summaryrefslogtreecommitdiffstats
path: root/net/sctp/ulpevent.c
Commit message (Collapse)AuthorAgeFilesLines
* sctp: add support for generating stream ssn reset event notificationXin Long2017-02-191-0/+29
| | | | | | | | This patch is to add Stream Reset Event described in rfc6525 section 6.1.1. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: rename WORD_TRUNC/ROUND macrosMarcelo Ricardo Leitner2016-09-221-2/+2
| | | | | | | | | | | | | To something more meaningful these days, specially because this is working on packet headers or lengths and which are not tied to any CPU arch but to the protocol itself. So, WORD_TRUNC becomes SCTP_TRUNC4 and WORD_ROUND becomes SCTP_PAD4. Reported-by: David Laight <David.Laight@ACULAB.COM> Reported-by: David Miller <davem@davemloft.net> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: use event->chunk when it's validXin Long2016-08-081-2/+2
| | | | | | | | | | | | | | | | | | | | Commit 52253db924d1 ("sctp: also point GSO head_skb to the sk when it's available") used event->chunk->head_skb to get the head_skb in sctp_ulpevent_set_owner(). But at that moment, the event->chunk was NULL, as it cloned the skb in sctp_ulpevent_make_rcvmsg(). Therefore, that patch didn't really work. This patch is to move the event->chunk initialization before calling sctp_ulpevent_receive_data() so that it uses event->chunk when it's valid. Fixes: 52253db924d1 ("sctp: also point GSO head_skb to the sk when it's available") Signed-off-by: Xin Long <lucien.xin@gmail.com> Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: also point GSO head_skb to the sk when it's availableMarcelo Ricardo Leitner2016-07-251-0/+3
| | | | | | | | | | | | | | The head skb for GSO packets won't travel through the inner depths of SCTP stack as it doesn't contain any chunks on it. That means skb->sk doesn't get set and then when sctp_recvmsg() calls sctp_inet6_skb_msgname() on the head_skb it panics, as this last needs to check flags at the socket (sp->v4mapped). The fix is to initialize skb->sk for th head skb once we are able to do it. That is, when the first chunk is processed. Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: allow GSO frags to access the chunk tooMarcelo Ricardo Leitner2016-07-131-1/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SCTP will try to access original IP headers on sctp_recvmsg in order to copy the addresses used. There are also other places that do similar access to IP or even SCTP headers. But after 90017accff61 ("sctp: Add GSO support") they aren't always there because they are only present in the header skb. SCTP handles the queueing of incoming data by cloning the incoming skb and limiting to only the relevant payload. This clone has its cb updated to something different and it's then queued on socket rx queue. Thus we need to fix this in two moments. For rx path, not related to socket queue yet, this patch uses a partially copied sctp_input_cb to such GSO frags. This restores the ability to access the headers for this part of the code. Regarding the socket rx queue, it removes iif member from sctp_event and also add a chunk pointer on it. With these changes we're always able to reach the headers again. The biggest change here is that now the sctp_chunk struct and the original skb are only freed after the application consumed the buffer. Note however that the original payload was already like this due to the skb cloning. For iif, SCTP's IPv4 code doesn't use it, so no change is necessary. IPv6 now can fetch it directly from original's IPv6 CB as the original skb is still accessible. In the future we probably can simplify sctp_v*_skb_iif() stuff, as sctp_v4_skb_iif() was called but it's return value not used, and now it's not even called, but such cleanup is out of scope for this change. Fixes: 90017accff61 ("sctp: Add GSO support") Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: reorder sctp_ulpevent and shrink msg_flagsMarcelo Ricardo Leitner2016-07-131-2/+2
| | | | | | | | | | | The next patch needs 8 bytes in there. sctp_ulpevent has a hole due to bad alignment; msg_flags is using 4 bytes while it actually uses only 2, so we shrink it, and iif member (4 bytes) which can be easily fetched from another place once the next patch is there, so we remove it and thus creating space for 8 bytes. Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: Fixup v4mapped behaviour to comply with Sock APIJason Gunthorpe2014-07-311-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The SCTP socket extensions API document describes the v4mapping option as follows: 8.1.15. Set/Clear IPv4 Mapped Addresses (SCTP_I_WANT_MAPPED_V4_ADDR) This socket option is a Boolean flag which turns on or off the mapping of IPv4 addresses. If this option is turned on, then IPv4 addresses will be mapped to V6 representation. If this option is turned off, then no mapping will be done of V4 addresses and a user will receive both PF_INET6 and PF_INET type addresses on the socket. See [RFC3542] for more details on mapped V6 addresses. This description isn't really in line with what the code does though. Introduce addr_to_user (renamed addr_v4map), which should be called before any sockaddr is passed back to user space. The new function places the sockaddr into the correct format depending on the SCTP_I_WANT_MAPPED_V4_ADDR option. Audit all places that touched v4mapped and either sanely construct a v4 or v6 address then call addr_to_user, or drop the unnecessary v4mapped check entirely. Audit all places that call addr_to_user and verify they are on a sycall return path. Add a custom getname that formats the address properly. Several bugs are addressed: - SCTP_I_WANT_MAPPED_V4_ADDR=0 often returned garbage for addresses to user space - The addr_len returned from recvmsg was not correct when returning AF_INET on a v6 socket - flowlabel and scope_id were not zerod when promoting a v4 to v6 - Some syscalls like bind and connect behaved differently depending on v4mapped Tested bind, getpeername, getsockname, connect, and recvmsg for proper behaviour in v4mapped = 1 and 0 cases. