| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch is preparation for replacing most ".data.init_task" in the
kernel with macros, so that the section name can later be changed
without having to touch a lot of the kernel.
The long-term goal here is to be able to change the kernel's magic
section names to those that are compatible with -ffunction-sections
-fdata-sections. This requires renaming all magic sections with names
of the form ".data.foo".
Signed-off-by: Tim Abbott <tabbott@ksplice.com>
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* create mm/init-mm.c, move init_mm there
* remove INIT_MM, initialize init_mm with C99 initializer
* unexport init_mm on all arches:
init_mm is already unexported on x86.
One strange place is some OMAP driver (drivers/video/omap/) which
won't build modular, but it's already wants get_vm_area() export.
Somebody should look there.
[akpm@linux-foundation.org: add missing #includes]
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Mike Frysinger <vapier.adi@gmail.com>
Cc: Americo Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perfcounters-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (574 commits)
perf_counter: Turn off by default
perf_counter: Add counter->id to the throttle event
perf_counter: Better align code
perf_counter: Rename L2 to LL cache
perf_counter: Standardize event names
perf_counter: Rename enums
perf_counter tools: Clean up u64 usage
perf_counter: Rename perf_counter_limit sysctl
perf_counter: More paranoia settings
perf_counter: powerpc: Implement generalized cache events for POWER processors
perf_counters: powerpc: Add support for POWER7 processors
perf_counter: Accurate period data
perf_counter: Introduce struct for sample data
perf_counter tools: Normalize data using per sample period data
perf_counter: Annotate exit ctx recursion
perf_counter tools: Propagate signals properly
perf_counter tools: Small frequency related fixes
perf_counter: More aggressive frequency adjustment
perf_counter/x86: Fix the model number of Intel Core2 processors
perf_counter, x86: Correct some event and umask values for Intel processors
...
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Conflicts:
arch/x86/kernel/irqinit.c
arch/x86/kernel/irqinit_64.c
arch/x86/kernel/traps.c
arch/x86/mm/fault.c
include/linux/sched.h
kernel/exit.c
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Instead of en/dis-abling all counters acting on a particular
task, en/dis- able all counters we created.
[ v2: fix crash on first counter enable ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <20090523163012.916937244@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This replaces the struct perf_counter_context in the task_struct with
a pointer to a dynamically allocated perf_counter_context struct. The
main reason for doing is this is to allow us to transfer a
perf_counter_context from one task to another when we do lazy PMU
switching in a later patch.
This has a few side-benefits: the task_struct becomes a little smaller,
we save some memory because only tasks that have perf_counters attached
get a perf_counter_context allocated for them, and we can remove the
inclusion of <linux/perf_counter.h> in sched.h, meaning that we don't
end up recompiling nearly everything whenever perf_counter.h changes.
The perf_counter_context structures are reference-counted and freed
when the last reference is dropped. A context can have references
from its task and the counters on its task. Counters can outlive the
task so it is possible that a context will be freed well after its
task has exited.
Contexts are allocated on fork if the parent had a context, or
otherwise the first time that a per-task counter is created on a task.
In the latter case, we set the context pointer in the task struct
locklessly using an atomic compare-and-exchange operation in case we
raced with some other task in creating a context for the subject task.
This also removes the task pointer from the perf_counter struct. The
task pointer was not used anywhere and would make it harder to move a
context from one task to another. Anything that needed to know which
task a counter was attached to was already using counter->ctx->task.
The __perf_counter_init_context function moves up in perf_counter.c
so that it can be called from find_get_context, and now initializes
the refcount, but is otherwise unchanged.
We were potentially calling list_del_counter twice: once from
__perf_counter_exit_task when the task exits and once from
__perf_counter_remove_from_context when the counter's fd gets closed.
This adds a check in list_del_counter so it doesn't do anything if
the counter has already been removed from the lists.
