ADD, &info->dram_uelog_add); if (info->dram_ferr & 3) pci_write_bits8(pvt->bridge_ck, E7XXX_DRAM_FERR, 0x03, 0x03); if (info->dram_nerr & 3) pci_write_bits8(pvt->bridge_ck, E7XXX_DRAM_NERR, 0x03, 0x03); } static int e7xxx_process_error_info (struct mem_ctl_info *mci, struct e7xxx_error_info *info, int handle_errors) { int error_found; error_found = 0; /* decode and report errors */ if (info->dram_ferr & 1) { /* check first error correctable */ error_found = 1; if (handle_errors) process_ce(mci, info); } if (info->dram_ferr & 2) { /* check first error uncorrectable */ error_found = 1; if (handle_errors) process_ue(mci, info); } if (info->dram_nerr & 1) { /* check next error correctable */ error_found = 1; if (handle_errors) { if (info->dram_ferr & 1) process_ce_no_info(mci); else process_ce(mci, info); } } if (info->dram_nerr & 2) { /* check next error uncorrectable */ error_found = 1; if (handle_errors) { if (info->dram_ferr & 2) process_ue_no_info(mci); else process_ue(mci, info); } } return error_found; } static void e7xxx_check(struct mem_ctl_info *mci) { struct e7xxx_error_info info; debugf3("%s()\n", __func__); e7xxx_get_error_info(mci, &info); e7xxx_process_error_info(mci, &info, 1); } /* Return 1 if dual channel mode is active. Else return 0. */ static inline int dual_channel_active(u32 drc, int dev_idx) { return (dev_idx == E7501) ? ((drc >> 22) & 0x1) : 1; } /* Return DRB granularity (0=32mb, 1=64mb). */ static inline int drb_granularity(u32 drc, int dev_idx) { /* only e7501 can be single channel */ return (dev_idx == E7501) ? ((drc >> 18) & 0x3) : 1; } static void e7xxx_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev, int dev_idx, u32 drc) { unsigned long last_cumul_size; int index; u8 value; u32 dra, cumul_size; int drc_chan, drc_drbg, drc_ddim, mem_dev; struct csrow_info *csrow; pci_read_config_dword(pdev, E7XXX_DRA, &dra); drc_chan = dual_channel_active(drc, dev_idx); drc_drbg = drb_granularity(drc, dev_idx); drc_ddim = (drc >> 20) & 0x3; last_cumul_size = 0; /* The dram row boundary (DRB) reg values are boundary address * for each DRAM row with a granularity of 32 or 64MB (single/dual * channel operation). DRB regs are cumulative; therefore DRB7 will * contain the total memory contained in all eight rows. */ for (index = 0; index < mci->nr_csrows; index++) { /* mem_dev 0=x8, 1=x4 */ mem_dev = (dra >> (index * 4 + 3)) & 0x1; csrow = &mci->csrows[index]; pci_read_config_byte(pdev, E7XXX_DRB + index, &value); /* convert a 64 or 32 MiB DRB to a page size. */ cumul_size = value << (25 + drc_drbg - PAGE_SHIFT); debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index, cumul_size); if (cumul_size == last_cumul_size) continue; /* not populated */ csrow->first_page = last_cumul_size; csrow->last_page = cumul_size - 1; csrow->nr_pages = cumul_size - last_cumul_size; last_cumul_size = cumul_size; csrow->grain = 1 << 12; /* 4KiB - resolution of CELOG */ csrow->mtype = MEM_RDDR; /* only one type supported */ csrow->dtype = mem_dev ? DEV_X4 : DEV_X8; /* * if single channel or x8 devices then SECDED * if dual channel and x4 then S4ECD4ED */ if (drc_ddim) { if (drc_chan && mem_dev) { csrow->edac_mode = EDAC_S4ECD4ED; mci->edac_cap |= EDAC_FLAG_S4ECD4ED; } else { csrow->edac_mode = EDAC_SECDED; mci->edac_cap |= EDAC_FLAG_SECDED; } } else csrow->edac_mode = EDAC_NONE; } } static int e7xxx_probe1(struct pci_dev *pdev, int dev_idx) { u16 pci_data; struct mem_ctl_info *mci = NULL; struct e7xxx_pvt *pvt = NULL; u32 drc; int drc_chan; struct e7xxx_error_info discard; debugf0("%s(): mci\n", __func__); pci_read_config_dword(pdev, E7XXX_DRC, &drc); drc_chan = dual_channel_active(drc, dev_idx); mci = edac_mc_alloc(sizeof(*pvt), E7XXX_NR_CSROWS, drc_chan + 1); if (mci == NULL) return -ENOMEM; debugf3("%s(): init mci\n", __func__); mci->mtype_cap = MEM_FLAG_RDDR; mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED | EDAC_FLAG_S4ECD4ED; /* FIXME - what if different memory types are in different csrows? */ mci->mod_name = EDAC_MOD_STR; mci->mod_ver = E7XXX_REVISION; mci->dev = &pdev->dev; debugf3("%s(): init pvt\n", __func__); pvt = (struct e7xxx_pvt *) mci->pvt_info; pvt->dev_info = &e7xxx_devs[dev_idx]; pvt->bridge_ck = pci_get_device(PCI_VENDOR_ID_INTEL, pvt->dev_info->err_dev, pvt->bridge_ck); if (!pvt->bridge_ck) { e7xxx_printk(KERN_ERR, "error reporting device not found:" "vendor %x device 0x%x (broken BIOS?)\n", PCI_VENDOR_ID_INTEL, e7xxx_devs[dev_idx].err_dev); goto fail0; } debugf3("%s(): more mci init\n", __func__); mci->ctl_name = pvt->dev_info->ctl_name; mci->edac_check = e7xxx_check; mci->ctl_page_to_phys = ctl_page_to_phys; e7xxx_init_csrows(mci, pdev, dev_idx, drc); mci->edac_cap |= EDAC_FLAG_NONE; debugf3("%s(): tolm, remapbase, remaplimit\n", __func__); /* load the top of low memory, remap base, and remap limit vars */ pci_read_config_word(pdev, E7XXX_TOLM, &pci_data); pvt->tolm = ((u32) pci_data) << 4; pci_read_config_word(pdev, E7XXX_REMAPBASE, &pci_data); pvt->remapbase = ((u32) pci_data) << 14; pci_read_config_word(pdev, E7XXX_REMAPLIMIT, &pci_data); pvt->remaplimit = ((u32) pci_data) << 14; e7xxx_printk(KERN_INFO, "tolm = %x, remapbase = %x, remaplimit = %x\n", pvt->tolm, pvt->remapbase, pvt->remaplimit); /* clear any pending errors, or initial state bits */ e7xxx_get_error_info(mci, &discard); /* Here we assume that we will never see multiple instances of this * type of memory controller. The ID is therefore hardcoded to 0. */ if (edac_mc_add_mc(mci,0)) { debugf3("%s(): failed edac_mc_add_mc()\n", __func__); goto fail1; } /* get this far and it's successful */ debugf3("%s(): success\n", __func__); return 0; fail1: pci_dev_put(pvt->bridge_ck); fail0: edac_mc_free(mci); return -ENODEV; } /* returns count (>= 0), or negative on error */ static int __devinit e7xxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { debugf0("%s()\n", __func__); /* wake up and enable device */ return pci_enable_device(pdev) ? -EIO : e7xxx_probe1(pdev, ent->driver_data); } static void __devexit e7xxx_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; struct e7xxx_pvt *pvt; debugf0("%s()\n", __func__); if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) return; pvt = (struct e7xxx_pvt *) mci->pvt_info; pci_dev_put(pvt->bridge_ck); edac_mc_free(mci); } static const struct pci_device_id e7xxx_pci_tbl[] __devinitdata = { { PCI_VEND_DEV(INTEL, 7205_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, E7205 }, { PCI_VEND_DEV(INTEL, 7500_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, E7500 }, { PCI_VEND_DEV(INTEL, 7501_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, E7501 }, { PCI_VEND_DEV(INTEL, 7505_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, E7505 }, { 0, } /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, e7xxx_pci_tbl); static struct pci_driver e7xxx_driver = { .name = EDAC_MOD_STR, .probe = e7xxx_init_one, .remove = __devexit_p(e7xxx_remove_one), .id_table = e7xxx_pci_tbl, }; static int __init e7xxx_init(void) { return pci_register_driver(&e7xxx_driver); } static void __exit e7xxx_exit(void) { pci_unregister_driver(&e7xxx_driver); } module_init(e7xxx_init); module_exit(e7xxx_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n" "Based on.work by Dan Hollis et al"); MODULE_DESCRIPTION("MC support for Intel e7xxx memory controllers");