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Tested-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: implement rfc6458, 5.3.6. SCTP_NXTINFO cmsg supportGeir Ola Vaagland2014-07-161-0/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements section 5.3.6. of RFC6458, that is, support for 'SCTP Next Receive Information Structure' (SCTP_NXTINFO) which is placed into ancillary data cmsghdr structure for each recvmsg() call, if this information is already available when delivering the current message. This option can be enabled/disabled via setsockopt(2) on SOL_SCTP level by setting an int value with 1/0 for SCTP_RECVNXTINFO in user space applications as per RFC6458, section 8.1.30. The sctp_nxtinfo structure is defined as per RFC as below ... struct sctp_nxtinfo { uint16_t nxt_sid; uint16_t nxt_flags; uint32_t nxt_ppid; uint32_t nxt_length; sctp_assoc_t nxt_assoc_id; }; ... and provided under cmsg_level IPPROTO_SCTP, cmsg_type SCTP_NXTINFO, while cmsg_data[] contains struct sctp_nxtinfo. Joint work with Daniel Borkmann. Signed-off-by: Geir Ola Vaagland <geirola@gmail.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: implement rfc6458, 5.3.5. SCTP_RCVINFO cmsg supportGeir Ola Vaagland2014-07-161-0/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements section 5.3.5. of RFC6458, that is, support for 'SCTP Receive Information Structure' (SCTP_RCVINFO) which is placed into ancillary data cmsghdr structure for each recvmsg() call. This option can be enabled/disabled via setsockopt(2) on SOL_SCTP level by setting an int value with 1/0 for SCTP_RECVRCVINFO in user space applications as per RFC6458, section 8.1.29. The sctp_rcvinfo structure is defined as per RFC as below ... struct sctp_rcvinfo { uint16_t rcv_sid; uint16_t rcv_ssn; uint16_t rcv_flags; <-- 2 bytes hole --> uint32_t rcv_ppid; uint32_t rcv_tsn; uint32_t rcv_cumtsn; uint32_t rcv_context; sctp_assoc_t rcv_assoc_id; }; ... and provided under cmsg_level IPPROTO_SCTP, cmsg_type SCTP_RCVINFO, while cmsg_data[] contains struct sctp_rcvinfo. An sctp_rcvinfo item always corresponds to the data in msg_iov. Joint work with Daniel Borkmann. Signed-off-by: Geir Ola Vaagland <geirola@gmail.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: fix information leaks in ulpevent layerDaniel Borkmann2014-07-141-107/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While working on some other SCTP code, I noticed that some structures shared with user space are leaking uninitialized stack or heap buffer. In particular, struct sctp_sndrcvinfo has a 2 bytes hole between .sinfo_flags and .sinfo_ppid that remains unfilled by us in sctp_ulpevent_read_sndrcvinfo() when putting this into cmsg. But also struct sctp_remote_error contains a 2 bytes hole that we don't fill but place into a skb through skb_copy_expand() via sctp_ulpevent_make_remote_error(). Both structures are defined by the IETF in RFC6458: * Section 5.3.2. SCTP Header Information Structure: The sctp_sndrcvinfo structure is defined below: struct sctp_sndrcvinfo { uint16_t sinfo_stream; uint16_t sinfo_ssn; uint16_t sinfo_flags; <-- 2 bytes hole --> uint32_t sinfo_ppid; uint32_t sinfo_context; uint32_t sinfo_timetolive; uint32_t sinfo_tsn; uint32_t sinfo_cumtsn; sctp_assoc_t sinfo_assoc_id; }; * 6.1.3. SCTP_REMOTE_ERROR: A remote peer may send an Operation Error message to its peer. This message indicates a variety of error conditions on an association. The entire ERROR chunk as it appears on the wire is included in an SCTP_REMOTE_ERROR event. Please refer to the SCTP specification [RFC4960] and any extensions for a list of possible error formats. An SCTP error notification has the following format: struct sctp_remote_error { uint16_t sre_type; uint16_t sre_flags; uint32_t sre_length; uint16_t sre_error; <-- 2 bytes hole --> sctp_assoc_t sre_assoc_id; uint8_t sre_data[]; }; Fix this by setting both to 0 before filling them out. We also have other structures shared between user and kernel space in SCTP that contains holes (e.g. struct sctp_paddrthlds), but we copy that buffer over from user space first and thus don't need to care about it in that cases. While at it, we can also remove lengthy comments copied from the draft, instead, we update the comment with the correct RFC number where one can look it up. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Revert "net: sctp: Fix a_rwnd/rwnd management to reflect real state of the ↵Daniel Borkmann2014-04-141-6/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | receiver's buffer" This reverts commit ef2820a735f7 ("net: sctp: Fix a_rwnd/rwnd management to reflect real state of the receiver's buffer") as it introduced a serious performance regression on SCTP over IPv4 and IPv6, though a not as dramatic on the latter. Measurements are on 10Gbit/s with ixgbe NICs. Current state: [root@Lab200slot2 ~]# iperf3 --sctp -4 -c 192.168.241.3 -V -l 1452 -t 60 iperf version 3.0.1 (10 January 2014) Linux Lab200slot2 3.14.0 #1 SMP Thu Apr 3 23:18:29 EDT 2014 x86_64 Time: Fri, 11 Apr 2014 17:56:21 GMT Connecting to host 192.168.241.3, port 5201 Cookie: Lab200slot2.1397238981.812898.548918 [ 4] local 192.168.241.2 port 38616 connected to 192.168.241.3 port 5201 Starting Test: protocol: SCTP, 1 streams, 1452 byte blocks, omitting 0 seconds, 60 second test [ ID] Interval Transfer Bandwidth [ 4] 0.00-1.09 sec 20.8 MBytes 161 Mbits/sec [ 4] 1.09-2.13 sec 10.8 MBytes 86.8 Mbits/sec [ 4] 2.13-3.15 sec 3.57 MBytes 29.5 Mbits/sec [ 4] 3.15-4.16 sec 4.33 MBytes 35.7 Mbits/sec [ 4] 4.16-6.21 sec 10.4 MBytes 42.7 Mbits/sec [ 4] 6.21-6.21 sec 0.00 Bytes 0.00 bits/sec [ 4] 6.21-7.35 sec 34.6 MBytes 253 Mbits/sec [ 4] 7.35-11.45 sec 22.0 MBytes 45.0 Mbits/sec [ 4] 11.45-11.45 sec 0.00 Bytes 0.00 bits/sec [ 4] 11.45-11.45 sec 0.00 Bytes 0.00 bits/sec [ 4] 11.45-11.45 sec 0.00 Bytes 0.00 bits/sec [ 4] 11.45-12.51 sec 16.0 MBytes 126 Mbits/sec [ 4] 12.51-13.59 sec 20.3 MBytes 158 Mbits/sec [ 4] 13.59-14.65 sec 13.4 MBytes 107 Mbits/sec [ 4] 14.65-16.79 sec 33.3 MBytes 130 Mbits/sec [ 4] 16.79-16.79 sec 0.00 Bytes 0.00 bits/sec [ 4] 16.79-17.82 sec 5.94 MBytes 48.7 Mbits/sec (etc) [root@Lab200slot2 ~]# iperf3 --sctp -6 -c 2001:db8:0:f101::1 -V -l 1400 -t 60 iperf version 3.0.1 (10 January 2014) Linux Lab200slot2 3.14.0 #1 SMP Thu Apr 3 23:18:29 EDT 2014 x86_64 Time: Fri, 11 Apr 2014 19:08:41 GMT Connecting to host 2001:db8:0:f101::1, port 5201 Cookie: Lab200slot2.1397243321.714295.2b3f7c [ 