| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I believe that there is a problem with the handling of POSIX locks, which
the attached patch should address.
The problem appears to be a race between fcntl(2) and close(2). A
multithreaded application could close a file descriptor at the same time as
it is trying to acquire a lock using the same file descriptor. I would
suggest that that multithreaded application is not providing the proper
synchronization for itself, but the OS should still behave correctly.
SUS3 (Single UNIX Specification Version 3, read: POSIX) indicates that when
a file descriptor is closed, that all POSIX locks on the file, owned by the
process which closed the file descriptor, should be released.
The trick here is when those locks are released. The current code releases
all locks which exist when close is processing, but any locks in progress
are handled when the last reference to the open file is released.
There are three cases to consider.
One is the simple case, a multithreaded (mt) process has a file open and
races to close it and acquire a lock on it. In this case, the close will
release one reference to the open file and when the fcntl is done, it will
release the other reference. For this situation, no locks should exist on
the file when both the close and fcntl operations are done. The current
system will handle this case because the last reference to the open file is
being released.
The second case is when the mt process has dup(2)'d the file descriptor.
The close will release one reference to the file and the fcntl, when done,
will release another, but there will still be at least one more reference
to the open file. One could argue that the existence of a lock on the file
after the close has completed is okay, because it was acquired after the
close operation and there is still a way for the application to release the
lock on the file, using an existing file descriptor.
The third case is when the mt process has forked, after opening the file
and either before or after becoming an mt process. In this case, each
process would hold a reference to the open file. For each process, this
degenerates to first case above. However, the lock continues to exist
until both processes have released their references to the open file. This
lock could block other lock requests.
The changes to release the lock when the last reference to the open file
aren't quite right because they would allow the lock to exist as long as
there was a reference to the open file. This is too long.
The new proposed solution is to add support in the fcntl code path to
detect a race with close and then to release the lock which was just
acquired when such as race is detected. This causes locks to be released
in a timely fashion and for the system to conform to the POSIX semantic
specification.
This was tested by instrumenting a kernel to detect the handling locks and
then running a program which generates case #3 above. A dangling lock
could be reliably generated. When the changes to detect the close/fcntl
race were added, a dangling lock could no longer be generated.
Cc: Matthew Wilcox <willy@debian.org>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Something has changed in the core kernel such that we now get concurrent
inode write outs, one e.g via pdflush and one via sys_sync or whatever.
This causes a nasty deadlock in ntfs. The only clean solution
unfortunately requires a minor vfs api extension.
First the deadlock analysis:
Prerequisive knowledge: NTFS has a file $MFT (inode 0) loaded at mount
time. The NTFS driver uses the page cache for storing the file contents as
usual. More interestingly this file contains the table of on-disk inodes
as a sequence of MFT_RECORDs. Thus NTFS driver accesses the on-disk inodes
by accessing the MFT_RECORDs in the page cache pages of the loaded inode
$MFT.
The situation: VFS inode X on a mounted ntfs volume is dirty. For same
inode X, the ntfs_inode is dirty and thus corresponding on-disk inode,
which is as explained above in a dirty PAGE_CACHE_PAGE belonging to the
table of inodes ($MFT, inode 0).
What happens:
Process 1: sys_sync()/umount()/whatever... calls __sync_single_inode() for
$MFT -> do_writepages() -> write_page for the dirty page containing the
on-disk inode X, the page is now locked -> ntfs_write_mst_block() which
clears PageUptodate() on the page to prevent anyone else getting hold of it
whilst it does the write out (this is necessary as the on-disk inode needs
"fixups" applied before the write to disk which are removed again after the
write and PageUptodate is then set again). It then analyses the page
looking for dirty on-disk inodes and when it finds one it calls
ntfs_may_write_mft_record() to see if it is safe to write this on-disk
inode. This then calls ilookup5() to check if the corresponding VFS inode
is in icache(). This in turn calls ifind() which waits on the inode lock
via wait_on_inode whilst holding the global inode_lock.
Process 2: pdflush results in a call to __sync_single_inode for the same
VFS inode X on the ntfs volume. This locks the inode (I_LOCK) then calls
write-inode -> ntfs_write_inode -> map_mft_record() -> read_cache_page() of
the page (in page cache of table of inodes $MFT, inode 0) containing the
on-disk inode. This page has PageUptodate() clear because of Process 1
(see above) so read_cache_page() blocks when tries to take the page lock
for the page so it can call ntfs_read_page().
