/* * Copyright 2012 Freescale Semiconductor, Inc. * * The code contained herein is licensed under the GNU General Public * License. You may obtain a copy of the GNU General Public License * Version 2 or later at the following locations: * * http://www.opensource.org/licenses/gpl-license.html * http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include "clk.h" #define CLKCTRL MX28_IO_ADDRESS(MX28_CLKCTRL_BASE_ADDR) #define PLL0CTRL0 (CLKCTRL + 0x0000) #define PLL1CTRL0 (CLKCTRL + 0x0020) #define PLL2CTRL0 (CLKCTRL + 0x0040) #define CPU (CLKCTRL + 0x0050) #define HBUS (CLKCTRL + 0x0060) #define XBUS (CLKCTRL + 0x0070) #define XTAL (CLKCTRL + 0x0080) #define SSP0 (CLKCTRL + 0x0090) #define SSP1 (CLKCTRL + 0x00a0) #define SSP2 (CLKCTRL + 0x00b0) #define SSP3 (CLKCTRL + 0x00c0) #define GPMI (CLKCTRL + 0x00d0) #define SPDIF (CLKCTRL + 0x00e0) #define EMI (CLKCTRL + 0x00f0) #define SAIF0 (CLKCTRL + 0x0100) #define SAIF1 (CLKCTRL + 0x0110) #define LCDIF (CLKCTRL + 0x0120) #define ETM (CLKCTRL + 0x0130) #define ENET (CLKCTRL + 0x0140) #define FLEXCAN (CLKCTRL + 0x0160) #define FRAC0 (CLKCTRL + 0x01b0) #define FRAC1 (CLKCTRL + 0x01c0) #define CLKSEQ (CLKCTRL + 0x01d0) #define BP_CPU_INTERRUPT_WAIT 12 #define BP_SAIF_DIV_FRAC_EN 16 #define BP_ENET_DIV_TIME 21 #define BP_ENET_SLEEP 31 #define BP_CLKSEQ_BYPASS_SAIF0 0 #define BP_CLKSEQ_BYPASS_SSP0 3 #define BP_FRAC0_IO1FRAC 16 #define BP_FRAC0_IO0FRAC 24 #define DIGCTRL MX28_IO_ADDRESS(MX28_DIGCTL_BASE_ADDR) #define BP_SAIF_CLKMUX 10 /* * HW_SAIF_CLKMUX_SEL: * DIRECT(0x0): SAIF0 clock pins selected for SAIF0 input clocks, and SAIF1 * clock pins selected for SAIF1 input clocks. * CROSSINPUT(0x1): SAIF1 clock inputs selected for SAIF0 input clocks, and * SAIF0 clock inputs selected for SAIF1 input clocks. * EXTMSTR0(0x2): SAIF0 clock pin selected for both SAIF0 and SAIF1 input * clocks. * EXTMSTR1(0x3): SAIF1 clock pin selected for both SAIF0 and SAIF1 input * clocks. */ int mxs_saif_clkmux_select(unsigned int clkmux) { if (clkmux > 0x3) return -EINVAL; __mxs_clrl(0x3 << BP_SAIF_CLKMUX, DIGCTRL); __mxs_setl(clkmux << BP_SAIF_CLKMUX, DIGCTRL); return 0; } static void __init clk_misc_init(void) { u32 val; /* Gate off cpu clock in WFI for power saving */ __mxs_setl(1 << BP_CPU_INTERRUPT_WAIT, CPU); /* 0 is a bad default value for a divider */ __mxs_setl(1 << BP_ENET_DIV_TIME, ENET); /* Clear BYPASS for SAIF */ __mxs_clrl(0x3 << BP_CLKSEQ_BYPASS_SAIF0, CLKSEQ); /* SAIF