/* * Cryptographic API. * * Support for ATMEL SHA1/SHA256 HW acceleration. * * Copyright (c) 2012 Eukréa Electromatique - ATMEL * Author: Nicolas Royer <nicolas@eukrea.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Some ideas are from omap-sham.c drivers. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/hw_random.h> #include <linux/platform_device.h> #include <linux/device.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/crypto.h> #include <linux/cryptohash.h> #include <crypto/scatterwalk.h> #include <crypto/algapi.h> #include <crypto/sha.h> #include <crypto/hash.h> #include <crypto/internal/hash.h> #include "atmel-sha-regs.h" /* SHA flags */ #define SHA_FLAGS_BUSY BIT(0) #define SHA_FLAGS_FINAL BIT(1) #define SHA_FLAGS_DMA_ACTIVE BIT(2) #define SHA_FLAGS_OUTPUT_READY BIT(3) #define SHA_FLAGS_INIT BIT(4) #define SHA_FLAGS_CPU BIT(5) #define SHA_FLAGS_DMA_READY BIT(6) #define SHA_FLAGS_FINUP BIT(16) #define SHA_FLAGS_SG BIT(17) #define SHA_FLAGS_SHA1 BIT(18) #define SHA_FLAGS_SHA256 BIT(19) #define SHA_FLAGS_ERROR BIT(20) #define SHA_FLAGS_PAD BIT(21) #define SHA_FLAGS_DUALBUFF BIT(24) #define SHA_OP_UPDATE 1 #define SHA_OP_FINAL 2 #define SHA_BUFFER_LEN PAGE_SIZE #define ATMEL_SHA_DMA_THRESHOLD 56 struct atmel_sha_dev; struct atmel_sha_reqctx { struct atmel_sha_dev *dd; unsigned long flags; unsigned long op; u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32)); size_t digcnt; size_t bufcnt; size_t buflen; dma_addr_t dma_addr; /* walk state */ struct scatterlist *sg; unsigned int offset; /* offset in current sg */ unsigned int total; /* total request */ u8 buffer[0] __aligned(sizeof(u32)); }; struct atmel_sha_ctx { struct atmel_sha_dev *dd; unsigned long flags; /* fallback stuff */ struct crypto_shash *fallback; }; #define ATMEL_SHA_QUEUE_LENGTH 1 struct atmel_sha_dev { struct list_head list; unsigned long phys_base; struct device *dev; struct clk *iclk; int irq; void __iomem *io_base; spinlock_t lock; int err; struct tasklet_struct done_task; unsigned long flags; struct crypto_queue queue; struct ahash_request *req; }; struct atmel_sha_drv { struct list_head dev_list; spinlock_t lock; }; static struct atmel_sha_drv atmel_sha = { .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list), .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock), }; static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset) { return readl_relaxed(dd->io_base + offset); } static inline void atmel_sha_write(struct atmel_sha_dev *dd, u32 offset, u32 value) { writel_relaxed(value, dd->io_base + offset); } static void atmel_sha_dualbuff_test(struct atmel_sha_dev *dd) { atmel_sha_write(dd, SHA_MR, SHA_MR_DUALBUFF); if (atmel_sha_read(dd, SHA_MR) & SHA_MR_DUALBUFF) dd->flags |= SHA_FLAGS_DUALBUFF; } static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx) { size_t count; while ((ctx->bufcnt < ctx->buflen) && ctx->total) { count = min(ctx->sg->length - ctx->offset, ctx->total); count = min(count, ctx->buflen - ctx->bufcnt); if (count <= 0) break; scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg, ctx->offset, count, 0); ctx->bufcnt += count; ctx->offset += count; ctx->total -= count; if (ctx->offset == ctx->sg->length) { ctx->sg = sg_next(ctx->sg); if (ctx->sg) ctx->offset = 0; else ctx->total = 0; } } return 0; } /* * The purpose of this padding is to ensure that the padded message * is a multiple of 512 bits. The bit "1" is appended at the end of * the message followed by "padlen-1" zero bits. Then a 64 bits block * equals to the message length in bits is appended. * * padlen is calculated as followed: * - if message length < 56 bytes then padlen = 56 - message length * - else padlen = 64 + 56 - message length */ static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length) { unsigned int index, padlen; u64 bits; u64 size; bits = (ctx->bufcnt + ctx->digcnt + length) << 3; size = cpu_to_be64(bits); index = ctx->bufcnt & 0x3f; padlen = (index < 56) ? (56 - index) : ((64+56) - index); *(ctx->buffer + ctx->bufcnt) = 0x80; memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1); memcpy(ctx->buffer + ctx->bufcnt + padlen, &size, 8); ctx->bufcnt += padlen + 8; ctx->flags |= SHA_FLAGS_PAD; } static int atmel_sha_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm); struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_dev *dd = NULL; struct atmel_sha_dev *tmp; spin_lock_bh(&atmel_sha.lock); if (!tctx->dd) { list_for_each_entry(tmp, &atmel_sha.dev_list, list) { dd = tmp; break; } tctx->dd = dd; } else { dd = tctx->dd; } spin_unlock_bh(&atmel_sha.lock); ctx->dd = dd; ctx->flags = 0; dev_dbg(dd->dev, "init: digest size: %d\n", crypto_ahash_digestsize(tfm)); if (crypto_ahash_digestsize(tfm) == SHA1_DIGEST_SIZE) ctx->flags |= SHA_FLAGS_SHA1; else if (crypto_ahash_digestsize(tfm) == SHA256_DIGEST_SIZE) ctx->flags |= SHA_FLAGS_SHA256; ctx->bufcnt = 0; ctx->digcnt = 0; ctx->buflen = SHA_BUFFER_LEN; return 0; } static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); u32 valcr = 0, valmr = SHA_MR_MODE_AUTO; if (likely(dma)) { atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE); valmr = SHA_MR_MODE_PDC; if (dd->flags & SHA_FLAGS_DUALBUFF) valmr = SHA_MR_DUALBUFF; } else { atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY); } if (ctx->flags & SHA_FLAGS_SHA256) valmr |= SHA_MR_ALGO_SHA256; /* Setting CR_FIRST only for the first iteration */ if (!ctx->digcnt) valcr = SHA_CR_FIRST; atmel_sha_write(dd, SHA_CR, valcr); atmel_sha_write(dd, SHA_MR, valmr); } static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf, size_t length, int final) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); int count, len32; const u32 *buffer = (const u32 *)buf; dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n", ctx->digcnt, length, final); atmel_sha_write_ctrl(dd, 0); /* should be non-zero before next lines to disable clocks later */ ctx->digcnt += length; if (final) dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ len32 = DIV_ROUND_UP(length, sizeof(u32)); dd->flags |= SHA_FLAGS_CPU; for (count = 0; count < len32; count++) atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]); return -EINPROGRESS; } static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1, size_t length1, dma_addr_t dma_addr2, size_t length2, int final) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); int len32; dev_dbg(dd->dev, "xmit_pdc: digcnt: %d, length: %d, final: %d\n", ctx->digcnt, length1, final); len32 = DIV_ROUND_UP(length1, sizeof(u32)); atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS); atmel_sha_write(dd, SHA_TPR, dma_addr1); atmel_sha_write(dd, SHA_TCR, len32); len32 = DIV_ROUND_UP(length2, sizeof(u32)); atmel_sha_write(dd, SHA_TNPR, dma_addr2); atmel_sha_write(dd, SHA_TNCR, len32); atmel_sha_write_ctrl(dd, 1); /* should be non-zero before next lines to disable clocks later */ ctx->digcnt += length1; if (final) dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ dd->flags |= SHA_FLAGS_DMA_ACTIVE; /* Start DMA transfer */ atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN); return -EINPROGRESS; } static int atmel_sha_update_cpu(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); int bufcnt; atmel_sha_append_sg(ctx); atmel_sha_fill_padding(ctx, 0); bufcnt = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1); } static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd, struct atmel_sha_reqctx *ctx, size_t length, int final) { ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, ctx->buflen + SHA1_BLOCK_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dd->dev, ctx->dma_addr)) { dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen + SHA1_BLOCK_SIZE); return -EINVAL; } ctx->flags &= ~SHA_FLAGS_SG; /* next call does not fail... so no unmap in the case of error */ return atmel_sha_xmit_pdc(dd, ctx->dma_addr, length, 