From 050e9baa9dc9fbd9ce2b27f0056990fc9e0a08a0 Mon Sep 17 00:00:00 2001 From: Linus Torvalds Date: Thu, 14 Jun 2018 12:21:18 +0900 Subject: Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variables The changes to automatically test for working stack protector compiler support in the Kconfig files removed the special STACKPROTECTOR_AUTO option that picked the strongest stack protector that the compiler supported. That was all a nice cleanup - it makes no sense to have the AUTO case now that the Kconfig phase can just determine the compiler support directly. HOWEVER. It also meant that doing "make oldconfig" would now _disable_ the strong stackprotector if you had AUTO enabled, because in a legacy config file, the sane stack protector configuration would look like CONFIG_HAVE_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_NONE is not set # CONFIG_CC_STACKPROTECTOR_REGULAR is not set # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_STACKPROTECTOR_AUTO=y and when you ran this through "make oldconfig" with the Kbuild changes, it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version used to be disabled (because it was really enabled by AUTO), and would disable it in the new config, resulting in: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_HAS_SANE_STACKPROTECTOR=y That's dangerously subtle - people could suddenly find themselves with the weaker stack protector setup without even realizing. The solution here is to just rename not just the old RECULAR stack protector option, but also the strong one. This does that by just removing the CC_ prefix entirely for the user choices, because it really is not about the compiler support (the compiler support now instead automatially impacts _visibility_ of the options to users). This results in "make oldconfig" actually asking the user for their choice, so that we don't have any silent subtle security model changes. The end result would generally look like this: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_STACKPROTECTOR=y CONFIG_STACKPROTECTOR_STRONG=y CONFIG_CC_HAS_SANE_STACKPROTECTOR=y where the "CC_" versions really are about internal compiler infrastructure, not the user selections. Acked-by: Masahiro Yamada Signed-off-by: Linus Torvalds --- kernel/fork.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'kernel/fork.c') diff --git a/kernel/fork.c b/kernel/fork.c index 08c6e5e217a0..92870be50bba 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -811,7 +811,7 @@ static struct task_struct *dup_task_struct(struct task_struct *orig, int node) clear_tsk_need_resched(tsk); set_task_stack_end_magic(tsk); -#ifdef CONFIG_CC_STACKPROTECTOR +#ifdef CONFIG_STACKPROTECTOR tsk->stack_canary = get_random_canary(); #endif -- cgit v1.2.3 From 655c79bb40a0870adcd0871057d01de11625882b Mon Sep 17 00:00:00 2001 From: Tetsuo Handa Date: Thu, 14 Jun 2018 15:26:34 -0700 Subject: mm: check for SIGKILL inside dup_mmap() loop As a theoretical problem, dup_mmap() of an mm_struct with 60000+ vmas can loop while potentially allocating memory, with mm->mmap_sem held for write by current thread. This is bad if current thread was selected as an OOM victim, for current thread will continue allocations using memory reserves while OOM reaper is unable to reclaim memory. As an actually observable problem, it is not difficult to make OOM reaper unable to reclaim memory if the OOM victim is blocked at i_mmap_lock_write() in this loop. Unfortunately, since nobody can explain whether it is safe to use killable wait there, let's check for SIGKILL before trying to allocate memory. Even without an OOM event, there is no point with continuing the loop from the beginning if current thread is killed. I tested with debug printk(). This patch should be safe because we already fail if security_vm_enough_memory_mm() or kmem_cache_alloc(GFP_KERNEL) fails and exit_mmap() handles it. ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting dup_mmap() due to SIGKILL ***** ***** Aborting exit_mmap() due to NULL mmap ***** [akpm@linux-foundation.org: add comment] Link: http://lkml.kernel.org/r/201804071938.CDE04681.SOFVQJFtMHOOLF@I-love.SAKURA.ne.jp Signed-off-by: Tetsuo Handa Cc: Alexander Viro Cc: Rik van Riel Cc: Michal Hocko Cc: Kirill A. Shutemov Cc: David Rientjes Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- kernel/fork.c | 8 ++++++++ 1 file changed, 8 insertions(+) (limited to 'kernel/fork.c') diff --git a/kernel/fork.c b/kernel/fork.c index 92870be50bba..9440d61b925c 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -440,6 +440,14 @@ static __latent_entropy int dup_mmap(struct mm_struct *mm, continue; } charge = 0; + /* + * Don't duplicate many vmas if we've been oom-killed (for + * example) + */ + if (fatal_signal_pending(current)) { + retval = -EINTR; + goto out; + } if (mpnt->vm_flags & VM_ACCOUNT) { unsigned long len = vma_pages(mpnt); -- cgit v1.2.3