has to use frac div for functional operation */ val = readl_relaxed(SAIF0); val |= 1 << BP_SAIF_DIV_FRAC_EN; writel_relaxed(val, SAIF0); val = readl_relaxed(SAIF1); val |= 1 << BP_SAIF_DIV_FRAC_EN; writel_relaxed(val, SAIF1); /* Extra fec clock setting */ val = readl_relaxed(ENET); val &= ~(1 << BP_ENET_SLEEP); writel_relaxed(val, ENET); /* * Source ssp clock from ref_io than ref_xtal, * as ref_xtal only provides 24 MHz as maximum. */ __mxs_clrl(0xf << BP_CLKSEQ_BYPASS_SSP0, CLKSEQ); /* * 480 MHz seems too high to be ssp clock source directly, * so set frac0 to get a 288 MHz ref_io0 and ref_io1. */ val = readl_relaxed(FRAC0); val &= ~((0x3f << BP_FRAC0_IO0FRAC) | (0x3f << BP_FRAC0_IO1FRAC)); val |= (30 << BP_FRAC0_IO0FRAC) | (30 << BP_FRAC0_IO1FRAC); writel_relaxed(val, FRAC0); } static const char *sel_cpu[] __initconst = { "ref_cpu", "ref_xtal", }; static const char *sel_io0[] __initconst = { "ref_io0", "ref_xtal", }; static const char *sel_io1[] __initconst = { "ref_io1", "ref_xtal", }; static const char *sel_pix[] __initconst = { "ref_pix", "ref_xtal", }; static const char *sel_gpmi[] __initconst = { "ref_gpmi", "ref_xtal", }; static const char *sel_pll0[] __initconst = { "pll0", "ref_xtal", }; static const char *cpu_sels[] __initconst = { "cpu_pll", "cpu_xtal", }; static const char *emi_sels[] __initconst = { "emi_pll", "emi_xtal", }; static const char *ptp_sels[] __initconst = { "ref_xtal", "pll0", }; enum imx28_clk { ref_xtal, pll0, pll1, pll2, ref_cpu, ref_emi, ref_io0, ref_io1, ref_pix, ref_hsadc, ref_gpmi, saif0_sel, saif1_sel, gpmi_sel, ssp0_sel, ssp1_sel, ssp2_sel, ssp3_sel, emi_sel, etm_sel, lcdif_sel, cpu, ptp_sel, cpu_pll, cpu_xtal, hbus, xbus, ssp0_div, ssp1_div, ssp2_div, ssp3_div, gpmi_div, emi_pll, emi_xtal, lcdif_div, etm_div, ptp, saif0_div, saif1_div, clk32k_div, rtc, lradc, spdif_div, clk32k, pwm, uart, ssp0, ssp1, ssp2, ssp3, gpmi, spdif, emi, saif0, saif1, lcdif, etm, fec, can0, can1, usb0, usb1, usb0_pwr, usb1_pwr, enet_out, clk_max }; static struct clk *clks[clk_max]; static struct clk_onecell_data clk_data; static enum imx28_clk clks_init_on[] __initdata = { cpu, hbus, xbus, emi, uart, }; int __init mx28_clocks_init(void) { struct device_node *np; int i; clk_misc_init(); clks[ref_xtal] = mxs_clk_fixed("ref_xtal", 24000000); clks[pll0] = mxs_clk_pll("pll0", "ref_xtal", PLL0CTRL0, 17, 480000000); clks[pll1] = mxs_clk_pll("pll1", "ref_xtal", PLL1CTRL0, 