summaryrefslogtreecommitdiffstats
path: root/include/linux/hugetlb.h
Commit message (Collapse)AuthorAgeFilesLines
* mm, hugetlb: remove hugetlb_zero and hugetlb_infinityDavid Rientjes2014-08-061-1/+0
| | | | | | | | | | | | | They are unnecessary: "zero" can be used in place of "hugetlb_zero" and passing extra2 == NULL is equivalent to infinity. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Luiz Capitulino <lcapitulino@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* kexec: export free_huge_page to VMCOREINFOAtsushi Kumagai2014-07-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PG_head_mask was added into VMCOREINFO to filter huge pages in b3acc56bfe1 ("kexec: save PG_head_mask in VMCOREINFO"), but makedumpfile still need another symbol to filter *hugetlbfs* pages. If a user hope to filter user pages, makedumpfile tries to exclude them by checking the condition whether the page is anonymous, but hugetlbfs pages aren't anonymous while they also be user pages. We know it's possible to detect them in the same way as PageHuge(), so we need the start address of free_huge_page(): int PageHuge(struct page *page) { if (!PageCompound(page)) return 0; page = compound_head(page); return get_compound_page_dtor(page) == free_huge_page; } For that reason, this patch changes free_huge_page() into public to export it to VMCOREINFO. Signed-off-by: Atsushi Kumagai <kumagai-atsushi@mxc.nes.nec.co.jp> Acked-by: Baoquan He <bhe@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: rename hugepage_migration_support() to ..._supported()Naoya Horiguchi2014-06-041-2/+2
| | | | | | | | | | | We already have a function named hugepages_supported(), and the similar name hugepage_migration_support() is a bit unconfortable, so let's rename it hugepage_migration_supported(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: add hstate_is_gigantic()Luiz Capitulino2014-06-041-0/+5
| | | | | | | | | | | | | | | | Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: restrict hugepage_migration_support() to x86_64Naoya Horiguchi2014-06-041-8/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently hugepage migration is available for all archs which support pmd-level hugepage, but testing is done only for x86_64 and there're bugs for other archs. So to avoid breaking such archs, this patch limits the availability strictly to x86_64 until developers of other archs get interested in enabling this feature. Simply disabling hugepage migration on non-x86_64 archs is not enough to fix the reported problem where sys_move_pages() hits the BUG_ON() in follow_page(FOLL_GET), so let's fix this by checking if hugepage migration is supported in vma_migratable(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: <stable@vger.kernel.org> [3.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: ensure hugepage access is denied if hugepages are not supportedNishanth Aravamudan2014-05-061-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, I am seeing the following when I `mount -t hugetlbfs /none /dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's related to the fact that hugetlbfs is properly not correctly setting itself up in this state?: Unable to handle kernel paging request for data at address 0x00000031 Faulting instruction address: 0xc000000000245710 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=2048 NUMA pSeries .... In KVM guests on Power, in a guest not backed by hugepages, we see the following: AnonHugePages: 0 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 64 kB HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages are not supported at boot-time, but this is only checked in hugetlb_init(). Extract the check to a helper function, and use it in a few relevant places. This does make hugetlbfs not supported (not registered at all) in this environment. I believe this is fine, as there are no valid hugepages and that won't change at runtime. [akpm@linux-foundation.org: use pr_info(), per Mel] [akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined] Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, hugetlb: fix race in region trackingDavidlohr Bueso2014-04-031-0/+1
| | | | | | | | | | | | | | | | | | | | | | There is a race condition if we map a same file on different processes. Region tracking is protected by mmap_sem and hugetlb_instantiation_mutex. When we do mmap, we don't grab a hugetlb_instantiation_mutex, but only mmap_sem (exclusively). This doesn't prevent other tasks from modifying the region structure, so it can be modified by two processes concurrently. To solve this, introduce a spinlock to resv_map and make region manipulation function grab it before they do actual work. [davidlohr@hp.com: updated changelog] Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, hugetlb: unify region structure handlingJoonsoo Kim2014-04-031-0/+9
| | | | | | | | | | | | | | | | | | | | Currently, to track reserved and allocated regions, we use two different ways, depending on the mapping. For MAP_SHARED, we use address_mapping's private_list and, while for MAP_PRIVATE, we use a resv_map. Now, we are preparing to change a coarse grained lock which protect a region structure to fine grained lock, and this difference hinder it. So, before changing it, unify region structure handling, consistently using a resv_map regardless of the kind of mapping. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGESasha Levin2014-01-231-1/+2