0, 0, final); } static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); unsigned int final; size_t count; atmel_sha_append_sg(ctx); final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total; dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: %d, final: %d\n", ctx->bufcnt, ctx->digcnt, final); if (final) atmel_sha_fill_padding(ctx, 0); if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) { count = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_dma_map(dd, ctx, count, final); } return 0; } static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); unsigned int length, final, tail; struct scatterlist *sg; unsigned int count; if (!ctx->total) return 0; if (ctx->bufcnt || ctx->offset) return atmel_sha_update_dma_slow(dd); dev_dbg(dd->dev, "fast: digcnt: %d, bufcnt: %u, total: %u\n", ctx->digcnt, ctx->bufcnt, ctx->total); sg = ctx->sg; if (!IS_ALIGNED(sg->offset, sizeof(u32))) return atmel_sha_update_dma_slow(dd); if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, SHA1_BLOCK_SIZE)) /* size is not SHA1_BLOCK_SIZE aligned */ return atmel_sha_update_dma_slow(dd); length = min(ctx->total, sg->length); if (sg_is_last(sg)) { if (!(ctx->flags & SHA_FLAGS_FINUP)) { /* not last sg must be SHA1_BLOCK_SIZE aligned */ tail = length & (SHA1_BLOCK_SIZE - 1); length -= tail; if (length == 0) { /* offset where to start slow */ ctx->offset = length; return atmel_sha_update_dma_slow(dd); } } } ctx->total -= length; ctx->offset = length; /* offset where to start slow */ final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total; /* Add padding */ if (final) { tail = length & (SHA1_BLOCK_SIZE - 1); length -= tail; ctx->total += tail; ctx->offset = length; /* offset where to start slow */ sg = ctx->sg; atmel_sha_append_sg(ctx); atmel_sha_fill_padding(ctx, length); ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, ctx->buflen + SHA1_BLOCK_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dd->dev, ctx->dma_addr)) { dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen + SHA1_BLOCK_SIZE); return -EINVAL; } if (length == 0) { ctx->flags &= ~SHA_FLAGS_SG; count = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_pdc(dd, ctx->dma_addr, count, 0, 0, final); } else { ctx->sg = sg; if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) { dev_err(dd->dev, "dma_map_sg error\n"); return -EINVAL; } ctx->flags |= SHA_FLAGS_SG; count = ctx->bufcnt; ctx->bufcnt = 0; return atmel_sha_xmit_pdc(dd, sg_dma_address(ctx->sg), length, ctx->dma_addr, count, final); } } if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) { dev_err(dd->dev, "dma_map_sg error\n"); return -EINVAL; } ctx->flags |= SHA_FLAGS_SG; /* next call does not fail... so no unmap in the case of error */ return atmel_sha_xmit_pdc(dd, sg_dma_address(ctx->sg), length, 0, 0, final); } static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); if (ctx->flags & SHA_FLAGS_SG) { dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE); if (ctx->sg->length == ctx->offset) { ctx->sg = sg_next(ctx->sg); if (ctx->sg) ctx->offset = 0; } if (ctx->flags & SHA_FLAGS_PAD) dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen + SHA1_BLOCK_SIZE, DMA_TO_DEVICE); } else { dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen + SHA1_BLOCK_SIZE, DMA_TO_DEVICE); } return 0; } static int atmel_sha_update_req(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err; dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n", ctx->total, ctx->digcnt, (ctx->flags & SHA_FLAGS_FINUP) != 0); if (ctx->flags & SHA_FLAGS_CPU) err = atmel_sha_update_cpu(dd); else err = atmel_sha_update_dma_start(dd); /* wait for dma completion before can take more data */ dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt); return err; } static int atmel_sha_final_req(struct atmel_sha_dev *dd) { struct ahash_request *req = dd->req; struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err = 