4] local 2001:db8:0:f101::2 port 55804 connected to 2001:db8:0:f101::1 port 5201 Starting Test: protocol: SCTP, 1 streams, 1400 byte blocks, omitting 0 seconds, 60 second test [ ID] Interval Transfer Bandwidth [ 4] 0.00-1.00 sec 169 MBytes 1.42 Gbits/sec [ 4] 1.00-2.00 sec 201 MBytes 1.69 Gbits/sec [ 4] 2.00-3.00 sec 188 MBytes 1.58 Gbits/sec [ 4] 3.00-4.00 sec 174 MBytes 1.46 Gbits/sec [ 4] 4.00-5.00 sec 165 MBytes 1.39 Gbits/sec [ 4] 5.00-6.00 sec 199 MBytes 1.67 Gbits/sec [ 4] 6.00-7.00 sec 163 MBytes 1.36 Gbits/sec [ 4] 7.00-8.00 sec 174 MBytes 1.46 Gbits/sec [ 4] 8.00-9.00 sec 193 MBytes 1.62 Gbits/sec [ 4] 9.00-10.00 sec 196 MBytes 1.65 Gbits/sec [ 4] 10.00-11.00 sec 157 MBytes 1.31 Gbits/sec [ 4] 11.00-12.00 sec 175 MBytes 1.47 Gbits/sec [ 4] 12.00-13.00 sec 192 MBytes 1.61 Gbits/sec [ 4] 13.00-14.00 sec 199 MBytes 1.67 Gbits/sec (etc) After patch: [root@Lab200slot2 ~]# iperf3 --sctp -4 -c 192.168.240.3 -V -l 1452 -t 60 iperf version 3.0.1 (10 January 2014) Linux Lab200slot2 3.14.0+ #1 SMP Mon Apr 14 12:06:40 EDT 2014 x86_64 Time: Mon, 14 Apr 2014 16:40:48 GMT Connecting to host 192.168.240.3, port 5201 Cookie: Lab200slot2.1397493648.413274.65e131 [ 4] local 192.168.240.2 port 50548 connected to 192.168.240.3 port 5201 Starting Test: protocol: SCTP, 1 streams, 1452 byte blocks, omitting 0 seconds, 60 second test [ ID] Interval Transfer Bandwidth [ 4] 0.00-1.00 sec 240 MBytes 2.02 Gbits/sec [ 4] 1.00-2.00 sec 239 MBytes 2.01 Gbits/sec [ 4] 2.00-3.00 sec 240 MBytes 2.01 Gbits/sec [ 4] 3.00-4.00 sec 239 MBytes 2.00 Gbits/sec [ 4] 4.00-5.00 sec 245 MBytes 2.05 Gbits/sec [ 4] 5.00-6.00 sec 240 MBytes 2.01 Gbits/sec [ 4] 6.00-7.00 sec 240 MBytes 2.02 Gbits/sec [ 4] 7.00-8.00 sec 239 MBytes 2.01 Gbits/sec With the reverted patch applied, the SCTP/IPv4 performance is back to normal on latest upstream for IPv4 and IPv6 and has same throughput as 3.4.2 test kernel, steady and interval reports are smooth again. Fixes: ef2820a735f7 ("net: sctp: Fix a_rwnd/rwnd management to reflect real state of the receiver's buffer") Reported-by: Peter Butler <pbutler@sonusnet.com> Reported-by: Dongsheng Song <dongsheng.song@gmail.com> Reported-by: Fengguang Wu <fengguang.wu@intel.com> Tested-by: Peter Butler <pbutler@sonusnet.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Cc: Matija Glavinic Pecotic <matija.glavinic-pecotic.ext@nsn.com> Cc: Alexander Sverdlin <alexander.sverdlin@nsn.com> Cc: Vlad Yasevich <vyasevich@gmail.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: Fix a_rwnd/rwnd management to reflect real state of the ↵Matija Glavinic Pecotic2014-02-171-2/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | receiver's buffer Implementation of (a)rwnd calculation might lead to severe performance issues and associations completely stalling. These problems are described and solution is proposed which improves lksctp's robustness in congestion state. 1) Sudden drop of a_rwnd and incomplete window recovery afterwards Data accounted in sctp_assoc_rwnd_decrease takes only payload size (sctp data), but size of sk_buff, which is blamed against receiver buffer, is not accounted in rwnd. Theoretically, this should not be the problem as actual size of buffer is double the amount requested on the socket (SO_RECVBUF). Problem here is that this will have bad scaling for data which is less then sizeof sk_buff. E.g. in 4G (LTE) networks, link interfacing radio side will have a large portion of traffic of this size (less then 100B). An example of sudden drop and incomplete window recovery is given below. Node B exhibits problematic behavior. Node A initiates association and B is configured to advertise rwnd of 10000. A sends messages of size 43B (size of typical sctp message in 4G (LTE) network). On B data is left in buffer by not reading socket in userspace. Lets examine when we will hit pressure state and declare rwnd to be 0 for scenario with above stated parameters (rwnd == 10000, chunk size == 43, each chunk is sent in separate sctp packet) Logic is implemented in sctp_assoc_rwnd_decrease: socket_buffer (see below) is maximum size which can be held in socket buffer (sk_rcvbuf). current_alloced is amount of data currently allocated (rx_count) A simple expression is given for which it will be examined after how many packets for above stated parameters we enter pressure state: We start by condition which has to be met in order to enter pressure state: socket_buffer < currently_alloced; currently_alloced is represented as size of sctp packets received so far and not yet delivered to userspace. x is the number of chunks/packets (since there is no bundling, and each chunk is delivered in separate packet, we can observe each chunk also as sctp packet, and what is important here, having its own sk_buff): socket_buffer < x*each_sctp_packet; each_sctp_packet is sctp chunk size + sizeof(struct sk_buff). socket_buffer is twice the amount of initially requested size of socket buffer, which is in case of sctp, twice the a_rwnd requested: 2*rwnd < x*(payload+sizeof(struc sk_buff)); sizeof(struct sk_buff) is 190 (3.13.0-rc4+). Above is stated that rwnd is 10000 and each payload size is 43 20000 < x(43+190); x > 20000/233; x ~> 84; After ~84 messages, pressure state is entered and 0 rwnd is advertised while received 84*43B ~= 3612B sctp data. This is why external observer notices sudden drop from 6474 to 0, as it will be now shown in example: IP A.34340 > B.12345: sctp (1) [INIT] [init tag: 1875509148] [rwnd: 81920] [OS: 10] [MIS: 65535] [init TSN: 1096057017] IP B.12345 > A.34340: sctp (1) [INIT ACK] [init tag: 3198966556] [rwnd: 10000] [OS: 10] [MIS: 10] [init TSN: 902132839] IP A.34340 > B.12345: sctp (1) [COOKIE ECHO] IP B.12345 > A.34340: sctp (1) [COOKIE ACK] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057017] [SID: 0] [SSEQ 0] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057017] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057018] [SID: 0] [SSEQ 1] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057018] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057019] [SID: 0] [SSEQ 2] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057019] [a_rwnd 9914] [#gap acks 0] [#dup tsns 0] <...> IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057098] [SID: 0] [SSEQ 81] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057098] [a_rwnd 6517] [#gap acks 0] [#dup tsns 0] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057099] [SID: 0] [SSEQ 82] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057099] [a_rwnd 6474] [#gap acks 0] [#dup tsns 0] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057100] [SID: 0] [SSEQ 83] [PPID 0x18] --> Sudden drop IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 0] [#gap acks 0] [#dup tsns 0] At this point, rwnd_press stores current rwnd value so it can be later restored in sctp_assoc_rwnd_increase. This however doesn't happen as condition to start slowly increasing rwnd until rwnd_press is returned to rwnd is never met. This condition is not met since rwnd, after it hit 0, must first reach rwnd_press by adding amount which is read from userspace. Let us observe values in above example. Initial a_rwnd is 10000, pressure was hit when rwnd was ~6500 and the amount of actual sctp data currently waiting to be delivered to userspace is ~3500. When userspace starts to read, sctp_assoc_rwnd_increase will be blamed only for sctp data, which is ~3500. Condition is never met, and when userspace reads all data, rwnd stays on 3569. IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 1505] [#gap acks 0] [#dup tsns 0] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057100] [a_rwnd 3010] [#gap acks 0] [#dup tsns 0] IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057101] [SID: 0] [SSEQ 84] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057101] [a_rwnd 3569] [#gap acks 0] [#dup tsns 0] --> At this point userspace read everything, rwnd recovered only to 3569 IP A.34340 > B.12345: sctp (1) [DATA] (B)(E) [TSN: 1096057102] [SID: 0] [SSEQ 85] [PPID 0x18] IP B.12345 > A.34340: sctp (1) [SACK] [cum ack 1096057102] [a_rwnd 3569] [#gap acks 0] [#dup tsns 0] Reproduction is straight forward, it is enough for sender to send packets of size less then sizeof(struct sk_buff) and receiver keeping them in its buffers. 2) Minute size window for associations sharing the same socket buffer In case multiple associations share the same socket, and same socket buffer (sctp.rcvbuf_policy == 0), different scenarios exist in which congestion on one of the associations can permanently drop rwnd of other association(s). Situation will be typically observed as one association suddenly having rwnd dropped to size of last packet received and never recovering beyond that point. Different scenarios will lead to it, but all have in common that one of the associations (let it be association from 1)) nearly depleted socket buffer, and the other association blames socket buffer just for the amount enough to start the pressure. This association will enter pressure state, set rwnd_press and announce 0 rwnd. When data is read by userspace, similar situation as in 1) will occur, rwnd will increase just for the size read by userspace but rwnd_press will be high enough so that association doesn't have enough credit to reach rwnd_press and restore to previous state. This case is special case of 1), being worse as there is, in the worst case, only one packet in buffer for which size rwnd will be increased. Consequence is association which has very low maximum rwnd ('minute size', in our case down to 43B - size of packet which caused pressure) and as such unusable. Scenario happened in the field and labs frequently after congestion state (link breaks, different probabilities of packet drop, packet reordering) and with scenario 1) preceding. Here is given a deterministic scenario for reproduction: >From node A establish two associations on the same socket, with rcvbuf_policy being set to share one common buffer (sctp.rcvbuf_policy == 0). On association 1 repeat scenario from 1), that is, bring it down to 0 and restore up. Observe scenario 1). Use small payload size (here we use 43). Once rwnd is 'recovered', bring it down close to 0, as in just one more packet would close it. This has as a consequence that association number 2 is able to receive (at least) one more packet which will bring it in pressure state. E.g. if association 2 had rwnd of 10000, packet received was 43, and we enter at this point into pressure, rwnd_press will have 9957. Once payload is delivered to userspace, rwnd will increase for 43, but conditions to restore rwnd to original state, just as in 1), will never be satisfied. --> Association 1, between A.y and B.12345 IP A.55915 > B.12345: sctp (1) [INIT] [init tag: 836880897] [rwnd: 10000] [OS: 10] [MIS: 65535] [init TSN: 4032536569] IP B.12345 > A.55915: sctp (1) [INIT ACK] [init tag: 2873310749] [rwnd: 81920] [OS: 10] [MIS: 10] [init TSN: 3799315613] IP A.55915 > B.12345: sctp (1) [COOKIE ECHO] IP B.12345 > A.55915: sctp (1) [COOKIE ACK] --> Association 2, between A.z and B.12346 IP A.55915 > B.12346: sctp (1) [INIT] [init tag: 534798321] [rwnd: 10000] [OS: 10] [MIS: 65535] [init TSN: 2099285173] IP B.12346 > A.55915: sctp (1) [INIT ACK] [init tag: 516668823] [rwnd: 81920] [OS: 10] [MIS: 10] [init TSN: 3676403240] IP A.55915 > B.12346: sctp (1) [COOKIE ECHO] IP B.12346 > A.55915: sctp (1) [COOKIE ACK] --> Deplete socket buffer by sending messages of size 43B over association 1 IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315613] [SID: 0] [SSEQ 0] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315613] [a_rwnd 9957] [#gap acks 0] [#dup tsns 0] <...> IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315696] [a_rwnd 6388] [#gap acks 0] [#dup tsns 0] IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315697] [SID: 0] [SSEQ 84] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315697] [a_rwnd 6345] [#gap acks 0] [#dup tsns 0] --> Sudden drop on 1 IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315698] [SID: 0] [SSEQ 85] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315698] [a_rwnd 0] [#gap acks 0] [#dup tsns 0] --> Here userspace read, rwnd 'recovered' to 3698, now deplete again using association 1 so there is place in buffer for only one more packet IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315799] [SID: 0] [SSEQ 186] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315799] [a_rwnd 86] [#gap acks 0] [#dup tsns 0] IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315800] [SID: 0] [SSEQ 187] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 43] [#gap acks 0] [#dup tsns 0] --> Socket buffer is almost depleted, but there is space for one more packet, send them over association 2, size 43B IP B.12346 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3676403240] [SID: 0] [SSEQ 0] [PPID 0x18] IP A.55915 > B.12346: sctp (1) [SACK] [cum ack 3676403240] [a_rwnd 0] [#gap acks 0] [#dup tsns 0] --> Immediate drop IP A.60995 > B.12346: sctp (1) [SACK] [cum ack 387491510] [a_rwnd 0] [#gap acks 0] [#dup tsns 0] --> Read everything from the socket, both association recover up to maximum rwnd they are capable of reaching, note that association 1 recovered up to 3698, and association 2 recovered only to 43 IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 1548] [#gap acks 0] [#dup tsns 0] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315800] [a_rwnd 3053] [#gap acks 0] [#dup tsns 0] IP B.12345 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3799315801] [SID: 0] [SSEQ 188] [PPID 0x18] IP A.55915 > B.12345: sctp (1) [SACK] [cum ack 3799315801] [a_rwnd 3698] [#gap acks 0] [#dup tsns 0] IP B.12346 > A.55915: sctp (1) [DATA] (B)(E) [TSN: 3676403241] [SID: 0] [SSEQ 1] [PPID 0x18] IP A.55915 > B.12346: sctp (1) [SACK] [cum ack 3676403241] [a_rwnd 43] [#gap acks 0] [#dup tsns 0] A careful reader might wonder why it is necessary to reproduce 1) prior reproduction of 2). It is simply easier to observe when to send packet over association 2 which will push association into the pressure state. Proposed solution: Both problems share the same root cause, and that is improper scaling of socket buffer with rwnd. Solution in which sizeof(sk_buff) is taken into concern while calculating rwnd is not possible due to fact that there is no linear relationship between amount of data blamed in increase/decrease with IP packet in which payload arrived. Even in case such solution would be followed, complexity of the code would increase. Due to nature of current rwnd handling, slow increase (in sctp_assoc_rwnd_increase) of rwnd after pressure state is entered is rationale, but it gives false representation to the sender of current buffer space. Furthermore, it implements additional congestion control mechanism which is defined on implementation, and not on standard basis. Proposed solution simplifies whole algorithm having on mind definition from rfc: o Receiver Window (rwnd): This gives the sender an indication of the space available in the receiver's inbound buffer. Core of the proposed solution is given with these lines: sctp_assoc_rwnd_update: if ((asoc->base.sk->sk_rcvbuf - rx_count) > 0) asoc->rwnd = (asoc->base.sk->sk_rcvbuf - rx_count) >> 1; else asoc->rwnd = 0; We advertise to sender (half of) actual space we have. Half is in the braces depending whether you would like to observe size of socket buffer as SO_RECVBUF or twice the amount, i.e. size is the one visible from userspace, that is, from kernelspace. In this way sender is given with good approximation of our buffer space, regardless of the buffer policy - we always advertise what we have. Proposed solution fixes described problems and removes necessity for rwnd restoration algorithm. Finally, as proposed solution is simplification, some lines of code, along with some bytes in struct sctp_association are saved. Version 2 of the patch addressed comments from Vlad. Name of the function is set to be more descriptive, and two parts of code are changed, in one removing the superfluous call to sctp_assoc_rwnd_update since call would not result in update of rwnd, and the other being reordering of the code in a way that call to sctp_assoc_rwnd_update updates rwnd. Version 3 corrected change introduced in v2 in a way that existing function is not reordered/copied in line, but it is correctly called. Thanks Vlad for suggesting. Signed-off-by: Matija Glavinic Pecotic <matija.glavinic-pecotic.ext@nsn.com> Reviewed-by: Alexander Sverdlin <alexander.sverdlin@nsn.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: Fix FSF address in file headersJeff Kirsher2013-12-061-3/+2
| | | | | | | | | | | | Several files refer to an old address for the Free Software Foundation in the file header comment. Resolve by replacing the address with the URL <http://www.gnu.org/licenses/> so that we do not have to keep updating the header comments anytime the address changes. CC: Vlad Yasevich <vyasevich@gmail.com> CC: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: trivial: update bug report in header commentDaniel Borkmann2013-08-091-6/+0
| | | | | | | | | | | | With the restructuring of the lksctp.org site, we only allow bug reports through the SCTP mailing list linux-sctp@vger.kernel.org, not via SF, as SF is only used for web hosting and nothing more. While at it, also remove the obvious statement that bugs will be fixed and incooperated into the kernel. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: trivial: update mailing list addressDaniel Borkmann2013-07-241-1/+1
| | | | | | | | | | | | The SCTP mailing list address to send patches or questions to is linux-sctp@vger.kernel.org and not lksctp-developers@lists.sourceforge.net anymore. Therefore, update all occurences. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: sctp: remove SCTP_STATIC macroDaniel Borkmann2013-06-171-5/+5