| | | | | | | | | | | | | | | | | | | | Most of the VM_BUG_ON assertions are performed on a page. Usually, when one of these assertions fails we'll get a BUG_ON with a call stack and the registers. I've recently noticed based on the requests to add a small piece of code that dumps the page to various VM_BUG_ON sites that the page dump is quite useful to people debugging issues in mm. This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what VM_BUG_ON() does, also dumps the page before executing the actual BUG_ON. [akpm@linux-foundation.org: fix up includes] Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: tail page refcounting optimization for slab and hugetlbfsAndrea Arcangeli2014-01-211-6/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This skips the _mapcount mangling for slab and hugetlbfs pages. The main trouble in doing this is to guarantee that PageSlab and PageHeadHuge remains constant for all get_page/put_page run on the tail of slab or hugetlbfs compound pages. Otherwise if they're set during get_page but not set during put_page, the _mapcount of the tail page would underflow. PageHeadHuge will remain true until the compound page is released and enters the buddy allocator so it won't risk to change even if the tail page is the last reference left on the page. PG_slab instead is cleared before the slab frees the head page with put_page, so if the tail pin is released after the slab freed the page, we would have a problem. But in the slab case the tail pin cannot be the last reference left on the page. This is because the slab code is free to reuse the compound page after a kfree/kmem_cache_free without having to check if there's any tail pin left. In turn all tail pins must be always released while the head is still pinned by the slab code and so we know PG_slab will be still set too. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: hugetlbfs: Add some VM_BUG_ON()s to catch non-hugetlbfs pagesDave Hansen2014-01-211-0/+1
| | | | | | | | | | | | | | | | | | Dave Jiang reported that he was seeing oopses when running NUMA systems and default_hugepagesz=1G. I traced the issue down to migrate_page_copy() trying to use the same code for hugetlb pages and transparent hugepages. It should not have been trying to pass thp pages in there. So, add some VM_BUG_ON()s for the next hapless VM developer that tries the same thing. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Tested-by: Dave Jiang <dave.jiang@intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* include/linux/hugetlb.h: make isolate_huge_page() an inlineNaoya Horiguchi2013-12-121-1/+4
| | | | | | | | | | | | | | | | | | With CONFIG_HUGETLBFS=n: mm/migrate.c: In function `do_move_page_to_node_array': include/linux/hugetlb.h:140:33: warning: statement with no effect [-Wunused-value] #define isolate_huge_page(p, l) false ^ mm/migrate.c:1170:4: note: in expansion of macro `isolate_huge_page' isolate_huge_page(page, &pagelist); Reported-by: Borislav Petkov <bp@alien8.de> Tested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: hugetlbfs: fix hugetlbfs optimizationAndrea Arcangeli2013-11-211-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 7cb2ef56e6a8 ("mm: fix aio performance regression for database caused by THP") can cause dereference of a dangling pointer if split_huge_page runs during PageHuge() if there are updates to the tail_page->private field. Also it is repeating compound_head twice for hugetlbfs and it is running compound_head+compound_trans_head for THP when a single one is needed in both cases. The new code within the PageSlab() check doesn't need to verify that the THP page size is never bigger than the smallest hugetlbfs page size, to avoid memory corruption. A longstanding theoretical race condition was found while fixing the above (see the change right after the skip_unlock label, that is relevant for the compound_lock path too). By re-establishing the _mapcount tail refcounting for all compound pages, this also fixes the below problem: echo 0 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages BUG: Bad page state in process bash pfn:59a01 page:ffffea000139b038 count:0 mapcount:10 mapping: (null) index:0x0 page flags: 0x1c00000000008000(tail) Modules linked in: CPU: 6 PID: 2018 Comm: bash Not tainted 3.12.0+ #25 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: dump_stack+0x55/0x76 bad_page+0xd5/0x130 free_pages_prepare+0x213/0x280 __free_pages+0x36/0x80 update_and_free_page+0xc1/0xd0 free_pool_huge_page+0xc2/0xe0 set_max_huge_pages.part.58+0x14c/0x220 nr_hugepages_store_common.isra.60+0xd0/0xf0 nr_hugepages_store+0x13/0x20 kobj_attr_store+0xf/0x20 sysfs_write_file+0x189/0x1e0 vfs_write+0xc5/0x1f0 SyS_write+0x55/0xb0 system_call_fastpath+0x16/0x1b Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: thp: give transparent hugepage code a separate copy_pageDave Hansen2013-11-211-4/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Right now, the migration code in migrate_page_copy() uses copy_huge_page() for hugetlbfs and thp pages: if (PageHuge(page) || PageTransHuge(page)) copy_huge_page(newpage, page); So, yay for code reuse. But: void copy_huge_page(struct page *dst, struct page *src) { struct hstate *h = page_hstate(src); and a non-hugetlbfs page has no page_hstate(). This works 99% of the time because page_hstate() determines the hstate from the page order alone. Since the page order of a THP page matches the default hugetlbfs page order, it works. But, if you change the default huge page size on the boot command-line (say default_hugepagesz=1G), then we might not even *have* a 2MB hstate so page_hstate() returns null and copy_huge_page() oopses pretty fast since copy_huge_page() dereferences the hstate: void copy_huge_page(struct page *dst, struct page *src) { struct hstate *h = page_hstate(src); if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { ... Mel noticed that the migration code is really the only user of these functions. This moves all the copy code over to migrate.c and makes copy_huge_page() work for THP by checking for it explicitly. I believe the bug was introduced in commit b32967ff101a ("mm: numa: Add THP migration for the NUMA working set scanning fault case") [akpm@linux-foundation.org: fix coding-style and comment text, per Naoya Horiguchi] Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, hugetlb: convert hugetlbfs to use split pmd lockKirill A. Shutemov2013-11-151-0/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hugetlb supports multiple page sizes. We use split lock only for PMD level, but not for PUD. