summaryrefslogtreecommitdiffstats
path: root/fs/xfs
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'for-linus' of ↵Linus Torvalds2015-04-267-31/+31
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull fourth vfs update from Al Viro: "d_inode() annotations from David Howells (sat in for-next since before the beginning of merge window) + four assorted fixes" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: RCU pathwalk breakage when running into a symlink overmounting something fix I_DIO_WAKEUP definition direct-io: only inc/dec inode->i_dio_count for file systems fs/9p: fix readdir() VFS: assorted d_backing_inode() annotations VFS: fs/inode.c helpers: d_inode() annotations VFS: fs/cachefiles: d_backing_inode() annotations VFS: fs library helpers: d_inode() annotations VFS: assorted weird filesystems: d_inode() annotations VFS: normal filesystems (and lustre): d_inode() annotations VFS: security/: d_inode() annotations VFS: security/: d_backing_inode() annotations VFS: net/: d_inode() annotations VFS: net/unix: d_backing_inode() annotations VFS: kernel/: d_inode() annotations VFS: audit: d_backing_inode() annotations VFS: Fix up some ->d_inode accesses in the chelsio driver VFS: Cachefiles should perform fs modifications on the top layer only VFS: AF_UNIX sockets should call mknod on the top layer only
| * VFS: normal filesystems (and lustre): d_inode() annotationsDavid Howells2015-04-157-31/+31
| | | | | | | | | | | | | | that's the bulk of filesystem drivers dealing with inodes of their own Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* | Merge tag 'xfs-for-linus-4.1-rc1' of ↵Linus Torvalds2015-04-2445-1927/+1986
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs Pull xfs update from Dave Chinner: "This update contains: - RENAME_WHITEOUT support - conversion of per-cpu superblock accounting to use generic counters - new inode mmap lock so that we can lock page faults out of truncate, hole punch and other direct extent manipulation functions to avoid racing mmap writes from causing data corruption - rework of direct IO submission and completion to solve data corruption issue when running concurrent extending DIO writes. Also solves problem of running IO completion transactions in interrupt context during size extending AIO writes. - FALLOC_FL_INSERT_RANGE support for inserting holes into a file via direct extent manipulation to avoid needing to copy data within the file - attribute block header field overflow fix for 64k block size filesystems - Lots of changes to log messaging to be more informative and concise when errors occur. Also prevent a lot of unnecessary log spamming due to cascading failures in error conditions. - lots of cleanups and bug fixes One thing of note is the direct IO fixes that we merged last week after the window opened. Even though a little late, they fix a user reported data corruption and have been pretty well tested. I figured there was not much point waiting another 2 weeks for -rc1 to be released just so I could send them to you..." * tag 'xfs-for-linus-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (49 commits) xfs: using generic_file_direct_write() is unnecessary xfs: direct IO EOF zeroing needs to drain AIO xfs: DIO write completion size updates race xfs: DIO writes within EOF don't need an ioend xfs: handle DIO overwrite EOF update completion correctly xfs: DIO needs an ioend for writes xfs: move DIO mapping size calculation xfs: factor DIO write mapping from get_blocks xfs: unlock i_mutex in xfs_break_layouts xfs: kill unnecessary firstused overflow check on attr3 leaf removal xfs: use larger in-core attr firstused field and detect overflow xfs: pass attr geometry to attr leaf header conversion functions xfs: disallow ro->rw remount on norecovery mount xfs: xfs_shift_file_space can be static xfs: Add support FALLOC_FL_INSERT_RANGE for fallocate fs: Add support FALLOC_FL_INSERT_RANGE for fallocate xfs: Fix incorrect positive ENOMEM return xfs: xfs_mru_cache_insert() should use GFP_NOFS xfs: %pF is only for function pointers xfs: fix shadow warning in xfs_da3_root_split() ...