Since perf_counter_task_sched_in doesn't do anything if the task doesn't
have a context, and leaves cpuctx->task_ctx = NULL, this adds code to
__perf_install_in_context to set cpuctx->task_ctx if necessary, i.e. in
the case where the current task adds the first counter to itself and
thus creates a context for itself.
This also adds similar code to __perf_counter_enable to handle a
similar situation which can arise when the counters have been disabled
using prctl; that also leaves cpuctx->task_ctx = NULL.
[ Impact: refactor counter context management to prepare for new feature ]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18966.10075.781053.231153@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Merge reason: This brach was on -rc1, refresh it to almost-rc4 to pick up
the latest upstream fixes.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Conflicts:
arch/powerpc/include/asm/systbl.h
arch/powerpc/include/asm/unistd.h
include/linux/init_task.h
Merge reason: the conflicts are non-trivial: PowerPC placement
of sys_perf_counter_open has to be mixed with the
new preadv/pwrite syscalls.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Impact: fix boot crash
When doing the generic context switch event I ran into some early
boot hangs, which were caused by inf func recursion (event, fault,
event, fault).
I eventually tracked it down to event_list not being initialized
at the time of the first event. Fix this.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Orig-LKML-Reference: <20090319194233.195392657@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Merge reason: we have gathered quite a few conflicts, need to merge upstream
Conflicts:
arch/powerpc/kernel/Makefile
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/hardirq.h
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/cpu/common.c
arch/x86/kernel/irq.c
arch/x86/kernel/syscall_table_32.S
arch/x86/mm/iomap_32.c
include/linux/sched.h
kernel/Makefile
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Conflicts:
arch/x86/kernel/acpi/boot.c
|
| |\ \ \ \ \ \
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Conflicts:
arch/x86/kernel/setup_percpu.c
arch/x86/mm/fault.c
drivers/acpi/processor_idle.c
kernel/irq/handle.c
|
| |\ \ \ \ \ \ \
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
Conflicts:
include/linux/kernel_stat.h
|
| |\ \ \ \ \ \ \ \
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | | |
Conflicts:
fs/exec.c
include/linux/init_task.h
Simple context conflicts.
|
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | | |
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | | |
Change counter inheritance from a 'push' to a 'pull' model: instead of
child tasks pushing their final counts to the parent, reuse the wait4
infrastructure to pull counters as child tasks are exit-processed,
much like how cutime/cstime is collected.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\ \ \ \ \ \ \ \ \ \
| |_|_|_|_|_|_|_|_|/
|/| | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6: (44 commits)
nommu: Provide mmap_min_addr definition.
TOMOYO: Add description of lists and structures.
TOMOYO: Remove unused field.
integrity: ima audit dentry_open failure
TOMOYO: Remove unused parameter.
security: use mmap_min_addr indepedently of security models
TOMOYO: Simplify policy reader.
TOMOYO: Remove redundant markers.
SELinux: define audit permissions for audit tree netlink messages
TOMOYO: Remove unused mutex.
tomoyo: avoid get+put of task_struct
smack: Remove redundant initialization.
integrity: nfsd imbalance bug fix
rootplug: Remove redundant initialization.
smack: do not beyond ARRAY_SIZE of data
integrity: move ima_counts_get
integrity: path_check update
IMA: Add __init notation to ima functions
IMA: Minimal IMA policy and boot param for TCB IMA policy
selinux: remove obsolete read buffer limit from sel_read_bool
...
|
| | |_|_|_|_|_|_|/
| |/| | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
Rename cred_exec_mutex to reflect that it's a guard against foreign
intervention on a process's credential state, such as is made by ptrace(). The
attachment of a debugger to a process affects execve()'s calculation of the new
credential state - _and_ also setprocattr()'s calculation of that state.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|\ \ \ \ \ \ \ \ \
| |/ / / / / / / /
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
Merge reason: tracing/core was on a .30-rc1 base and was missing out on
on a handful of tracing fixes present in .30-rc5-almost.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |_|_|_|_|_|/
| |/| | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Unused after 20dcae32439384b6863c626bb3b2a09bed65b33e aka
"[PATCH] aio: remove kioctx from mm_struct".