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migrate: check movability of hugepage in unmap_and_move_huge_page()Naoya Horiguchi2013-09-111-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently hugepage migration works well only for pmd-based hugepages (mainly due to lack of testing,) so we had better not enable migration of other levels of hugepages until we are ready for it. Some users of hugepage migration (mbind, move_pages, and migrate_pages) do page table walk and check pud/pmd_huge() there, so they are safe. But the other users (softoffline and memory hotremove) don't do this, so without this patch they can try to migrate unexpected types of hugepages. To prevent this, we introduce hugepage_migration_support() as an architecture dependent check of whether hugepage are implemented on a pmd basis or not. And on some architecture multiple sizes of hugepages are available, so hugepage_migration_support() also checks hugepage size. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: memory-hotplug: enable memory hotplug to handle hugepageNaoya Horiguchi2013-09-111-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Until now we can't offline memory blocks which contain hugepages because a hugepage is considered as an unmovable page. But now with this patch series, a hugepage has become movable, so by using hugepage migration we can offline such memory blocks. What's different from other users of hugepage migration is that we need to decompose all the hugepages inside the target memory block into free buddy pages after hugepage migration, because otherwise free hugepages remaining in the memory block intervene the memory offlining. For this reason we introduce new functions dissolve_free_huge_page() and dissolve_free_huge_pages(). Other than that, what this patch does is straightforwardly to add hugepage migration code, that is, adding hugepage code to the functions which scan over pfn and collect hugepages to be migrated, and adding a hugepage allocation function to alloc_migrate_target(). As for larger hugepages (1GB for x86_64), it's not easy to do hotremove over them because it's larger than memory block. So we now simply leave it to fail as it is. [yongjun_wei@trendmicro.com.cn: remove duplicated include] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: mbind: add hugepage migration code to mbind()Naoya Horiguchi2013-09-111-0/+3
| | | | | | | | | | | | | | | | | | | Extend do_mbind() to handle vma with VM_HUGETLB set. We will be able to migrate hugepage with mbind(2) after applying the enablement patch which comes later in this series. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migrate: make core migration code aware of hugepageNaoya Horiguchi2013-09-111-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently hugepage migration is available only for soft offlining, but it's also useful for some other users of page migration (clearly because users of hugepage can enjoy the benefit of mempolicy and memory hotplug.) So this patchset tries to extend such users to support hugepage migration. The target of this patchset is to enable hugepage migration for NUMA related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and memory hotplug. This patchset does not add hugepage migration for memory compaction, because users of memory compaction mainly expect to construct thp by arranging raw pages, and there's little or no need to compact hugepages. CMA, another user of page migration, can have benefit from hugepage migration, but is not enabled to support it for now (just because of lack of testing and expertise in CMA.) Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in x86_64, or hugepages in architectures like ia64) is not enabled for now (again, because of lack of testing.) As for how these are achived, I extended the API (migrate_pages()) to handle hugepage (with patch 1 and 2) and adjusted code of each caller to check and collect movable hugepages (with patch 3-7). Remaining 2 patches are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is about making sure that we only migrate pmd-based hugepages. And patch 9 is about choosing appropriate zone for hugepage allocation. My test is mainly functional one, simply kicking hugepage migration via each entry point and confirm that migration is done correctly. Test code is available here: git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git And I always run libhugetlbfs test when changing hugetlbfs's code. With this patchset, no regression was found in the test. This patch (of 9): Before enabling each user of page migration to support hugepage, this patch enables the list of pages for migration to link not only LRU pages, but also hugepages. As a result, putback_movable_pages() and migrate_pages() can handle both of LRU pages and hugepages. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/hugetlb: remove hugetlb_prefaultWanpeng Li2013-07-031-2/+0
| | | | | | | | | | | hugetlb_prefault() is not used any more, this patch removes it. Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'arm64-upstream' of ↵Linus Torvalds2013-07-031-0/+4
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64 Pull ARM64 updates from Catalin Marinas: "Main features: - KVM and Xen ports to AArch64 - Hugetlbfs and transparent huge pages support for arm64 - Applied Micro X-Gene Kconfig entry and dts file - Cache flushing improvements For arm64 huge pages support, there are x86 changes moving part of arch/x86/mm/hugetlbpage.c into mm/hugetlb.c to be re-used by arm64" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64: (66 commits) arm64: Add initial DTS for APM X-Gene Storm SOC and APM Mustang board arm64: Add defines for APM ARMv8 implementation arm64: Enable APM X-Gene SOC family in the defconfig arm64: Add Kconfig option for APM X-Gene SOC family arm64/Makefile: provide vdso_install target ARM64: mm: THP support. ARM64: mm: Raise MAX_ORDER for 64KB pages and THP. ARM64: mm: HugeTLB support. ARM64: mm: Move PTE_PROT_NONE bit. ARM64: mm: Make PAGE_NONE pages read only and no-execute. ARM64: mm: Restore memblock limit when map_mem finished. mm: thp: Correct the HPAGE_PMD_ORDER check. x86: mm: Remove general hugetlb code from x86. mm: hugetlb: Copy general hugetlb code from x86 to mm. x86: mm: Remove x86 version of huge_pmd_share. mm: hugetlb: Copy huge_pmd_share from x86 to mm. arm64: KVM: document kernel object mappings in HYP arm64: KVM: MAINTAINERS update arm64: KVM: userspace API documentation arm64: KVM: enable initialization of a 32bit vcpu ...
