| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Allow interval trees to quickly check for overlaps to avoid unnecesary
tree lookups in interval_tree_iter_first().
As of this patch, all interval tree flavors will require using a
'rb_root_cached' such that we can have the leftmost node easily
available. While most users will make use of this feature, those with
special functions (in addition to the generic insert, delete, search
calls) will avoid using the cached option as they can do funky things
with insertions -- for example, vma_interval_tree_insert_after().
[jglisse@redhat.com: fix deadlock from typo vm_lock_anon_vma()]
Link: http://lkml.kernel.org/r/20170808225719.20723-1-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20170719014603.19029-12-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Doug Ledford <dledford@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Christian Benvenuti <benve@cisco.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch 1 implements support for interval trees, on top of the augmented
rbtree API. It also adds synthetic tests to compare the performance of
interval trees vs prio trees. Short answers is that interval trees are
slightly faster (~25%) on insert/erase, and much faster (~2.4 - 3x)
on search. It is debatable how realistic the synthetic test is, and I have
not made such measurements yet, but my impression is that interval trees
would still come out faster.
Patch 2 uses a preprocessor template to make the interval tree generic,
and uses it as a replacement for the vma prio_tree.
Patch 3 takes the other prio_tree user, kmemleak, and converts it to use
a basic rbtree. We don't actually need the augmented rbtree support here
because the intervals are always non-overlapping.
Patch 4 removes the now-unused prio tree library.
Patch 5 proposes an additional optimization to rb_erase_augmented, now
providing it as an inline function so that the augmented callbacks can be
inlined in. This provides an additional 5-10% performance improvement
for the interval tree insert/erase benchmark. There is a maintainance cost
as it exposes augmented rbtree users to some of the rbtree library internals;
however I think this cost shouldn't be too high as I expect the augmented
rbtree will always have much less users than the base rbtree.
I should probably add a quick summary of why I think it makes sense to
replace prio trees with augmented rbtree based interval trees now. One of
the drivers is that we need augmented rbtrees for Rik's vma gap finding
code, and once you have them, it just makes sense to use them for interval
trees as well, as this is the simpler and more well known algorithm. prio
trees, in comparison, seem *too* clever: they impose an additional 'heap'
constraint on the tree, which they use to guarantee a faster worst-case
complexity of O(k+log N) for stabbing queries in a well-balanced prio
tree, vs O(k*log N) for interval trees (where k=number of matches,
N=number of intervals). Now this sounds great, but in practice prio trees
don't realize this theorical benefit. First, the additional constraint
makes them harder to update, so that the kernel implementation has to
simplify things by balancing them like a radix tree, which is not always
ideal. Second, the fact that there are both index and heap properties
makes both tree manipulation and search more complex, which results in a
higher multiplicative time constant. As it turns out, the simple interval
tree algorithm ends up running faster than the more clever prio tree.
This patch:
Add two test modules:
- prio_tree_test measures the performance of lib/prio_tree.c, both for
insertion/removal and for stabbing searches
- interval_tree_test measures the performance of a library of equivalent
functionality, built using the augmented rbtree support.
In order to support the second test module, lib/interval_tree.c is
introduced. It is kept separate from the interval_tree_test main file
for two reasons: first we don't want to provide an unfair advantage
over prio_tree_test by having everything in a single compilation unit,
and second there is the possibility that the interval tree functionality
could get some non-test users in kernel over time.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|