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |\ \ \ \ \ \ \
| | |_|_|_|_|_|/
| |/| | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
branch tracer, intel-iommu: fix build with CONFIG_BRANCH_TRACER=y
branch tracer: Fix for enabling branch profiling makes sparse unusable
ftrace: Correct a text align for event format output
Update /debug/tracing/README
tracing/ftrace: alloc the started cpumask for the trace file
tracing, x86: remove duplicated #include
ftrace: Add check of sched_stopped for probe_sched_wakeup
function-graph: add proper initialization for init task
tracing/ftrace: fix missing include string.h
tracing: fix incorrect return type of ns2usecs()
tracing: remove CALLER_ADDR2 from wakeup tracer
blktrace: fix pdu_len when tracing packet command requests
blktrace: small cleanup in blk_msg_write()
blktrace: NUL-terminate user space messages
tracing: move scripts/trace/power.pl to scripts/tracing/power.pl
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
The tracing infrastructure allows for recursion. That is, an interrupt
may interrupt the act of tracing an event, and that interrupt may very well
perform its own trace. This is a recursive trace, and is fine to do.
The problem arises when there is a bug, and the utility doing the trace
calls something that recurses back into the tracer. This recursion is not
caused by an external event like an interrupt, but by code that is not
expected to recurse. The result could be a lockup.
This patch adds a bitmask to the task structure that keeps track
of the trace recursion. To find the interrupt depth, the following
algorithm is used:
level = hardirq_count() + softirq_count() + in_nmi;
Here, level will be the depth of interrutps and softirqs, and even handles
the nmi. Then the corresponding bit is set in the recursion bitmask.
If the bit was already set, we know we had a recursion at the same level
and we warn about it and fail the writing to the buffer.
After the data has been committed to the buffer, we clear the bit.
No atomics are needed. The only races are with interrupts and they reset
the bitmask before returning anywy.
[ Impact: detect same irq level trace recursion ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
|\ \ \ \ \ \ \ \
| |/ / / / / / /
|/| / / / / / /
| |/ / / / / / |
|
| | |_|_|_|/
| |/| | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Impact: fix to crash going to kexec
The init task did not properly initialize the function graph pointers.
Altough these pointers are NULL, they can not be assumed to be NULL
for the init task, and must still be properly initialize.
This usually is not an issue since a problem only arises when a task
exits, and the init tasks do not usually exit. But when doing tests
with kexec, the init tasks do exit, and the bug appears.
This patch properly initializes the init tasks function graph data
structures.
Reported-and-Tested-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <alpine.DEB.2.00.0903252053080.5675@gandalf.stny.rr.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\ \ \ \ \ \
| |/ / / / / |
|
| | |_|_|/
| |/| | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Change the process wide cpu timers/clocks so that we:
1) don't mess up the kernel with too many threads,
2) don't have a per-cpu allocation for each process,
3) have no impact when not used.
In order to accomplish this we're going to split it into two parts:
- clocks; which can take all the time they want since they run
from user context -- ie. sys_clock_gettime(CLOCK_PROCESS_CPUTIME_ID)
- timers; which need constant time sampling but since they're
explicity used, the user can pay the overhead.
The clock readout will go back to a full sum of the thread group, while the
timers will run of a global 'clock' that only runs when needed, so only
programs that make use of the facility pay the price.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | | |
| \ \ \ \ | |
|\ \ \ \ \ \
| | |/ / / /
| | | | | /
| |_|_|_|/
|/| | | | |
|
| |/ / /
|/| | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Either we bounce once cacheline per cpu per tick, yielding n^2 bounces
or we just bounce a single..