| * mm: hugetlb: Copy huge_pmd_share from x86 to mm.Steve Capper2013-06-141-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Under x86, multiple puds can be made to reference the same bank of huge pmds provided that they represent a full PUD_SIZE of shared huge memory that is aligned to a PUD_SIZE boundary. The code to share pmds does not require any architecture specific knowledge other than the fact that pmds can be indexed, thus can be beneficial to some other architectures. This patch copies the huge pmd sharing (and unsharing) logic from x86/ to mm/ and introduces a new config option to activate it: CONFIG_ARCH_WANTS_HUGE_PMD_SHARE Signed-off-by: Steve Capper <steve.capper@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Andrew Morton <akpm@linux-foundation.org>
* | futex: Take hugepages into account when generating futex_keyZhang Yi2013-06-251-0/+16
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The futex_keys of process shared futexes are generated from the page offset, the mapping host and the mapping index of the futex user space address. This should result in an unique identifier for each futex. Though this is not true when futexes are located in different subpages of an hugepage. The reason is, that the mapping index for all those futexes evaluates to the index of the base page of the hugetlbfs mapping. So a futex at offset 0 of the hugepage mapping and another one at offset PAGE_SIZE of the same hugepage mapping have identical futex_keys. This happens because the futex code blindly uses page->index. Steps to reproduce the bug: 1. Map a file from hugetlbfs. Initialize pthread_mutex1 at offset 0 and pthread_mutex2 at offset PAGE_SIZE of the hugetlbfs mapping. The mutexes must be initialized as PTHREAD_PROCESS_SHARED because PTHREAD_PROCESS_PRIVATE mutexes are not affected by this issue as their keys solely depend on the user space address. 2. Lock mutex1 and mutex2 3. Create thread1 and in the thread function lock mutex1, which results in thread1 blocking on the locked mutex1. 4. Create thread2 and in the thread function lock mutex2, which results in thread2 blocking on the locked mutex2. 5. Unlock mutex2. Despite the fact that mutex2 got unlocked, thread2 still blocks on mutex2 because the futex_key points to mutex1. To solve this issue we need to take the normal page index of the page which contains the futex into account, if the futex is in an hugetlbfs mapping. In other words, we calculate the normal page mapping index of the subpage in the hugetlbfs mapping. Mappings which are not based on hugetlbfs are not affected and still use page->index. Thanks to Mel Gorman who provided a patch for adding proper evaluation functions to the hugetlbfs code to avoid exposing hugetlbfs specific details to the futex code. [ tglx: Massaged changelog ] Signed-off-by: Zhang Yi <zhang.yi20@zte.com.cn> Reviewed-by: Jiang Biao <jiang.biao2@zte.com.cn> Tested-by: Ma Chenggong <ma.chenggong@zte.com.cn> Reviewed-by: 'Mel Gorman' <mgorman@suse.de> Acked-by: 'Darren Hart' <dvhart@linux.intel.com> Cc: 'Peter Zijlstra' <peterz@infradead.org> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/000101ce71a6%24a83c5880%24f8b50980%24@com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* hugetlbfs: fix mmap failure in unaligned size requestNaoya Horiguchi2013-05-071-6/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The current kernel returns -EINVAL unless a given mmap length is "almost" hugepage aligned. This is because in sys_mmap_pgoff() the given length is passed to vm_mmap_pgoff() as it is without being aligned with hugepage boundary. This is a regression introduced in commit 40716e29243d ("hugetlbfs: fix alignment of huge page requests"), where alignment code is pushed into hugetlb_file_setup() and the variable len in caller side is not changed. To fix this, this patch partially reverts that commit, and adds alignment code in caller side. And it also introduces hstate_sizelog() in order to get proper hstate to specified hugepage size. Addresses https://bugzilla.kernel.org/show_bug.cgi?id=56881 [akpm@linux-foundation.org: fix warning when CONFIG_HUGETLB_PAGE=n] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: <iceman_dvd@yahoo.com> Cc: Steven Truelove <steven.truelove@utoronto.ca> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, hugetlb: include hugepages in meminfoDavid Rientjes2013-04-291-0/+4
| | | | | | | | | | | | | | | | | | | | | | | Particularly in oom conditions, it's troublesome that hugetlb memory is not displayed. All other meminfo that is emitted will not add up to what is expected, and there is no artifact left in the kernel log to show that a potentially significant amount of memory is actually allocated as hugepages which are not available to be reclaimed. Booting with hugepages=8192 on the command line, this memory is now shown in oom conditions. For example, with echo m > /proc/sysrq-trigger: Node 0 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB Node 1 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB Node 2 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB Node 3 hugepages_total=2048 hugepages_free=2048 hugepages_surp=0 hugepages_size=2048kB [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'for-linus' of ↵Linus Torvalds2013-02-261-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs pile (part one) from Al Viro: "Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent locking violations, etc. The most visible changes here are death of FS_REVAL_DOT (replaced with "has ->d_weak_revalidate()") and a new helper getting from struct file to inode. Some bits of preparation to xattr method interface changes. Misc patches by various people sent this cycle *and* ocfs2 fixes from several cycles ago that should've been upstream right then. PS: the next vfs pile will be xattr stuff." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits) saner proc_get_inode() calling conventions proc: avoid extra pde_put() in proc_fill_super() fs: change return values from -EACCES to -EPERM fs/exec.c: make bprm_mm_init() static ocfs2/dlm: use GFP_ATOMIC inside a spin_lock ocfs2: fix possible use-after-free with AIO ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero target: writev() on single-element vector is pointless export kernel_write(), convert open-coded instances fs: encode_fh: return FILEID_INVALID if invalid fid_type kill f_vfsmnt vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op nfsd: handle vfs_getattr errors in acl protocol switch vfs_getattr() to struct path default SET_PERSONALITY() in linux/elf.h ceph: prepopulate inodes only when request is aborted d_hash_and_lookup(): export, switch open-coded instances 9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate() 9p: split dropping the acls from v9fs_set_create_acl() ...