0; int count; if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) { atmel_sha_fill_padding(ctx, 0); count = ctx->bufcnt; ctx->bufcnt = 0; err = atmel_sha_xmit_dma_map(dd, ctx, count, 1); } /* faster to handle last block with cpu */ else { atmel_sha_fill_padding(ctx, 0); count = ctx->bufcnt; ctx->bufcnt = 0; err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1); } dev_dbg(dd->dev, "final_req: err: %d\n", err); return err; } static void atmel_sha_copy_hash(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); u32 *hash = (u32 *)ctx->digest; int i; if (likely(ctx->flags & SHA_FLAGS_SHA1)) for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++) hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i)); else for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++) hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i)); } static void atmel_sha_copy_ready_hash(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); if (!req->result) return; if (likely(ctx->flags & SHA_FLAGS_SHA1)) memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE); else memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE); } static int atmel_sha_finish(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_dev *dd = ctx->dd; int err = 0; if (ctx->digcnt) atmel_sha_copy_ready_hash(req); dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt); return err; } static void atmel_sha_finish_req(struct ahash_request *req, int err) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_dev *dd = ctx->dd; if (!err) { atmel_sha_copy_hash(req); if (SHA_FLAGS_FINAL & dd->flags) err = atmel_sha_finish(req); } else { ctx->flags |= SHA_FLAGS_ERROR; } /* atomic operation is not needed here */ dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU | SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY); clk_disable_unprepare(dd->iclk); if (req->base.complete) req->base.complete(&req->base, err); /* handle new request */ tasklet_schedule(&dd->done_task); } static int atmel_sha_hw_init(struct atmel_sha_dev *dd) { clk_prepare_enable(dd->iclk); if (SHA_FLAGS_INIT & dd->flags) { atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST); atmel_sha_dualbuff_test(dd); dd->flags |= SHA_FLAGS_INIT; dd->err = 0; } return 0; } static int atmel_sha_handle_queue(struct atmel_sha_dev *dd, struct ahash_request *req) { struct crypto_async_request *async_req, *backlog; struct atmel_sha_reqctx *ctx; unsigned long flags; int err = 0, ret = 0; spin_lock_irqsave(&dd->lock, flags); if (req) ret = ahash_enqueue_request(&dd->queue, req); if (SHA_FLAGS_BUSY & dd->flags) { spin_unlock_irqrestore(&dd->lock, flags); return ret; } backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (async_req) dd->flags |= SHA_FLAGS_BUSY; spin_unlock_irqrestore(&dd->lock, flags); if (!async_req) return ret; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ahash_request_cast(async_req); dd->req = req; ctx = ahash_request_ctx(req); dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n", ctx->op, req->nbytes); err = atmel_sha_hw_init(dd); if (err) goto err1; if (ctx->op == SHA_OP_UPDATE) { err = atmel_sha_update_req(dd); if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP)) { /* no final() after finup() */ err = atmel_sha_final_req(dd); } } else if (ctx->op == SHA_OP_FINAL) { err = atmel_sha_final_req(dd); } err1: if (err != -EINPROGRESS) /* done_task will not finish it, so do it here */ atmel_sha_finish_req(req, err); dev_dbg(dd->dev, "exit, err: %d\n", err); return ret; } static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct atmel_sha_dev *dd = tctx->dd; ctx->op = op; return atmel_sha_handle_queue(dd, req); } static int atmel_sha_update(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); if (!req->nbytes) return 0; ctx->total = req->nbytes; ctx->sg = req->src; ctx->offset = 0; if (ctx->flags & SHA_FLAGS_FINUP) { if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD) /* faster