Also, using per-cpu allocations for the thread-groups complicates the
per-cpu allocator in that its currently aimed to be a fixed sized
allocator and the only possible extention to that would be vmap based,
which is seriously constrained on 32 bit archs.
So making the per-cpu memory requirement depend on the number of
processes is an issue.
Lastly, it didn't deal with cpu-hotplug, although admittedly that might
be fixable.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \
|/ / / /
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/ghaskins/linux-2.6-hacks into sched/rt
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The RT scheduler employs a "push/pull" design to actively balance tasks
within the system (on a per disjoint cpuset basis). When a task is
awoken, it is immediately determined if there are any lower priority
cpus which should be preempted. This is opposed to the way normal
SCHED_OTHER tasks behave, which will wait for a periodic rebalancing
operation to occur before spreading out load.
When a particular RQ has more than 1 active RT task, it is said to
be in an "overloaded" state. Once this occurs, the system enters
the active balancing mode, where it will try to push the task away,
or persuade a different cpu to pull it over. The system will stay
in this state until the system falls back below the <= 1 queued RT
task per RQ.
However, the current implementation suffers from a limitation in the
push logic. Once overloaded, all tasks (other than current) on the
RQ are analyzed on every push operation, even if it was previously
unpushable (due to affinity, etc). Whats more, the operation stops
at the first task that is unpushable and will not look at items
lower in the queue. This causes two problems:
1) We can have the same tasks analyzed over and over again during each
push, which extends out the fast path in the scheduler for no
gain. Consider a RQ that has dozens of tasks that are bound to a
core. Each one of those tasks will be encountered and skipped
for each push operation while they are queued.
2) There may be lower-priority tasks under the unpushable task that
could have been successfully pushed, but will never be considered
until either the unpushable task is cleared, or a pull operation
succeeds. The net result is a potential latency source for mid
priority tasks.
This patch aims to rectify these two conditions by introducing a new
priority sorted list: "pushable_tasks". A task is added to the list
each time a task is activated or preempted. It is removed from the
list any time it is deactivated, made current, or fails to push.
This works because a task only needs to be attempted to push once.
After an initial failure to push, the other cpus will eventually try to
pull the task when the conditions are proper. This also solves the
problem that we don't completely analyze all tasks due to encountering
an unpushable tasks. Now every task will have a push attempted (when
appropriate).
This reduces latency both by shorting the critical section of the
rq->lock for certain workloads, and by making sure the algorithm
considers all eligible tasks in the system.
[ rostedt: added a couple more BUG_ONs ]
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Steven Rostedt <srostedt@redhat.com>
|
| |/
|/|
| |
| | |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The user_ns is moved from nsproxy to user_struct, so that a struct
cred by itself is sufficient to determine access (which it otherwise
would not be). Corresponding ecryptfs fixes (by David Howells) are
here as well.
Fix refcounting. The following rules now apply:
1. The task pins the user struct.
2. The user struct pins its user namespace.
3. The user namespace pins the struct user which created it.
User namespaces are cloned during copy_creds(). Unsharing a new user_ns
is no longer possible. (We could re-add that, but it'll cause code
duplication and doesn't seem useful if PAM doesn't need to clone user
namespaces).
When a user namespace is created, its first user (uid 0) gets empty
keyrings and a clean group_info.
This incorporates a previous patch by David Howells. Here
is his original patch description:
>I suggest adding the attached incremental patch. It makes the following
>changes:
>
> (1) Provides a current_user_ns() macro to wrap accesses to current's user
> namespace.
>
> (2) Fixes eCryptFS.
>
> (3) Renames create_new_userns() to create_user_ns() to be more consistent
> with the other associated functions and because the 'new' in the name is
> superfluous.
>
> (4) Moves the argument and permission checks made for CLONE_NEWUSER to the
> beginning of do_fork() so that they're done prior to making any attempts
> at allocation.