17, 480000000); clks[pll2] = mxs_clk_pll("pll2", "ref_xtal", PLL2CTRL0, 23, 50000000); clks[ref_cpu] = mxs_clk_ref("ref_cpu", "pll0", FRAC0, 0); clks[ref_emi] = mxs_clk_ref("ref_emi", "pll0", FRAC0, 1); clks[ref_io1] = mxs_clk_ref("ref_io1", "pll0", FRAC0, 2); clks[ref_io0] = mxs_clk_ref("ref_io0", "pll0", FRAC0, 3); clks[ref_pix] = mxs_clk_ref("ref_pix", "pll0", FRAC1, 0); clks[ref_hsadc] = mxs_clk_ref("ref_hsadc", "pll0", FRAC1, 1); clks[ref_gpmi] = mxs_clk_ref("ref_gpmi", "pll0", FRAC1, 2); clks[saif0_sel] = mxs_clk_mux("saif0_sel", CLKSEQ, 0, 1, sel_pll0, ARRAY_SIZE(sel_pll0)); clks[saif1_sel] = mxs_clk_mux("saif1_sel", CLKSEQ, 1, 1, sel_pll0, ARRAY_SIZE(sel_pll0)); clks[gpmi_sel] = mxs_clk_mux("gpmi_sel", CLKSEQ, 2, 1, sel_gpmi, ARRAY_SIZE(sel_gpmi)); clks[ssp0_sel] = mxs_clk_mux("ssp0_sel", CLKSEQ, 3, 1, sel_io0, ARRAY_SIZE(sel_io0)); clks[ssp1_sel] = mxs_clk_mux("ssp1_sel", CLKSEQ, 4, 1, sel_io0, ARRAY_SIZE(sel_io0)); clks[ssp2_sel] = mxs_clk_mux("ssp2_sel", CLKSEQ, 5, 1, sel_io1, ARRAY_SIZE(sel_io1)); clks[ssp3_sel] = mxs_clk_mux("ssp3_sel", CLKSEQ, 6, 1, sel_io1, ARRAY_SIZE(sel_io1)); clks[emi_sel] = mxs_clk_mux("emi_sel", CLKSEQ, 7, 1, emi_sels, ARRAY_SIZE(emi_sels)); clks[etm_sel] = mxs_clk_mux("etm_sel", CLKSEQ, 8, 1, sel_cpu, ARRAY_SIZE(sel_cpu)); clks[lcdif_sel] = mxs_clk_mux("lcdif_sel", CLKSEQ, 14, 1, sel_pix, ARRAY_SIZE(sel_pix)); clks[cpu] = mxs_clk_mux("cpu", CLKSEQ, 18, 1, cpu_sels, ARRAY_SIZE(cpu_sels)); clks[ptp_sel] = mxs_clk_mux("ptp_sel", ENET, 19, 1, ptp_sels, ARRAY_SIZE(ptp_sels)); clks[cpu_pll] = mxs_clk_div("cpu_pll", "ref_cpu", CPU, 0, 6, 28); clks[cpu_xtal] = mxs_clk_div("cpu_xtal", "ref_xtal", CPU, 16, 10, 29); clks[hbus] = mxs_clk_div("hbus", "cpu", HBUS, 0, 5, 31); clks[xbus] = mxs_clk_div("xbus", "ref_xtal", XBUS, 0, 10, 31); clks[ssp0_div] = mxs_clk_div("ssp0_div", "ssp0_sel", SSP0, 0, 9, 29); clks[ssp1_div] = mxs_clk_div("ssp1_div", "ssp1_sel", SSP1, 0, 9, 29); clks[ssp2_div] = mxs_clk_div("ssp2_div", "ssp2_sel", SSP2, 0, 9, 29); clks[ssp3_div] = mxs_clk_div("ssp3_div", "ssp3_sel", SSP3, 0, 9, 29); clks[gpmi_div] = mxs_clk_div("gpmi_div", "gpmi_sel", GPMI, 0, 10, 29); clks[emi_pll] = mxs_clk_div("emi_pll", "ref_emi", EMI, 0, 6, 28); clks[emi_xtal] = mxs_clk_div("emi_xtal", "ref_xtal", EMI, 8, 4, 29); clks[lcdif_div] = mxs_clk_div("lcdif_div", "lcdif_sel", LCDIF, 0, 13, 29); clks[etm_div] = mxs_clk_div("etm_div", "etm_sel", ETM, 0, 7, 