| * new helper: file_inode(file)Al Viro2013-02-221-1/+1
| | | | | | | | Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | mm: use long type for page counts in mm_populate() and get_user_pages()Michel Lespinasse2013-02-231-3/+3
|/ | | | | | | | | | | | | | | | | | | | | | Use long type for page counts in mm_populate() so as to avoid integer overflow when running the following test code: int main(void) { void *p = mmap(NULL, 0x100000000000, PROT_READ, MAP_PRIVATE | MAP_ANON, -1, 0); printf("p: %p\n", p); mlockall(MCL_CURRENT); printf("done\n"); return 0; } Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'balancenuma-v11' of ↵Linus Torvalds2012-12-161-2/+6
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma Pull Automatic NUMA Balancing bare-bones from Mel Gorman: "There are three implementations for NUMA balancing, this tree (balancenuma), numacore which has been developed in tip/master and autonuma which is in aa.git. In almost all respects balancenuma is the dumbest of the three because its main impact is on the VM side with no attempt to be smart about scheduling. In the interest of getting the ball rolling, it would be desirable to see this much merged for 3.8 with the view to building scheduler smarts on top and adapting the VM where required for 3.9. The most recent set of comparisons available from different people are mel: https://lkml.org/lkml/2012/12/9/108 mingo: https://lkml.org/lkml/2012/12/7/331 tglx: https://lkml.org/lkml/2012/12/10/437 srikar: https://lkml.org/lkml/2012/12/10/397 The results are a mixed bag. In my own tests, balancenuma does reasonably well. It's dumb as rocks and does not regress against mainline. On the other hand, Ingo's tests shows that balancenuma is incapable of converging for this workloads driven by perf which is bad but is potentially explained by the lack of scheduler smarts. Thomas' results show balancenuma improves on mainline but falls far short of numacore or autonuma. Srikar's results indicate we all suffer on a large machine with imbalanced node sizes. My own testing showed that recent numacore results have improved dramatically, particularly in the last week but not universally. We've butted heads heavily on system CPU usage and high levels of migration even when it shows that overall performance is better. There are also cases where it regresses. Of interest is that for specjbb in some configurations it will regress for lower numbers of warehouses and show gains for higher numbers which is not reported by the tool by default and sometimes missed in treports. Recently I reported for numacore that the JVM was crashing with NullPointerExceptions but currently it's unclear what the source of this problem is. Initially I thought it was in how numacore batch handles PTEs but I'm no longer think this is the case. It's possible numacore is just able to trigger it due to higher rates of migration. These reports were quite late in the cycle so I/we would like to start with this tree as it contains much of the code we can agree on and has not changed significantly over the last 2-3 weeks." * tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits) mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable mm/rmap: Convert the struct anon_vma::mutex to an rwsem mm: migrate: Account a transhuge page properly when rate limiting mm: numa: Account for failed allocations and isolations as migration failures mm: numa: Add THP migration for the NUMA working set scanning fault case build fix mm: numa: Add THP migration for the NUMA working set scanning fault case. mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG mm: sched: numa: Control enabling and disabling of NUMA balancing mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships mm: numa: migrate: Set last_nid on newly allocated page mm: numa: split_huge_page: Transfer last_nid on tail page mm: numa: Introduce last_nid to the page frame sched: numa: Slowly increase the scanning period as NUMA faults are handled mm: numa: Rate limit setting of pte_numa if node is saturated mm: numa: Rate limit the amount of memory that is migrated between nodes mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting mm: numa: Migrate pages handled during a pmd_numa hinting fault mm: numa: Migrate on reference policy ...
| * mm: Count the number of pages affected in change_protection()Peter Zijlstra2012-12-111-2/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This will be used for three kinds of purposes: - to optimize mprotect() - to speed up working set scanning for working set areas that have not been touched - to more accurately scan per real working set No change in functionality from this patch. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | mm: support more pagesizes for MAP_HUGETLB/SHM_HUGETLBAndi Kleen2012-12-111-2/+5
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There was some desire in large applications using MAP_HUGETLB or SHM_HUGETLB to use 1GB huge pages on some mappings, and stay with 2MB on others. This is useful together with NUMA policy: use 2MB interleaving on some mappings, but 1GB on local mappings. This patch extends the IPC/SHM syscall interfaces slightly to allow specifying the page size. It borrows some upper bits in the existing flag arguments and allows encoding the log of the desired page size in addition to the *_HUGETLB flag. When 0 is specified the default size is used, this makes the change fully compatible. Extending the internal hugetlb code to handle this is straight forward. Instead of a single mount it just keeps an array of them and selects the right mount based on the specified page size. When no page size is specified it uses the mount of the default page size. The change is not visible in /proc/mounts because internal mounts don't appear there. It also has very little overhead: the additional mounts just consume a super block, but not more memory when not used. I also exported the new flags to the user headers (they were previously under __KERNEL__). Right now only symbols for x86 and some other architecture for 1GB and 2MB are defined. The interface should already work for all other architectures though. Only architectures that define multiple hugetlb sizes actually need it (that is currently x86, tile, powerpc). However tile and powerpc have user configurable hugetlb sizes, so it's not easy to add defines. A program on those architectures would need to query sysfs and use the appropiate log2. [akpm@linux-foundation.org: cleanups] [rientjes@google.com: fix build] [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: Andi Kleen <ak@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: hugetlbfs: close race during teardown of hugetlbfs shared page tablesMel Gorman2012-07-311-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If a process creates a large hugetlbfs mapping that is eligible for page table sharing and forks heavily with children some of whom fault and others which destroy the mapping then it is possible for page tables to get corrupted. Some teardowns of the mapping encounter a "bad pmd" and output a message to the kernel log. The final teardown will trigger a BUG_ON in mm/filemap.c. This was reproduced in 3.4 but is known to have existed for a long time and goes back at least as far as 2.6.37. It was probably was introduced in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages look like this; [ ..........] Lots of bad pmd messages followed by this [ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7). [ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7). [ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7). [ 127.186778] ------------[ cut here ]------------ [ 127.186781] kernel BUG at mm/filemap.c:134! [ 127.186782] invalid opcode: 0000 [#1] SMP [ 127.186783] CPU 7 [ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod [ 127.186801] [ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR [ 127.186804] RIP: 0010:[<ffffffff810ed6ce>] [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160 [ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002 [ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0 [ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00 [ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003 [ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8 [ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8 [ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000 [ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0 [ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0) [ 127.186821] Stack: [ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b [ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98 [ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000 [ 127.186827] Call Trace: [ 127.186829] [<ffffffff810ed83b>] delete_from_page_cache+0x3b/0x80 [ 127.186832] [<ffffffff811bc925>] truncate_hugepages+0x115/0x220 [ 127.186834] [<ffffffff811bca43>] hugetlbfs_evict_inode+0x13/0x30 [ 127.186837] [<ffffffff811655c7>] evict+0xa7/0x1b0 [ 127.186839] [<ffffffff811657a3>] iput_final+0xd3/0x1f0 [ 127.186840] [<ffffffff811658f9>] iput+0x39/0x50 [ 127.186842] [<ffffffff81162708>] d_kill+0xf8/0x130 [ 127.186843] [<ffffffff81162812>] dput+0xd2/0x1a0 [ 127.186845] [<ffffffff8114e2d0>] __fput+0x170/0x230 [ 127.186848] [<ffffffff81236e0e>] ? rb_erase+0xce/0x150 [ 127.186849] [<ffffffff8114e3ad>] fput+0x1d/0x30 [ 127.186851] [<ffffffff81117db7>] remove_vma+0x37/0x80 [ 127.186853] [<ffffffff81119182>] do_munmap+0x2d2/0x360 [ 127.186855] [<ffffffff811cc639>] sys_shmdt+0xc9/0x170 [ 127.186857] [<ffffffff81410a39>] system_call_fastpath+0x16/0x1b [ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0 [ 127.186868] RIP [<ffffffff810ed6ce>] __delete_from_page_cache+0x15e/0x160 [ 127.186870] RSP <ffff8804144b5c08> [ 127.186871] ---[ end trace 7cbac5d1db69f426 ]--- The bug is a race and not always easy to reproduce. To reproduce it I was doing the following on a single socket I7-based machine with 16G of RAM. $ hugeadm --pool-pages-max DEFAULT:13G $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall $ for i in `seq 1 9000`; do ./hugetlbfs-test; done On my particular machine, it usually triggers within 10 minutes but enabling debug options can change the timing such that it never hits. Once the bug is triggered, the machine is in trouble and needs to be rebooted. The machine will respond but processes accessing proc like "ps aux" will hang due to the BUG_ON. shutdown will also hang and needs a hard reset or a sysrq-b. The basic problem is a race between page table sharing and teardown. For the most part page table sharing depends on i_mmap_mutex. In some cases, it is also taking the mm->page_table_lock for the PTE updates but with shared page tables, it is the i_mmap_mutex that is more important. Unfortunately it appears to be also insufficient. Consider the following situation Process A Process B --------- --------- hugetlb_fault shmdt LockWrite(mmap_sem) do_munmap unmap_region unmap_vmas unmap_single_vma unmap_hugepage_range Lock(i_mmap_mutex) Lock(mm->page_table_lock) huge_pmd_unshare/unmap tables <--- (1) Unlock(mm->page_table_lock) Unlock(i_mmap_mutex) huge_pte_alloc ... Lock(i_mmap_mutex) ... vma_prio_walk, find svma, spte ... Lock(mm->page_table_lock) ... share spte ... Unlock(mm->page_table_lock) ... Unlock(i_mmap_mutex) ... hugetlb_no_page <--- (2) free_pgtables unlink_file_vma hugetlb_free_pgd_range remove_vma_list In this scenario, it is possible for Process A to share page tables with Process B that is trying to tear them down. The i_mmap_mutex on its own does not prevent Process A walking Process B's page tables. At (1) above, the page tables are not shared yet so it unmaps the PMDs. Process A sets up page table sharing and at (2) faults a new entry. Process B then trips up on it in free_pgtables. This patch fixes the problem by adding a new function __unmap_hugepage_range_final that is only called when the VMA is about to be destroyed. This function clears VM_MAYSHARE during unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA ineligible for sharing and avoids the race. Superficially this looks like it would then be vunerable to truncate and madvise issues but hugetlbfs has its own truncate handlers so does not use unmap_mapping_range() and does not support madvise(DONTNEED). This should be treated as a -stable candidate if it is merged. Test program is as follows. The test case was mostly written by Michal Hocko with a few minor changes to reproduce this bug. ==== CUT HERE ==== static size_t huge_page_size = (2UL << 20); static size_t nr_huge_page_A = 512; static size_t nr_huge_page_B = 5632; unsigned int get_random(unsigned int max) { struct timeval tv; gettimeofday(&tv, NULL); srandom(tv.tv_usec); return random() % max; } static void play(void *addr, size_t size) { unsigned char *start = addr, *end = start + size, *a; start += get_random(size/2); /* we could itterate on huge pages but let's give it more time. */ for (a = start; a < end; a += 4096) *a = 0; } int