>
> (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds
> to fill in rather than have it return the new root user. I don't imagine
> the new root user being used for anything other than filling in a cred
> struct.
>
> This also permits me to get rid of a get_uid() and a free_uid(), as the
> reference the creds were holding on the old user_struct can just be
> transferred to the new namespace's creator pointer.
>
> (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under
> preparation rather than doing it in copy_creds().
>
>David
>Signed-off-by: David Howells <dhowells@redhat.com>
Changelog:
Oct 20: integrate dhowells comments
1. leave thread_keyring alone
2. use current_user_ns() in set_user()
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Differentiate the objective and real subjective credentials from the effective
subjective credentials on a task by introducing a second credentials pointer
into the task_struct.
task_struct::real_cred then refers to the objective and apparent real
subjective credentials of a task, as perceived by the other tasks in the
system.
task_struct::cred then refers to the effective subjective credentials of a
task, as used by that task when it's actually running. These are not visible
to the other tasks in the system.
__task_cred(task) then refers to the objective/real credentials of the task in
question.
current_cred() refers to the effective subjective credentials of the current
task.
prepare_creds() uses the objective creds as a base and commit_creds() changes
both pointers in the task_struct (indeed commit_creds() requires them to be the
same).
override_creds() and revert_creds() change the subjective creds pointer only,
and the former returns the old subjective creds. These are used by NFSD,
faccessat() and do_coredump(), and will by used by CacheFiles.
In SELinux, current_has_perm() is provided as an alternative to
task_has_perm(). This uses the effective subjective context of current,
whereas task_has_perm() uses the objective/real context of the subject.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Detach the credentials from task_struct, duplicating them in copy_process()
and releasing them in __put_task_struct().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Separate the task security context from task_struct. At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.
Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.
With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We want to be able to control the default "rounding" that is used by
select() and poll() and friends. This is a per process property
(so that we can have a "nice" like program to start certain programs with
a looser or stricter rounding) that can be set/get via a prctl().
For this purpose, a field called "timer_slack_ns" is added to the task
struct. In addition, a field called "default_timer_slack"ns" is added
so that tasks easily can temporarily to a more/less accurate slack and then
back to the default.
The default value of the slack is set to 50 usec; this is significantly less
than 2.6.27's average select() and poll() timing error but still allows
the kernel to group timers somewhat to preserve power behavior. Applications
and admins can override this via the prctl()
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce the new PF_KTHREAD flag to mark the kernel threads. It is set
by INIT_TASK() and copied to the forked childs (we could set it in
kthreadd() along with PF_NOFREEZE instead).
daemonize() was changed as well. In that case testing of PF_KTHREAD is
racy, but daemonize() is hopeless anyway.
This flag is cleared in do_execve(), before search_binary_handler().
Probably not the best place, we can do this in exec_mmap() or in
start_thread(), or clear it along with PF_FORKNOEXEC. But I think this
doesn't matter in practice, and if do_execve() fails kthread should die
soon.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ptrace no longer fiddles with the children/sibling links, and the
old ptrace_children list is gone. Now ptrace, whether of one's own
children or another's via PTRACE_ATTACH, just uses the new ptraced
list instead.
There should be no user-visible difference that matters. The only
change is the order in which do_wait() sees multiple stopped
children and stopped ptrace attachees. Since wait_task_stopped()
was changed earlier so it no longer reorders the children list, we
already know this won't cause any new problems.
Signed-off-by: Roland McGrath <roland@redhat.com>
|
|
|
|
| |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
| |
Initial splitoff of the low-level stuff; taken to fdtable.h
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Filesystem capability support makes it possible to do away with (set)uid-0
based privilege and use capabilities instead. That is, with filesystem
support for capabilities but without this present patch, it is (conceptually)
possible to manage a system with capabilities alone and never need to obtain
privilege via (set)uid-0.