| | | | | | | | | | | | | | | | SCTP_STATIC is just another define for the static keyword. It's use is inconsistent in the SCTP code anyway and it was introduced in the initial implementation of SCTP in 2.5. We have a regression suite in lksctp-tools, but this is for user space only, so noone makes use of this macro anymore. The kernel test suite for 2.5 is incompatible with the current SCTP code anyway. So simply Remove it, to be more consistent with the rest of the kernel code. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* netvm: prevent a stream-specific deadlockMel Gorman2012-07-311-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch series is based on top of "Swap-over-NBD without deadlocking v15" as it depends on the same reservation of PF_MEMALLOC reserves logic. When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. In diskless systems this is not an option so if swap if required then swapping over the network is considered. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap but this is not always an option. There is no guarantee that the network attached storage (NAS) device is running Linux or supports NBD. However, it is likely that it supports NFS so there are users that want support for swapping over NFS despite any performance concern. Some distributions currently carry patches that support swapping over NFS but it would be preferable to support it in the mainline kernel. Patch 1 avoids a stream-specific deadlock that potentially affects TCP. Patch 2 is a small modification to SELinux to avoid using PFMEMALLOC reserves. Patch 3 adds three helpers for filesystems to handle swap cache pages. For example, page_file_mapping() returns page->mapping for file-backed pages and the address_space of the underlying swap file for swap cache pages. Patch 4 adds two address_space_operations to allow a filesystem to pin all metadata relevant to a swapfile in memory. Upon successful activation, the swapfile is marked SWP_FILE and the address space operation ->direct_IO is used for writing and ->readpage for reading in swap pages. Patch 5 notes that patch 3 is bolting filesystem-specific-swapfile-support onto the side and that the default handlers have different information to what is available to the filesystem. This patch refactors the code so that there are generic handlers for each of the new address_space operations. Patch 6 adds an API to allow a vector of kernel addresses to be translated to struct pages and pinned for IO. Patch 7 adds support for using highmem pages for swap by kmapping the pages before calling the direct_IO handler. Patch 8 updates NFS to use the helpers from patch 3 where necessary. Patch 9 avoids setting PF_private on PG_swapcache pages within NFS. Patch 10 implements the new swapfile-related address_space operations for NFS and teaches the direct IO handler how to manage kernel addresses. Patch 11 prevents page allocator recursions in NFS by using GFP_NOIO where appropriate. Patch 12 fixes a NULL pointer dereference that occurs when using swap-over-NFS. With the patches applied, it is possible to mount a swapfile that is on an NFS filesystem. Swap performance is not great with a swap stress test taking roughly twice as long to complete than if the swap device was backed by NBD. This patch: netvm: prevent a stream-specific deadlock It could happen that all !SOCK_MEMALLOC sockets have buffered so much data that we're over the global rmem limit. This will prevent SOCK_MEMALLOC buffers from receiving data, which will prevent userspace from running, which is needed to reduce the buffered data. Fix this by exempting the SOCK_MEMALLOC sockets from the rmem limit. Once this change it applied, it is important that sockets that set SOCK_MEMALLOC do not clear the flag until the socket is being torn down. If this happens, a warning is generated and the tokens reclaimed to avoid accounting errors until the bug is fixed. [davem@davemloft.net: Warning about clearing SOCK_MEMALLOC] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Rik van Riel <riel@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Neil Brown <neilb@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* sctp: be more restrictive in transport selection on bundled sacksNeil Horman2012-06-301-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It was noticed recently that when we send data on a transport, its possible that we might bundle a sack that arrived on a different transport. While this isn't a major problem, it does go against the SHOULD requirement in section 6.4 of RFC 2960: An endpoint SHOULD transmit reply chunks (e.g., SACK, HEARTBEAT ACK, etc.) to the same destination transport address from which it received the DATA or control chunk to which it is replying. This rule should also be followed if the endpoint is bundling DATA chunks together with the reply chunk. This patch seeks to correct that. It restricts the bundling of sack operations to only those transports which have moved the ctsn of the association forward since the last sack. By doing this we guarantee that we only bundle outbound saks on a transport that has received a chunk since the last sack. This brings us into stricter compliance with the RFC. Vlad had initially suggested that we strictly allow only sack bundling on the transport that last moved the ctsn forward. While this makes sense, I was concerned that doing so prevented us from bundling in the case where we had received chunks that moved the ctsn on multiple transports. In those cases, the RFC allows us to select any of the transports having received chunks to bundle the sack on. so I've modified the approach to allow for that, by adding a state variable to each transport that tracks weather it has moved the ctsn since the last sack. This I think keeps our behavior (and performance), close enough to our current profile that I think we can do this without a sysctl knob to enable/disable it. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Vlad Yaseivch <vyasevich@gmail.com> CC: David S. Miller <davem@davemloft.net> CC: linux-sctp@vger.kernel.org Reported-by: Michele Baldessari <michele@redhat.com> Reported-by: sorin serban <sserban@redhat.com> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: ABORT if receive, reassmbly, or reodering queue is not empty while ↵Thomas Graf2011-07-081-3/+13
| | | | | | | | | | | | | | | | | | | | | closing socket Trigger user ABORT if application closes a socket which has data queued on the socket receive queue or chunks waiting on the reassembly or ordering queue as this would imply data being lost which defeats the point of a graceful shutdown. This behavior is already practiced in TCP. We do not check the input queue because that would mean to parse all chunks on it to look for unacknowledged data which seems too much of an effort. Control chunks or duplicated chunks may also be in the input queue and should not be stopping a graceful shutdown. Signed-off-by: Thomas Graf <tgraf@infradead.org> Acked-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6Linus Torvalds2011-05-201-1/+29