main(int argc, char **argv) { key_t key = IPC_PRIVATE; size_t sizeA = nr_huge_page_A * huge_page_size; size_t sizeB = nr_huge_page_B * huge_page_size; int shmidA, shmidB; void *addrA = NULL, *addrB = NULL; int nr_children = 300, n = 0; if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) { perror("shmget:"); return 1; } if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) { perror("shmat"); return 1; } if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) { perror("shmget:"); return 1; } if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) { perror("shmat"); return 1; } fork_child: switch(fork()) { case 0: switch (n%3) { case 0: play(addrA, sizeA); break; case 1: play(addrB, sizeB); break; case 2: break; } break; case -1: perror("fork:"); break; default: if (++n < nr_children) goto fork_child; play(addrA, sizeA); break; } shmdt(addrA); shmdt(addrB); do { wait(NULL); } while (--n > 0); shmctl(shmidA, IPC_RMID, NULL); shmctl(shmidB, IPC_RMID, NULL); return 0; } [akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build] Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb/cgroup: add hugetlb cgroup control filesAneesh Kumar K.V2012-07-311-0/+5
| | | | | | | | | | | | | | | Add the control files for hugetlb controller [akpm@linux-foundation.org: s/CONFIG_CGROUP_HUGETLB_RES_CTLR/CONFIG_MEMCG_HUGETLB/g] [akpm@linux-foundation.org: s/CONFIG_MEMCG_HUGETLB/CONFIG_CGROUP_HUGETLB/] Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: make some static variables globalAneesh Kumar K.V2012-07-311-0/+5
| | | | | | | | | | | | | We will use them later in hugetlb_cgroup.c Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: add a list for tracking in-use HugeTLB pagesAneesh Kumar K.V2012-07-311-0/+1
| | | | | | | | | | | | | | | | hugepage_activelist will be used to track currently used HugeTLB pages. We need to find the in-use HugeTLB pages to support HugeTLB cgroup removal. On cgroup removal we update the page's HugeTLB cgroup to point to parent cgroup. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: use mmu_gather instead of a temporary linked list for accumulating ↵Aneesh Kumar K.V2012-07-311-5/+17
| | | | | | | | | | | | | | | | pages Use a mmu_gather instead of a temporary linked list for accumulating pages when we unmap a hugepage range Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: add an inline helper for finding hstate indexAneesh Kumar K.V2012-07-311-0/+6
| | | | | | | | | | | | | Add an inline helper and use it in the code. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: add new arch_make_huge_pte() method for tile supportChris Metcalf2012-05-251-0/+8
| | | | | | | | | | | | | The tile support for multiple-size huge pages requires tagging the hugetlb PTE with a "super" bit for PTEs that are multiples of the basic size of a pagetable span. To set that bit properly we need to tweak the PTe in make_huge_pte() based on the vma. This change provides the API for a subsequent tile-specific change to use. Reviewed-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
* hugetlbfs: fix alignment of huge page requestsSteven Truelove2012-03-211-2/+4
| | | | | | | | | | | | | | | | | When calling shmget() with SHM_HUGETLB, shmget aligns the request size to PAGE_SIZE, but this is not sufficient. Modify hugetlb_file_setup() to align requests to the huge page size, and to accept an address argument so that all alignment checks can be performed in hugetlb_file_setup(), rather than in its callers. Change newseg() and mmap_pgoff() to match the new prototype and eliminate a now redundant alignment check. [akpm@linux-foundation.org: fix build] Signed-off-by: Steven Truelove <steven.truelove@utoronto.ca> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugepages: fix use after free bug in "quota" handlingDavid Gibson2012-03-211-4/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | hugetlbfs_{get,put}_quota() are badly named. They don't interact with the general quota handling code, and they don't much resemble its behaviour. Rather than being about maintaining limits on on-disk block usage by particular users, they are instead about maintaining limits on in-memory page usage (including anonymous MAP_PRIVATE copied-on-write pages) associated with a particular hugetlbfs filesystem instance. Worse, they work by having callbacks to the hugetlbfs filesystem code from the low-level page handling code, in particular from free_huge_page(). This is a layering violation of itself, but more importantly, if the kernel does a get_user_pages() on hugepages (which can happen from KVM amongst others), then the free_huge_page() can be delayed until after the associated inode has already been freed. If an unmount occurs at the wrong time, even the hugetlbfs superblock where the "quota" limits are stored may have been freed. Andrew Barry proposed a patch to fix this by having hugepages, instead of storing a pointer to their address_space and reaching the superblock from there, had the hugepages store pointers directly to the superblock, bumping the reference count as appropriate to avoid it being freed. Andrew Morton rejected that version, however, on the grounds that it made the existing layering violation worse. This is a reworked version of Andrew's patch, which removes the extra, and some of the existing, layering violation. It works by introducing the concept of a hugepage "subpool" at the lower hugepage mm layer - that is a finite logical pool of hugepages to allocate from. hugetlbfs now creates a subpool for each filesystem instance with a page limit set, and a pointer to the subpool gets added to each allocated hugepage, instead of the address_space pointer used now. The subpool has its own lifetime and is only freed once all pages in it _and_ all other references to it (i.e. superblocks) are gone. subpools are optional - a NULL subpool pointer is taken by the code to mean that no subpool limits are in effect. Previous discussion of this bug found in: "Fix refcounting in hugetlbfs quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or http://marc.info/?l=linux-mm&m=126928970510627&w=1 v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to alloc_huge_page() - since it already takes the vma, it is not necessary. Signed-off-by: Andrew Barry <abarry@cray.com> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: cleanup hugetlb.hDavid Gibson2012-03-211-25/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | Make a couple of small cleanups to linux/include/hugetlb.h. The set_file_hugepages() function, which was not used anywhere is removed, and the hugetlbfs_config and hugetlbfs_inode_info structures with its HUGETLBFS_I helper function are moved into inode.c, the only place they were used. These structures are really linked to the hugetlbfs filesystem specifically not to hugepage mm handling in general, so they belong in the filesystem code not in a generally available header. It would be nice to move the hugetlbfs_sb_info (superblock) structure in there as well, but it's currently needed in a number of places via the hstate_vma() and hstate_inode(). Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Cc: Hugh Dickins <hughd@google.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Andrew Barry <abarry@cray.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: remove dummy definitions of HPAGE_MASK and HPAGE_SIZEDavid Rientjes2011-11-191-5/+0