| * \ Merge branch 'xfs-dio-extend-fix' into for-nextDave Chinner2015-04-163-82/+239
| |\ \ | | | | | | | | | | | | | | | | Conflicts: fs/xfs/xfs_file.c
| | * | xfs: using generic_file_direct_write() is unnecessaryDave Chinner2015-04-161-3/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | generic_file_direct_write() does all sorts of things to make DIO work "sorta ok" with mixed buffered IO workloads. We already do most of this work in xfs_file_aio_dio_write() because of the locking requirements, so there's only a couple of things it does for us. The first thing is that it does a page cache invalidation after the ->direct_IO callout. This can easily be added to the XFS code. The second thing it does is that if data was written, it updates the iov_iter structure to reflect the data written, and then does EOF size updates if necessary. For XFS, these EOF size updates are now not necessary, as we do them safely and race-free in IO completion context. That leaves just the iov_iter update, and that's also moved to the XFS code. Therefore we don't need to call generic_file_direct_write() and in doing so remove redundant buffered writeback and page cache invalidation calls from the DIO submission path. We also remove a racy EOF size update, and make the DIO submission code in XFS much easier to follow. Wins all round, really. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | xfs: direct IO EOF zeroing needs to drain AIODave Chinner2015-04-161-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we are doing AIO DIO writes, the IOLOCK only provides an IO submission barrier. When we need to do EOF zeroing, we need to ensure that no other IO is in progress and all pending in-core EOF updates have been completed. This requires us to wait for all outstanding AIO DIO writes to the inode to complete and, if necessary, run their EOF updates. Once all the EOF updates are complete, we can then restart xfs_file_aio_write_checks() while holding the IOLOCK_EXCL, knowing that EOF is up to date and we have exclusive IO access to the file so we can run EOF block zeroing if we need to without interference. This gives EOF zeroing the same exclusivity against other IO as we provide truncate operations. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | xfs: DIO write completion size updates raceDave Chinner2015-04-162-1/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_end_io_direct_write() can race with other IO completions when updating the in-core inode size. The IO completion processing is not serialised for direct IO - they are done either under the IOLOCK_SHARED for non-AIO DIO, and without any IOLOCK held at all during AIO DIO completion. Hence the non-atomic test-and-set update of the in-core inode size is racy and can result in the in-core inode size going backwards if the race if hit just right. If the inode size goes backwards, this can trigger the EOF zeroing code to run incorrectly on the next IO, which then will zero data that has successfully been written to disk by a previous DIO. To fix this bug, we need to serialise the test/set updates of the in-core inode size. This first patch introduces locking around the relevant updates and checks in the DIO path. Because we now have an ioend in xfs_end_io_direct_write(), we know exactly then we are doing an IO that requires an in-core EOF update, and we know that they are not running in interrupt context. As such, we do not need to use irqsave() spinlock variants to protect against interrupts while the lock is held. Hence we can use an existing spinlock in the inode to do this serialisation and so not need to grow the struct xfs_inode just to work around this problem. This patch does not address the test/set EOF update in generic_file_write_direct() for various reasons - that will be done as a followup with separate explanation. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | xfs: DIO writes within EOF don't need an ioendDave Chinner2015-04-162-30/+40
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DIO writes that lie entirely within EOF have nothing to do in IO completion. In this case, we don't need no steekin' ioend, and so we can avoid allocating an ioend until we have a mapping that spans EOF. This means that IO completion has two contexts - deferred completion to the dio workqueue that uses an ioend, and interrupt completion that does nothing because there is nothing that can be done in this context. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | xfs: handle DIO overwrite EOF update completion correctlyDave Chinner2015-04-162-31/+31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently a DIO overwrite that extends the EOF (e.g sub-block IO or write into allocated blocks beyond EOF) requires a transaction for the EOF update. Thi is done in IO completion context, but we aren't explicitly handling this situation properly and so it can run in interrupt context. Ensure that we defer IO that spans EOF correctly to the DIO completion workqueue, and now that we have an ioend in IO completion we can use the common ioend completion path to do all the work. Note: we do not preallocate the append transaction as we can have multiple mapping and allocation calls per direct IO. hence preallocating can still leave us with nested transactions by attempting to map and allocate more blocks after we've preallocated an append transaction. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | xfs: DIO needs an ioend for writesDave Chinner2015-04-162-10/+85