Thus Process 1 is holding the page lock on the page containing the on-disk
inode X and it is waiting on the inode X to be unlocked in ifind() so it
can write the page out and then unlock the page.
And Process 2 is holding the inode lock on inode X and is waiting for the
page to be unlocked so it can call ntfs_readpage() or discover that
Process 1 set PageUptodate() again and use the page.
Thus we have a deadlock due to ifind() waiting on the inode lock.
The only sensible solution: NTFS does not care whether the VFS inode is
locked or not when it calls ilookup5() (it doesn't use the VFS inode at
all, it just uses it to find the corresponding ntfs_inode which is of
course attached to the VFS inode (both are one single struct); and it uses
the ntfs_inode which is subject to its own locking so I_LOCK is irrelevant)
hence we want a modified ilookup5_nowait() which is the same as ilookup5()
but it does not wait on the inode lock.
Without such functionality I would have to keep my own ntfs_inode cache in
the NTFS driver just so I can find ntfs_inodes independent of their VFS
inodes which would be slow, memory and cpu cycle wasting, and incredibly
stupid given the icache already exists in the VFS.
Below is a patch that does the ilookup5_nowait() implementation in
fs/inode.c and exports it.
ilookup5_nowait.diff:
Introduce ilookup5_nowait() which is basically the same as ilookup5() but
it does not wait on the inode's lock (i.e. it omits the wait_on_inode()
done in ifind()).
This is needed to avoid a nasty deadlock in NTFS.
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
inotify is intended to correct the deficiencies of dnotify, particularly
its inability to scale and its terrible user interface:
* dnotify requires the opening of one fd per each directory
that you intend to watch. This quickly results in too many
open files and pins removable media, preventing unmount.
* dnotify is directory-based. You only learn about changes to
directories. Sure, a change to a file in a directory affects
the directory, but you are then forced to keep a cache of
stat structures.
* dnotify's interface to user-space is awful. Signals?
inotify provides a more usable, simple, powerful solution to file change
notification:
* inotify's interface is a system call that returns a fd, not SIGIO.
You get a single fd, which is select()-able.
* inotify has an event that says "the filesystem that the item
you were watching is on was unmounted."
* inotify can watch directories or files.
Inotify is currently used by Beagle (a desktop search infrastructure),
Gamin (a FAM replacement), and other projects.
See Documentation/filesystems/inotify.txt.
Signed-off-by: Robert Love <rml@novell.com>
Cc: John McCutchan <ttb@tentacle.dhs.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
OCFS2 wants to mark an inode which has been orphaned by another node so
that during final iput it takes the correct path through the VFS and can
pass through the OCFS2 delete_inode callback. Since i_nlink can get out of
date with other nodes, the best way I see to accomplish this is by clearing
i_nlink on those inodes at drop_inode time. Other than this small amount
of work, nothing different needs to happen, so I think it would be cleanest
to be able to just call generic_drop_inode at the end of the OCFS2
drop_inode callback.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates the CFQ io scheduler to the new time sliced design (cfq
v3). It provides full process fairness, while giving excellent
aggregate system throughput even for many competing processes. It
supports io priorities, either inherited from the cpu nice value or set
directly with the ioprio_get/set syscalls. The latter closely mimic
set/getpriority.
This import is based on my latest from -mm.
Signed-off-by: Jens Axboe <axboe@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch reworks filemap_xip.c with the goal to reduce code duplication
from mm/filemap.c. It applies agains 2.6.12-rc6-mm1. Instead of
implementing the aio functions, this one implements the synchronous
read/write functions only. For readv and writev, the generic fallback is
used. For aio, we rely on the application doing the fallback. Since our
"synchronous" function does memcpy immediately anyway, there is no
performance difference between using the fallbacks or implementing each
operation.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
| |
These are the ext2 related parts. Ext2 now uses the xip_* file operations
along with the get_xip_page aop when mounted with -o xip.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- generic_file* file operations do no longer have a xip/non-xip split
- filemap_xip.c implements a new set of fops that require get_xip_page
aop to work proper. all new fops are exported GPL-only (don't like to
see whatever code use those except GPL modules)
- __xip_unmap now uses page_check_address, which is no longer static
in rmap.c, and defined in linux/rmap.h
- mm/filemap.h is now much more clean, plainly having just Linus'
inline funcs moved here from filemap.c
- fix includes in filemap_xip to make it build cleanly on i386
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
| |
This is the block device related part. The block device operation
direct_access now has a struct block_device as first parameter.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
| |
XFS will have to look at iocb->private to fix aio+dio. No other filesystem
is using the blockdev_direct_IO* end_io callback.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following patch removes the f_error field and all checks of f_error.