| | | | | | | | | | | | | | | | | | | | | | | | Dummy, non-zero definitions for HPAGE_MASK and HPAGE_SIZE were added in 51c6f666fceb ("mm: ZAP_BLOCK causes redundant work") to avoid a divide by zero in generic kernel code. That code has since been removed, but probably should never have been added in the first place: we don't want HPAGE_SIZE to act like PAGE_SIZE for code that is working with hugepages, for example, when the dependency on CONFIG_HUGETLB_PAGE has not been fulfilled. Because hugepage size can differ from architecture to architecture, each is required to have their own definitions for both HPAGE_MASK and HPAGE_SIZE. This is always done in arch/*/include/asm/page.h. So, just remove the dummy and dangerous definitions since they are no longer needed and reveals the correct dependencies. Tested on architectures using the definitions with allyesconfig: x86 (even with thp), hppa, mips, powerpc, s390, sh3, sh4, sparc, and sparc64, and with defconfig on ia64. Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: add phys addr to struct huge_bootmem_pageBecky Bruce2011-07-251-0/+3
| | | | | | | | | | | This is needed on HIGHMEM systems - we don't always have a virtual address so store the physical address and map it in as needed. [akpm@linux-foundation.org: cleanup] Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Fix build with !HUGETLBFSLinus Torvalds2011-05-261-0/+1
| | | | | | | | | | | | | | I stupidly broke the case of CONFIG_HUGETLBFS=n when doing the conversion to vm_flags_t in commit ca16d140af91 ("mm: don't access vm_flags as 'int'"). And my 'allyesconfig' build didn't find it, for obvious reasons.. Include <linux/mm_types.h> in <linux/hugetlb.h>. The problem could have been avoided by just turning the hugetlb_file_setup() error wrapper into a macro, but mm_types.h is a reasonable include in this file. Reported-by: Richard -rw- Weinberger <richard.weinberger@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: don't access vm_flags as 'int'KOSAKI Motohiro2011-05-261-3/+3
| | | | | | | | | | | The type of vma->vm_flags is 'unsigned long'. Neither 'int' nor 'unsigned int'. This patch fixes such misuse. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> [ Changed to use a typedef - we'll extend it to cover more cases later, since there has been discussion about making it a 64-bit type.. - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Encode huge page size for VM_FAULT_HWPOISON errorsAndi Kleen2010-10-081-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | This fixes a problem introduced with the hugetlb hwpoison handling The user space SIGBUS signalling wants to know the size of the hugepage that caused a HWPOISON fault. Unfortunately the architecture page fault handlers do not have easy access to the struct page. Pass the information out in the fault error code instead. I added a separate VM_FAULT_HWPOISON_LARGE bit for this case and encode the hpage index in some free upper bits of the fault code. The small page hwpoison keeps stays with the VM_FAULT_HWPOISON name to minimize changes. Also add code to hugetlb.h to convert that index into a page shift. Will be used in a further patch. Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: fengguang.wu@intel.com Signed-off-by: Andi Kleen <ak@linux.intel.com>
* HWPOISON, hugetlb: add free check to dequeue_hwpoison_huge_page()Naoya Horiguchi2010-10-081-2/+2
| | | | | | | | | | | This check is necessary to avoid race between dequeue and allocation, which can cause a free hugepage to be dequeued twice and get kernel unstable. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* hugetlb: redefine hugepage copy functionsNaoya Horiguchi2010-10-081-0/+4
| | | | | | | | | | | | | | | | | | | | | | This patch modifies hugepage copy functions to have only destination and source hugepages as arguments for later use. The old ones are renamed from copy_{gigantic,huge}_page() to copy_user_{gigantic,huge}_page(). This naming convention is consistent with that between copy_highpage() and copy_user_highpage(). ChangeLog since v4: - add blank line between local declaration and code - remove unnecessary might_sleep() ChangeLog since v2: - change copy_huge_page() from macro to inline dummy function to avoid compile warning when !CONFIG_HUGETLB_PAGE. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* hugetlb: add allocate function for hugepage migrationNaoya Horiguchi2010-10-081-0/+3
| | | | | | | | | | | | | | | | | | | | | | We can't use existing hugepage allocation functions to allocate hugepage for page migration, because page migration can happen asynchronously with the running processes and page migration users should call the allocation function with physical addresses (not virtual addresses) as arguments. ChangeLog since v3: - unify alloc_buddy_huge_page() and alloc_buddy_huge_page_node() ChangeLog since v2: - remove unnecessary get/put_mems_allowed() (thanks to David Rientjes) ChangeLog since v1: - add comment on top of alloc_huge_page_no_vma() Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
* HWPOISON, hugetlb: isolate corrupted hugepageNaoya Horiguchi2010-08-111-0/+2
| | | | | | | | | | | | | | | If error hugepage is not in-use, we can fully recovery from error by dequeuing it from freelist, so return RECOVERY. Otherwise whether or not we can recovery depends on user processes, so return DELAYED. Dependency: "HWPOISON, hugetlb: enable error handling path for hugepage" Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrew Morton <akpm@linux-foundation.org> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
OpenPOWER on IntegriCloud