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently we can only tell DIO completion that an IO requires unwritten extent completion. This is done by a hacky non-null private pointer passed to Io completion, but the private pointer does not actually contain any information that is used. We also need to pass to IO completion the fact that the IO may be beyond EOF and so a size update transaction needs to be done. This is currently determined by checks in the io completion, but we need to determine if this is necessary at block mapping time as we need to defer the size update transactions to a completion workqueue, just like unwritten extent conversion. To do this, first we need to allocate and pass an ioend to to IO completion. Add this for unwritten extent conversion; we'll do the EOF updates in the next commit. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | xfs: move DIO mapping size calculationDave Chinner2015-04-161-33/+46
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The mapping size calculation is done last in __xfs_get_blocks(), but we are going to need the actual mapping size we will use to map the direct IO correctly in xfs_map_direct(). Factor out the calculation for code clarity, and move the call to be the first operation in mapping the extent to the returned buffer. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | xfs: factor DIO write mapping from get_blocksDave Chinner2015-04-161-13/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Clarify and separate the buffer mapping logic so that the direct IO mapping is not tangled up in propagating the extent status to teh mapping buffer. This makes it easier to extend the direct IO mapping to use an ioend in future. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | Merge branch 'xfs-misc-fixes-for-4.1-3' into for-nextDave Chinner2015-04-1312-51/+159
| |\ \ \ | | | | | | | | | | | | | | | | | | | | Conflicts: fs/xfs/xfs_iops.c
| | * | | xfs: unlock i_mutex in xfs_break_layoutsChristoph Hellwig2015-04-135-7/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We want to drop all I/O path locks when recalling layouts, and that includes i_mutex for the write path. Without this we get stuck processe when recalls take too long. [dchinner: fix build with !CONFIG_PNFS] Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | xfs: kill unnecessary firstused overflow check on attr3 leaf removalBrian Foster2015-04-131-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_attr3_leaf_remove() removes an attribute from an attr leaf block. If the attribute nameval data happens to be at the start of the nameval region, a new start offset (firstused) for the region is calculated (since the region grows from the tail of the block to the start). Once the new firstused is calculated, it is checked for zero in an apparent overflow check. Now that the in-core firstused is 32-bit, overflow is not possible and this check can be removed. Since the purpose for this check is not documented and appears to exist since the port to Linux, be conservative and replace it with an assert. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | xfs: use larger in-core attr firstused field and detect overflowBrian Foster2015-04-132-6/+92
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The on-disk xfs_attr3_leaf_hdr structure firstused field is 16-bit and subject to overflow when fs block size is 64k. The field is typically initialized to block size when an attr leaf block is initialized. This problem is demonstrated by assert failures when running xfstests generic/117 on an fs with 64k blocks. To support the existing attr leaf block algorithms for insertion, rebalance and entry movement, increase the size of the in-core firstused field to 32-bit and handle the potential overflow on conversion to/from the on-disk structure. If the overflow condition occurs, set a special value in the firstused field that is translated back on header read. The special value is only required in the case of an empty 64k attr block. A value of zero is used because firstused is initialized to the block size and grows backwards from there. Furthermore, the attribute block header occupies the first bytes of the block. Thus, a value of zero has no other legitimate meaning for this structure. Two new conversion helpers are created to manage the conversion of firstused to and from disk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | xfs: pass attr geometry to attr leaf header conversion functionsBrian Foster2015-04-134-35/+46