to use CPU for short transfers */ ctx->flags |= SHA_FLAGS_CPU; } else if (ctx->bufcnt + ctx->total < ctx->buflen) { atmel_sha_append_sg(ctx); return 0; } return atmel_sha_enqueue(req, SHA_OP_UPDATE); } static int atmel_sha_final(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct atmel_sha_dev *dd = tctx->dd; int err = 0; ctx->flags |= SHA_FLAGS_FINUP; if (ctx->flags & SHA_FLAGS_ERROR) return 0; /* uncompleted hash is not needed */ if (ctx->bufcnt) { return atmel_sha_enqueue(req, SHA_OP_FINAL); } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */ err = atmel_sha_hw_init(dd); if (err) goto err1; dd->flags |= SHA_FLAGS_BUSY; err = atmel_sha_final_req(dd); } else { /* copy ready hash (+ finalize hmac) */ return atmel_sha_finish(req); } err1: if (err != -EINPROGRESS) /* done_task will not finish it, so do it here */ atmel_sha_finish_req(req, err); return err; } static int atmel_sha_finup(struct ahash_request *req) { struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); int err1, err2; ctx->flags |= SHA_FLAGS_FINUP; err1 = atmel_sha_update(req); if (err1 == -EINPROGRESS || err1 == -EBUSY) return err1; /* * final() has to be always called to cleanup resources * even if udpate() failed, except EINPROGRESS */ err2 = atmel_sha_final(req); return err1 ?: err2; } static int atmel_sha_digest(struct ahash_request *req) { return atmel_sha_init(req) ?: atmel_sha_finup(req); } static int atmel_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base) { struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm); const char *alg_name = crypto_tfm_alg_name(tfm); /* Allocate a fallback and abort if it failed. */ tctx->fallback = crypto_alloc_shash(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(tctx->fallback)) { pr_err("atmel-sha: fallback driver '%s' could not be loaded.\n", alg_name); return PTR_ERR(tctx->fallback); } crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct atmel_sha_reqctx) + SHA_BUFFER_LEN + SHA256_BLOCK_SIZE); return 0; } static int atmel_sha_cra_init(struct crypto_tfm *tfm) { return atmel_sha_cra_init_alg(tfm, NULL); } static void atmel_sha_cra_exit(struct crypto_tfm *tfm) { struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm); crypto_free_shash(tctx->fallback); tctx->fallback = NULL; } static struct ahash_alg sha_algs[] = { { .init = atmel_sha_init, .update = atmel_sha_update, .final = atmel_sha_final, .finup = atmel_sha_finup, .digest = atmel_sha_digest, .halg = { .digestsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "sha1", .cra_driver_name = "atmel-sha1", .cra_priority = 100, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_sha_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = atmel_sha_cra_init, .cra_exit = atmel_sha_cra_exit, } } }, { .init = atmel_sha_init, .update = atmel_sha_update, .final = atmel_sha_final, .finup = atmel_sha_finup, .digest = atmel_sha_digest, .halg = { .digestsize = SHA256_DIGEST_SIZE, .base = { .cra_name = "sha256", .cra_driver_name = "atmel-sha256", .cra_priority = 100, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct atmel_sha_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_init = atmel_sha_cra_init, .cra_exit = atmel_sha_cra_exit, } } }, }; static void atmel_sha_done_task(unsigned long data) { struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data; int err = 0; if (!(SHA_FLAGS_BUSY & dd->flags)) { atmel_sha_handle_queue(dd, NULL); return; } if (SHA_FLAGS_CPU & dd->flags) { if (SHA_FLAGS_OUTPUT_READY & dd->flags) { dd->flags &= ~SHA_FLAGS_OUTPUT_READY; goto finish; } } else if (SHA_FLAGS_DMA_READY & dd->flags) { if (SHA_FLAGS_DMA_ACTIVE & dd->flags) { dd->flags &= ~SHA_FLAGS_DMA_ACTIVE; atmel_sha_update_dma_stop(dd); if (dd->err) { err = dd->err; goto finish; } } if (SHA_FLAGS_OUTPUT_READY & dd->flags) { /* hash or semi-hash ready */ dd->flags &= ~(SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY); err = atmel_sha_update_dma_start(dd); if (err != -EINPROGRESS) goto finish; } } return; finish: /* finish curent request */ atmel_sha_finish_req(dd->req, err); } static irqreturn_t atmel_sha_irq(int irq, void *dev_id) { struct atmel_sha_dev *sha_dd = dev_id; u32 reg; reg = atmel_sha_read(sha_dd, SHA_ISR); if (reg & atmel_sha_read(sha_dd, SHA_IMR)) { atmel_sha_write(sha_dd, SHA_IDR, reg); if (SHA_FLAGS_BUSY & sha_dd->flags) { sha_dd->flags |= SHA_FLAGS_OUTPUT_READY; if (!