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6: (1446 commits) macvlan: fix panic if lowerdev in a bond tg3: Add braces around 5906 workaround. tg3: Fix NETIF_F_LOOPBACK error macvlan: remove one synchronize_rcu() call networking: NET_CLS_ROUTE4 depends on INET irda: Fix error propagation in ircomm_lmp_connect_response() irda: Kill set but unused variable 'bytes' in irlan_check_command_param() irda: Kill set but unused variable 'clen' in ircomm_connect_indication() rxrpc: Fix set but unused variable 'usage' in rxrpc_get_transport() be2net: Kill set but unused variable 'req' in lancer_fw_download() irda: Kill set but unused vars 'saddr' and 'daddr' in irlan_provider_connect_indication() atl1c: atl1c_resume() is only used when CONFIG_PM_SLEEP is defined. rxrpc: Fix set but unused variable 'usage' in rxrpc_get_peer(). rxrpc: Kill set but unused variable 'local' in rxrpc_UDP_error_handler() rxrpc: Kill set but unused variable 'sp' in rxrpc_process_connection() rxrpc: Kill set but unused variable 'sp' in rxrpc_rotate_tx_window() pkt_sched: Kill set but unused variable 'protocol' in tc_classify() isdn: capi: Use pr_debug() instead of ifdefs. tg3: Update version to 3.119 tg3: Apply rx_discards fix to 5719/5720 ... Fix up trivial conflicts in arch/x86/Kconfig and net/mac80211/agg-tx.c as per Davem.
| * sctp: implement event notification SCTP_SENDER_DRY_EVENTWei Yongjun2011-04-211-0/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implement event notification SCTP_SENDER_DRY_EVENT. SCTP Socket API Extensions: 6.1.9. SCTP_SENDER_DRY_EVENT When the SCTP stack has no more user data to send or retransmit, this notification is given to the user. Also, at the time when a user app subscribes to this event, if there is no data to be sent or retransmit, the stack will immediately send up this notification. Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com> Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
| * sctp: change auth event type name to SCTP_AUTHENTICATION_EVENTWei Yongjun2011-04-211-1/+1
| | | | | | | | | | | | | | | | | | This patch change the auth event type name to SCTP_AUTHENTICATION_EVENT, which is based on API extension compliance. Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com> Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* | Revert wrong fixes for common misspellingsLucas De Marchi2011-04-261-1/+1
|/ | | | | | | These changes were incorrectly fixed by codespell. They were now manually corrected. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
* Fix common misspellingsLucas De Marchi2011-03-311-1/+1
| | | | | | Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
* include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo2010-03-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* sctp: Use frag list abstraction interfaces.David S. Miller2009-06-091-4/+3
| | | | Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: Rework the tsn map to use generic bitmap.Vlad Yasevich2008-10-081-2/+8
| | | | | | | | | | | | | | | | | | | The tsn map currently use is 4K large and is stuck inside the sctp_association structure making memory references REALLY expensive. What we really need is at most 4K worth of bits so the biggest map we would have is 512 bytes. Also, the map is only really usefull when we have gaps to store and report. As such, starting with minimal map of say 32 TSNs (bits) should be enough for normal low-loss operations. We can grow the map by some multiple of 32 along with some extra room any time we receive the TSN which would put us outside of the map boundry. As we close gaps, we can shift the map to rebase it on the latest TSN we've seen. This saves 4088 bytes per association just in the map alone along savings from the now unnecessary structure members. Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sctp: Mark the tsn as received after all allocations finishVlad Yasevich2008-07-081-0/+5
| | | | | | | | | | | | | | If we don't have the buffer space or memory allocations fail, the data chunk is dropped, but TSN is still reported as received. This introduced a data loss that can't be recovered. We should only mark TSNs are received after memory allocations finish. The one exception is the invalid stream identifier, but that's due to user error and is reported back to the user. This was noticed by Michael Tuexen. Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Fix compiler warning about const qualifiersVlad Yasevich2008-04-121-1/+1
| | | | | | | | | | | Fix 3 warnings about discarding const qualifiers: net/sctp/ulpevent.c:862: warning: passing argument 1 of 'sctp_event2skb' discards qualifiers from pointer target type net/sctp/sm_statefuns.c:4393: warning: passing argument 1 of 'SCTP_ASOC' discards qualifiers from pointer target type net/sctp/socket.c:5874: warning: passing argument 1 of 'cmsg_nxthdr' discards qualifiers from pointer target type Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Correctly set the length of sctp_assoc_change notificationVlad Yasevich2008-02-271-1/+1
| | | | | | | sctp_assoc_change notification may contain the data from a received ABORT chunk. Set the length correctly to account for that. Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
* [SCTP]: Stop claiming that this is a "reference implementation"Vlad Yasevich2008-02-051-3/+4
| | | | | | | | | | | I was notified by Randy Stewart that lksctp claims to be "the reference implementation". First of all, "the refrence implementation" was the original implementation of SCTP in usersapce written ty Randy and a few others. Second, after looking at the definiton of 'reference implementation', we don't really meet the requirements. Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