Trond said:
f_error was introduced for NFS, and made sense when we were guaranteed
always to have a file pointer around when write errors occurred. Since
then, we have (for various reasons) had to introduce the nfs_open_context in
order to track the file read/write state, and it made sense to move our
f_error tracking there too.
Signed-off-by: Christoph Lameter <christoph@lameter.com>
Acked-by: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch allows block device drivers to convert their ioctl functions to
unlocked_ioctl() like character devices and other subsystems. All
functions that were called with the BKL held before are still used that
way, but I would not be surprised if it could be removed from the ioctl
functions in drivers/block/ioctl.c themselves.
As a side note, I found that compat_blkdev_ioctl() acquires the BKL as
well, which looks like a bug. I have checked that every user of
disk->fops->compat_ioctl() in the current git tree gets the BKL itself, so
it could easily be removed from compat_blkdev_ioctl().
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on analysis and a patch from Russ Weight <rweight@us.ibm.com>
There is a race condition that can occur if an inode is allocated and then
released (using iput) during the ->fill_super functions. The race
condition is between kswapd and mount.
For most filesystems this can only happen in an error path when kswapd is
running concurrently. For isofs, however, the error can occur in a more
common code path (which is how the bug was found).
The logic here is "we want final iput() to free inode *now* instead of
letting it sit in cache if fs is going down or had not quite come up". The
problem is with kswapd seeing such inodes in the middle of being killed and
happily taking over.
The clean solution would be to tell kswapd to leave those inodes alone and
let our final iput deal with them. I.e. add a new flag
(I_FORCED_FREEING), set it before write_inode_now() there and make
prune_icache() leave those alone.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
| |
Ensure that lock owner structures are not released prematurely.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on the discussion about spufs attributes, this is my suggestion
for a more generic attribute file support that can be used by both
debugfs and spufs.
Simple attribute files behave similarly to sequential files from
a kernel programmers perspective in that a standard set of file
operations is provided and only an open operation needs to
be written that registers file specific get() and set() functions.
These operations are defined as
void foo_set(void *data, u64 val); and
u64 foo_get(void *data);
where data is the inode->u.generic_ip pointer of the file and the
operations just need to make send of that pointer. The infrastructure
makes sure this works correctly with concurrent access and partial
read calls.
A macro named DEFINE_SIMPLE_ATTRIBUTE is provided to further simplify
using the attributes.
This patch already contains the changes for debugfs to use attributes
for its internal file operations.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
The only caller that ever sets it can call fsync_bdev itself easily. Also
update some comments.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: <viro@parcelfarce.linux.theplanet.co.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
| |
Some KernelDoc descriptions are updated to match the current code.
No code changes.
Signed-off-by: Martin Waitz <tali@admingilde.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I have recompiled Linux kernel 2.6.11.5 documentation for me and our
university students again. The documentation could be extended for more
sources which are equipped by structured comments for recent 2.6 kernels. I
have tried to proceed with that task. I have done that more times from 2.6.0
time and it gets boring to do same changes again and again. Linux kernel
compiles after changes for i386 and ARM targets. I have added references to
some more files into kernel-api book, I have added some section names as well.
So please, check that changes do not break something and that categories are
not too much skewed.
I have changed kernel-doc to accept "fastcall" and "asmlinkage" words reserved
by kernel convention. Most of the other changes are modifications in the
comments to make kernel-doc happy, accept some parameters description and do
not bail out on errors. Changed <pid> to @pid in the description, moved some
#ifdef before comments to correct function to comments bindings, etc.
You can see result of the modified documentation build at
http://cmp.felk.cvut.cz/~pisa/linux/lkdb-2.6.11.tar.gz
Some more sources are ready to be included into kernel-doc generated
documentation. Sources has been added into kernel-api for now. Some more
section names added and probably some more chaos introduced as result of quick
cleanup work.
Signed-off-by: Pavel Pisa <pisa@cmp.felk.cvut.cz>
Signed-off-by: Martin Waitz <tali@admingilde.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|