(SHA_FLAGS_CPU & sha_dd->flags)) sha_dd->flags |= SHA_FLAGS_DMA_READY; tasklet_schedule(&sha_dd->done_task); } else { dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n"); } return IRQ_HANDLED; } return IRQ_NONE; } static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd) { int i; for (i = 0; i < ARRAY_SIZE(sha_algs); i++) crypto_unregister_ahash(&sha_algs[i]); } static int atmel_sha_register_algs(struct atmel_sha_dev *dd) { int err, i, j; for (i = 0; i < ARRAY_SIZE(sha_algs); i++) { err = crypto_register_ahash(&sha_algs[i]); if (err) goto err_sha_algs; } return 0; err_sha_algs: for (j = 0; j < i; j++) crypto_unregister_ahash(&sha_algs[j]); return err; } static int atmel_sha_probe(struct platform_device *pdev) { struct atmel_sha_dev *sha_dd; struct device *dev = &pdev->dev; struct resource *sha_res; unsigned long sha_phys_size; int err; sha_dd = kzalloc(sizeof(struct atmel_sha_dev), GFP_KERNEL); if (sha_dd == NULL) { dev_err(dev, "unable to alloc data struct.\n"); err = -ENOMEM; goto sha_dd_err; } sha_dd->dev = dev; platform_set_drvdata(pdev, sha_dd); INIT_LIST_HEAD(&sha_dd->list); tasklet_init(&sha_dd->done_task, atmel_sha_done_task, (unsigned long)sha_dd); crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH); sha_dd->irq = -1; /* Get the base address */ sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!sha_res) { dev_err(dev, "no MEM resource info\n"); err = -ENODEV; goto res_err; } sha_dd->phys_base = sha_res->start; sha_phys_size = resource_size(sha_res); /* Get the IRQ */ sha_dd->irq = platform_get_irq(pdev, 0); if (sha_dd->irq < 0) { dev_err(dev, "no IRQ resource info\n"); err = sha_dd->irq; goto res_err; } err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha", sha_dd); if (err) { dev_err(dev, "unable to request sha irq.\n"); goto res_err; } /* Initializing the clock */ sha_dd->iclk = clk_get(&pdev->dev, NULL); if (IS_ERR(sha_dd->iclk)) { dev_err(dev, "clock intialization failed.\n"); err = PTR_ERR(sha_dd->iclk); goto clk_err; } sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size); if (!sha_dd->io_base) { dev_err(dev, "can't ioremap\n"); err = -ENOMEM; goto sha_io_err; } spin_lock(&atmel_sha.lock); list_add_tail(&sha_dd->list, &atmel_sha.dev_list); spin_unlock(&atmel_sha.lock); err = atmel_sha_register_algs(sha_dd); if (err) goto err_algs; dev_info(dev, "Atmel SHA1/SHA256\n"); return 0; err_algs: spin_lock(&atmel_sha.lock); list_del(&sha_dd->list); spin_unlock(&atmel_sha.lock); iounmap(sha_dd->io_base); sha_io_err: clk_put(sha_dd->iclk); clk_err: free_irq(sha_dd->irq, sha_dd); res_err: tasklet_kill(&sha_dd->done_task); kfree(sha_dd); sha_dd = NULL; sha_dd_err: dev_err(dev, "initialization failed.\n"); return err; } static int atmel_sha_remove(struct platform_device *pdev) { static struct atmel_sha_dev *sha_dd; sha_dd = platform_get_drvdata(pdev); if (!sha_dd) return -ENODEV; spin_lock(&atmel_sha.lock); list_del(&sha_dd->list); spin_unlock(&atmel_sha.lock); atmel_sha_unregister_algs(sha_dd); tasklet_kill(&sha_dd->done_task); iounmap(sha_dd->io_base); clk_put(sha_dd->iclk); if (sha_dd->irq >= 0) free_irq(sha_dd->irq, sha_dd); kfree(sha_dd); sha_dd = NULL; return 0; } static struct platform_driver atmel_sha_driver = { .probe = atmel_sha_probe, .remove = atmel_sha_remove, .driver = { .name = "atmel_sha", .owner = THIS_MODULE, }, }; module_platform_driver(atmel_sha_driver); MODULE_DESCRIPTION("Atmel SHA1/SHA256 hw acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");