29); clks[ptp] = mxs_clk_div("ptp", "ptp_sel", ENET, 21, 6, 27); clks[saif0_div] = mxs_clk_frac("saif0_div", "saif0_sel", SAIF0, 0, 16, 29); clks[saif1_div] = mxs_clk_frac("saif1_div", "saif1_sel", SAIF1, 0, 16, 29); clks[clk32k_div] = mxs_clk_fixed_factor("clk32k_div", "ref_xtal", 1, 750); clks[rtc] = mxs_clk_fixed_factor("rtc", "ref_xtal", 1, 768); clks[lradc] = mxs_clk_fixed_factor("lradc", "clk32k", 1, 16); clks[spdif_div] = mxs_clk_fixed_factor("spdif_div", "pll0", 1, 4); clks[clk32k] = mxs_clk_gate("clk32k", "clk32k_div", XTAL, 26); clks[pwm] = mxs_clk_gate("pwm", "ref_xtal", XTAL, 29); clks[uart] = mxs_clk_gate("uart", "ref_xtal", XTAL, 31); clks[ssp0] = mxs_clk_gate("ssp0", "ssp0_div", SSP0, 31); clks[ssp1] = mxs_clk_gate("ssp1", "ssp1_div", SSP1, 31); clks[ssp2] = mxs_clk_gate("ssp2", "ssp2_div", SSP2, 31); clks[ssp3] = mxs_clk_gate("ssp3", "ssp3_div", SSP3, 31); clks[gpmi] = mxs_clk_gate("gpmi", "gpmi_div", GPMI, 31); clks[spdif] = mxs_clk_gate("spdif", "spdif_div", SPDIF, 31); clks[emi] = mxs_clk_gate("emi", "emi_sel", EMI, 31); clks[saif0] = mxs_clk_gate("saif0", "saif0_div", SAIF0, 31); clks[saif1] = mxs_clk_gate("saif1", "saif1_div", SAIF1, 31); clks[lcdif] = mxs_clk_gate("lcdif", "lcdif_div", LCDIF, 31); clks[etm] = mxs_clk_gate("etm", "etm_div", ETM, 31); clks[fec] = mxs_clk_gate("fec", "hbus", ENET, 30); clks[can0] = mxs_clk_gate("can0", "ref_xtal", FLEXCAN, 30); clks[can1] = mxs_clk_gate("can1", "ref_xtal", FLEXCAN, 28); clks[usb0] = mxs_clk_gate("usb0", "usb0_pwr", DIGCTRL, 2); clks[usb1] = mxs_clk_gate("usb1", "usb1_pwr", DIGCTRL, 16); clks[usb0_pwr] = clk_register_gate(NULL, "usb0_pwr", "pll0", 0, PLL0CTRL0, 18, 0, &mxs_lock); clks[usb1_pwr] = clk_register_gate(NULL, "usb1_pwr", "pll1", 0, PLL1CTRL0, 18, 0, &mxs_lock); clks[enet_out] = clk_register_gate(NULL, "enet_out", "pll2", 0, ENET, 18, 0, &mxs_lock); for (i = 0; i < ARRAY_SIZE(clks); i++) if (IS_ERR(clks[i])) { pr_err("i.MX28 clk %d: register failed with %ld\n", i, PTR_ERR(clks[i])); return PTR_ERR(clks[i]); } np = of_find_compatible_node(NULL, NULL, "fsl,imx28-clkctrl"); if (np) { clk_data.clks = clks; clk_data.clk_num = ARRAY_SIZE(clks); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); } clk_register_clkdev(clks[clk32k], NULL, "timrot"); clk_register_clkdev(clks[enet_out], NULL, "enet_out"); for (i = 0; i < ARRAY_SIZE(clks_init_on); i++) clk_prepare_enable(clks[clks_init_on[i]]); mxs_timer_init(MX28_INT_TIMER0); return 0; }