Of course, conceptually isn't quite the same as currently possible since few
user applications, certainly not enough to run a viable system, are currently
prepared to leverage capabilities to exercise privilege. Further, many
applications exist that may never get upgraded in this way, and the kernel
will continue to want to support their setuid-0 base privilege needs.
Where pure-capability applications evolve and replace setuid-0 binaries, it is
desirable that there be a mechanisms by which they can contain their
privilege. In addition to leveraging the per-process bounding and inheritable
sets, this should include suppressing the privilege of the uid-0 superuser
from the process' tree of children.
The feature added by this patch can be leveraged to suppress the privilege
associated with (set)uid-0. This suppression requires CAP_SETPCAP to
initiate, and only immediately affects the 'current' process (it is inherited
through fork()/exec()). This reimplementation differs significantly from the
historical support for securebits which was system-wide, unwieldy and which
has ultimately withered to a dead relic in the source of the modern kernel.
With this patch applied a process, that is capable(CAP_SETPCAP), can now drop
all legacy privilege (through uid=0) for itself and all subsequently
fork()'d/exec()'d children with:
prctl(PR_SET_SECUREBITS, 0x2f);
This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is
enabled at configure time.
[akpm@linux-foundation.org: fix uninitialised var warning]
[serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY]
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Reviewed-by: James Morris <jmorris@namei.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Paul Moore <paul.moore@hp.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
| |
De-couple load-balancing from the rb-trees, so that I can change their
organization.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The capability bounding set is a set beyond which capabilities cannot grow.
Currently cap_bset is per-system. It can be manipulated through sysctl,
but only init can add capabilities. Root can remove capabilities. By
default it includes all caps except CAP_SETPCAP.
This patch makes the bounding set per-process when file capabilities are
enabled. It is inherited at fork from parent. Noone can add elements,
CAP_SETPCAP is required to remove them.
One example use of this is to start a safer container. For instance, until
device namespaces or per-container device whitelists are introduced, it is
best to take CAP_MKNOD away from a container.
The bounding set will not affect pP and pE immediately. It will only
affect pP' and pE' after subsequent exec()s. It also does not affect pI,
and exec() does not constrain pI'. So to really start a shell with no way
of regain CAP_MKNOD, you would do
prctl(PR_CAPBSET_DROP, CAP_MKNOD);
cap_t cap = cap_get_proc();
cap_value_t caparray[1];
caparray[0] = CAP_MKNOD;
cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
cap_set_proc(cap);
cap_free(cap);
The following test program will get and set the bounding
set (but not pI). For instance
./bset get
(lists capabilities in bset)
./bset drop cap_net_raw
(starts shell with new bset)
(use capset, setuid binary, or binary with
file capabilities to try to increase caps)
************************************************************
cap_bound.c
************************************************************
#include <sys/prctl.h>
#include <linux/capability.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef PR_CAPBSET_READ
#define PR_CAPBSET_READ 23
#endif
#ifndef PR_CAPBSET_DROP
#define PR_CAPBSET_DROP 24
#endif
int usage(char *me)
{
printf("Usage: %s get\n", me);
printf(" %s drop <capability>\n", me);
return 1;
}
#define numcaps 32
char *captable[numcaps] = {
"cap_chown",
"cap_dac_override",
"cap_dac_read_search",
"cap_fowner",
"cap_fsetid",
"cap_kill",
"cap_setgid",
"cap_setuid",
"cap_setpcap",
"cap_linux_immutable",
"cap_net_bind_service",
"cap_net_broadcast",
"cap_net_admin",
"cap_net_raw",
"cap_ipc_lock",
"cap_ipc_owner",
"cap_sys_module",
"cap_sys_rawio",
"cap_sys_chroot",
"cap_sys_ptrace",
"cap_sys_pacct",
"cap_sys_admin",
"cap_sys_boot",
"cap_sys_nice",
"cap_sys_resource",
"cap_sys_time",
"cap_sys_tty_config",
"cap_mknod",
"cap_lease",
"cap_audit_write",
"cap_audit_control",
"cap_setfcap"
};
int getbcap(void)
{
int comma=0;