* [NET] CORE: Introducing new memory accounting interface.Hideo Aoki2008-01-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch introduces new memory accounting functions for each network protocol. Most of them are renamed from memory accounting functions for stream protocols. At the same time, some stream memory accounting functions are removed since other functions do same thing. Renaming: sk_stream_free_skb() -> sk_wmem_free_skb() __sk_stream_mem_reclaim() -> __sk_mem_reclaim() sk_stream_mem_reclaim() -> sk_mem_reclaim() sk_stream_mem_schedule -> __sk_mem_schedule() sk_stream_pages() -> sk_mem_pages() sk_stream_rmem_schedule() -> sk_rmem_schedule() sk_stream_wmem_schedule() -> sk_wmem_schedule() sk_charge_skb() -> sk_mem_charge() Removeing sk_stream_rfree(): consolidates into sock_rfree() sk_stream_set_owner_r(): consolidates into skb_set_owner_r() sk_stream_mem_schedule() The following functions are added. sk_has_account(): check if the protocol supports accounting sk_mem_uncharge(): do the opposite of sk_mem_charge() In addition, to achieve consolidation, updating sk_wmem_queued is removed from sk_mem_charge(). Next, to consolidate memory accounting functions, this patch adds memory accounting calls to network core functions. Moreover, present memory accounting call is renamed to new accounting call. Finally we replace present memory accounting calls with new interface in TCP and SCTP. Signed-off-by: Takahiro Yasui <tyasui@redhat.com> Signed-off-by: Hideo Aoki <haoki@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Fix the name of the authentication event.Vlad Yasevich2008-01-081-1/+1
| | | | | | | The even should be called SCTP_AUTHENTICATION_INDICATION. Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: API updates to suport SCTP-AUTH extensions.Vlad Yasevich2007-10-101-0/+37
| | | | | | | | | | Add SCTP-AUTH API. The API implemented here was agreed to between implementors at the 9th SCTP Interop. It will be documented in the next revision of the SCTP socket API spec. Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Rewrite of sctp buffer management codeNeil Horman2007-10-101-0/+18
| | | | | | | | | | | | | This patch introduces autotuning to the sctp buffer management code similar to the TCP. The buffer space can be grown if the advertised receive window still has room. This might happen if small message sizes are used, which is common in telecom environmens. New tunables are introduced that provide limits to buffer growth and memory pressure is entered if to much buffer spaces is used. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Do not include ABORT chunk header in the notification.Vlad Yasevich2007-05-101-9/+2
| | | | | | | | | | The socket API draft is unclear about whether to include the chunk header or not. Recent discussion on the sctp implementors mailing list clarified that the chunk header shouldn't be included, but the error parameter header still needs to be there. Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Implement sac_info field in SCTP_ASSOC_CHANGE notification.Vlad Yasevich2007-04-251-7/+42
| | | | | | | | | | | | | | | | As stated in the sctp socket api draft: sac_info: variable If the sac_state is SCTP_COMM_LOST and an ABORT chunk was received for this association, sac_info[] contains the complete ABORT chunk as defined in the SCTP specification RFC2960 [RFC2960] section 3.3.7. We now save received ABORT chunks into the sac_info field and pass that to the user. Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [NET] SCTP: Fix whitespace errors.YOSHIFUJI Hideaki2007-02-101-11/+11
| | | | | Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Fix typo adaption -> adaptation as per the latest API draft.Ivan Skytte Jorgensen2006-12-221-10/+10
| | | | | | Signed-off-by: Ivan Skytte Jorgensen <isj-sctp@i1.dk> Signed-off-by: Sridhar Samudrala <sri@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Add support for SCTP_CONTEXT socket option.Ivan Skytte Jorgensen2006-12-131-1/+3
| | | | | | Signed-off-by: Ivan Skytte Jorgensen <isj-sctp@i1.dk> Signed-off-by: Sridhar Samudrala <sri@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: More trivial sctp annotations.Al Viro2006-12-021-1/+1
| | | | | Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Fix receive buffer accounting.Vlad Yasevich2006-10-111-10/+15
| | | | | | | | | | | | | When doing receiver buffer accounting, we always used skb->truesize. This is problematic when processing bundled DATA chunks because for every DATA chunk that could be small part of one large skb, we would charge the size of the entire skb. The new approach is to store the size of the DATA chunk we are accounting for in the sctp_ulpevent structure and use that stored value for accounting. Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: Sridhar Samudrala <sri@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Send only 1 window update SACK per message.Tsutomu Fujii2006-06-171-2/+28
| | | | | | | | | | | | | Right now, every time we increase our rwnd by more then MTU bytes, we trigger a SACK. When processing large messages, this will generate a SACK for almost every other SCTP fragment. However since we are freeing the entire message at the same time, we might as well collapse the SACK generation to 1. Signed-off-by: Tsutomu Fujii <t-fujii@nb.jp.nec.com> Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: Sridhar Samudrala <sri@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP]: Include ulpevents in socket receive buffer accounting.Neil Horman2005-11-111-17/+7
| | | | | | | | | | | Also introduces a sysctl option to configure the receive buffer accounting policy to be either at socket or association level. Default is all the associations on the same socket share the receive buffer. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Sridhar Samudrala <sri@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SCTP] Rename SCTP specific control message flags.Ivan Skytte Jorgensen2005-10-281-3/+3
| | | | | | | | Rename SCTP specific control message flags to use SCTP_ prefix rather than MSG_ prefix as per the latest sctp sockets API draft. Signed-off-by: Ivan Skytte Jorgensen <isj-sctp@i1.dk> Signed-off-by: Sridhar Samudrala <sri@us.ibm.com>
* [PATCH] gfp flags annotations - part 1Al Viro2005-10-081-9/+9
| | | | | | | | | | | | - added typedef unsigned int __nocast gfp_t; - replaced __nocast uses for gfp flags with gfp_t - it gives exactly the same warnings as far as sparse is concerned, doesn't change generated code (from gcc point of view we replaced unsigned int with typedef) and documents what's going on far better. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [SCTP]: __nocast annotationsAlexey Dobriyan2005-07-111-9/+10
| | | | | Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-161-0/+942
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
OpenPOWER on IntegriCloud