unsigned long i;
int ret;
printf("i know of %d capabilities\n", numcaps);
printf("capability bounding set:");
for (i=0; i<numcaps; i++) {
ret = prctl(PR_CAPBSET_READ, i);
if (ret < 0)
perror("prctl");
else if (ret==1)
printf("%s%s", (comma++) ? ", " : " ", captable[i]);
}
printf("\n");
return 0;
}
int capdrop(char *str)
{
unsigned long i;
int found=0;
for (i=0; i<numcaps; i++) {
if (strcmp(captable[i], str) == 0) {
found=1;
break;
}
}
if (!found)
return 1;
if (prctl(PR_CAPBSET_DROP, i)) {
perror("prctl");
return 1;
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc<2)
return usage(argv[0]);
if (strcmp(argv[1], "get")==0)
return getbcap();
if (strcmp(argv[1], "drop")!=0 || argc<3)
return usage(argv[0]);
if (capdrop(argv[2])) {
printf("unknown capability\n");
return 1;
}
return execl("/bin/bash", "/bin/bash", NULL);
}
************************************************************
[serue@us.ibm.com: fix typo]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>a
Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com>
Tested-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
In order to correlate audit records to an individual login add a session
id. This is incremented every time a user logs in and is included in
almost all messages which currently output the auid. The field is
labeled ses= or oses=
Signed-off-by: Eric Paris <eparis@redhat.com>
|
|
|
|
|
|
|
|
| |
Keeping loginuid in audit_context is racy and results in messier
code. Taken to task_struct, out of the way of ->audit_context
changes.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
| |
This is where it belongs and then it doesn't take up space for a
process that doesn't do IO.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extend group scheduling to also cover the realtime classes. It uses the time
limiting introduced by the previous patch to allow multiple realtime groups.
The hard time limit is required to keep behaviour deterministic.
The algorithms used make the realtime scheduler O(tg), linear scaling wrt the
number of task groups. This is the worst case behaviour I can't seem to get out
of, the avg. case of the algorithms can be improved, I focused on correctness
and worst case.
[ akpm@linux-foundation.org: move side-effects out of BUG_ON(). ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
| |
Move the task_struct members specific to rt scheduling together.
A future optimization could be to put sched_entity and sched_rt_entity
into a union.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some RT tasks (particularly kthreads) are bound to one specific CPU.
It is fairly common for two or more bound tasks to get queued up at the
same time. Consider, for instance, softirq_timer and softirq_sched. A
timer goes off in an ISR which schedules softirq_thread to run at RT50.
Then the timer handler determines that it's time to smp-rebalance the
system so it schedules softirq_sched to run. So we are in a situation
where we have two RT50 tasks queued, and the system will go into
rt-overload condition to request other CPUs for help.
This causes two problems in the current code:
1) If a high-priority bound task and a low-priority unbounded task queue
up behind the running task, we will fail to ever relocate the unbounded
task because we terminate the search on the first unmovable task.
2) We spend precious futile cycles in the fast-path trying to pull
overloaded tasks over. It is therefore optimial to strive to avoid the
overhead all together if we can cheaply detect the condition before
overload even occurs.
This patch tries to achieve this optimization by utilizing the hamming
weight of the task->cpus_allowed mask. A weight of 1 indicates that
the task cannot be migrated. We will then utilize this information to
skip non-migratable tasks and to eliminate uncessary rebalance attempts.
We introduce a per-rq variable to count the number of migratable tasks
that are currently running. We only go into overload if we have more
than one rt task, AND at least one of them is migratable.
In addition, we introduce a per-task variable to cache the cpus_allowed
weight, since the hamming calculation is probably relatively expensive.
We only update the cached value when the mask is updated which should be
relatively infrequent, especially compared to scheduling frequency
in the fast path.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|