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The firstused field of the xfs_attr3_leaf_hdr structure is subject to an overflow when fs blocksize is 64k. In preparation to handle this overflow in the header conversion functions, pass the attribute geometry to the functions that convert the in-core structure to and from the on-disk structure. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | xfs: disallow ro->rw remount on norecovery mountEric Sandeen2015-04-131-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There's a bit of a loophole in norecovery mount handling right now: an initial mount must be readonly, but nothing prevents a mount -o remount,rw from producing a writable, unrecovered xfs filesystem. It might be possible to try to perform a log recovery when this is requested, but I'm not sure it's worth the effort. For now, simply disallow this sort of transition. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | xfs: xfs_shift_file_space can be statickbuild test robot2015-04-131-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | Merge branch 'fallocate-insert-range' into for-nextDave Chinner2015-03-256-83/+461
| |\ \ \ \ | | |/ / /
| | * | | xfs: Add support FALLOC_FL_INSERT_RANGE for fallocateNamjae Jeon2015-03-256-83/+461
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements fallocate's FALLOC_FL_INSERT_RANGE for XFS. 1) Make sure that both offset and len are block size aligned. 2) Update the i_size of inode by len bytes. 3) Compute the file's logical block number against offset. If the computed block number is not the starting block of the extent, split the extent such that the block number is the starting block of the extent. 4) Shift all the extents which are lying bewteen [offset, last allocated extent] towards right by len bytes. This step will make a hole of len bytes at offset. Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Ashish Sangwan <a.sangwan@samsung.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | Merge branch 'xfs-misc-fixes-for-4.1-2' into for-nextDave Chinner2015-03-258-52/+20
| |\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Conflicts: fs/xfs/libxfs/xfs_bmap.c fs/xfs/xfs_inode.c
| | * | | | xfs: Fix incorrect positive ENOMEM returnJoe Perches2015-03-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | added a positive error return value. This value filters up through the return layers and should be negative as the other return values are in the same function. Signed-off-by: Joe Perches <joe@perches.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: xfs_mru_cache_insert() should use GFP_NOFSByoungyoung Lee2015-03-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | xfs_mru_cache_insert() can be called from within transaction context during block allocation like so: write(2) .... xfs_get_blocks xfs_iomap_write_direct start transaction xfs_bmapi_write xfs_bmapi_allocate xfs_bmap_btalloc xfs_bmap_btalloc_filestreams xfs_filestream_new_ag xfs_filestream_pick_ag xfs_mru_cache_insert radix_tree_preload(GFP_KERNEL) In this case, GFP_KERNEL is incorrect and can potentially lead to deadlocks in memory reclaim. It should use GFP_NOFS allocations to avoid lock recursion problems. [dchinner: rewrote commit message] Signed-off-by: Byoungyoung Lee <blee@gatech.edu> Signed-off-by: Sanidhya Kashyap <sanidhya.gatech@gmail.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: %pF is only for function pointersScott Wood2015-03-252-11/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use %pS for actual addresses, otherwise you'll get bad output on arches like ppc64 where %pF expects a function descriptor. Signed-off-by: Scott Wood <scottwood@freescale.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: fix shadow warning in xfs_da3_root_split()Fabian Frederick2015-03-251-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use icnodehdr for struct xfs_da3_icnode_hdr instead of nodehdr (already declared above). Signed-off-by: Fabian Frederick <fabf@skynet.be> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: use bool instead of int in xfs_rename()Fabian Frederick2015-03-251-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | new_parent and src_is_directory are only used in 0/1 context. Signed-off-by: Fabian Frederick <fabf@skynet.be> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: fix NULL pointer dereference in xfs_filestream_lookup_ag()Eric Sandeen2015-03-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If xfs_filestream_get_parent() fails, we have a null pip, goto out, and attempt to IRELE(NULL). This causes a null pointer dereference and BUG(). Fix this by directly returning NULLAGNUMBER in this case. Reported-by: Adrien Nader <adrien@notk.org> Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: remove xfs_bmap_sanity_check()Dave Chinner2015-03-251-33/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This code is redundant now that we have verifiers that sanity check the buffers as they are read from disk. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | | Merge branch 'xfs-rename-whiteout' into for-nextDave Chinner2015-03-252-171/+239
| |\ \ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | Conflicts: fs/xfs/xfs_inode.c
| | * | | | | xfs: add RENAME_WHITEOUT supportDave Chinner2015-03-252-24/+107
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Whiteouts are used by overlayfs - it has a crazy convention that a whiteout is a character device inode with a major:minor of 0:0. Because it's not documented anywhere, here's an example of what RENAME_WHITEOUT does on ext4: # echo foo > /mnt/scratch/foo # echo bar > /mnt/scratch/bar # ls -l /mnt/scratch total 24 -rw-r--r-- 1 root root 4 Feb 11 20:22 bar -rw-r--r-- 1 root root 4 Feb 11 20:22 foo drwx------ 2 root root 16384 Feb 11 20:18 lost+found # src/renameat2 -w /mnt/scratch/foo /mnt/scratch/bar # ls -l /mnt/scratch total 20 -rw-r--r-- 1 root root 4 Feb 11 20:22 bar c--------- 1 root root 0, 0 Feb 11 20:23 foo drwx------ 2 root root 16384 Feb 11 20:18 lost+found # cat /mnt/scratch/bar foo # In XFS rename terms, the operation that has been done is that source (foo) has been moved to the target (bar), which is like a nomal rename operation, but rather than the source being removed, it have been replaced with a whiteout. We can't allocate whiteout inodes within the rename transaction due to allocation being a multi-commit transaction: rename needs to be a single, atomic commit. Hence we have several options here, form most efficient to least efficient: - use DT_WHT in the target dirent and do no whiteout inode allocation. The main issue with this approach is that we need hooks in lookup to create a virtual chardev inode to present to userspace and in places where we might need to modify the dirent e.g. unlink. Overlayfs also needs to be taught about DT_WHT. Most invasive change, lowest overhead. - create a special whiteout inode in the root directory (e.g. a ".wino" dirent) and then hardlink every new whiteout to it. This means we only need to create a single whiteout inode, and rename simply creates a hardlink to it. We can use DT_WHT for these, though using DT_CHR means we won't have to modify overlayfs, nor anything in userspace. Downside is we have to look up the whiteout inode on every operation and create it if it doesn't exist. - copy ext4: create a special whiteout chardev inode for every whiteout. This is more complex than the above options because of the lack of atomicity between inode creation and the rename operation, requiring us to create a tmpfile inode and then linking it into the directory structure during the rename. At least with a tmpfile inode crashes between the create and rename doesn't leave unreferenced inodes or directory pollution around. By far the simplest thing to do in the short term is to copy ext4. While it is the most inefficient way of supporting whiteouts, but as an initial implementation we can simply reuse existing functions and add a small amount of extra code the the rename operation. When we get full whiteout support in the VFS (via the dentry cache) we can then look to supporting DT_WHT method outlined as the first method of supporting whiteouts. But until then, we'll stick with what overlayfs expects us to be: dumb and stupid. Signed-off-by: Dave Chinner <dchinner@redhat.com>
| | * | | | | xfs: make xfs_cross_rename() complete fullyDave Chinner2015-03-251-20/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that xfs_finish_rename() exists, there is no reason for xfs_cross_rename() to return to xfs_rename() to finish off the rename transaction. Drive the completion code into xfs_cross_rename() and handle all errors there so as to simplify the xfs_rename() code. Further, push the rename exchange target_ip check to early in the rename code so as to make the error handling easy and obviously correct. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | | xfs: factor out xfs_finish_rename()Dave Chinner2015-03-251-21/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rather than use a jump label for the final transaction commit in the rename, factor it into a simple helper function and call it appropriately. This slightly reduces the spaghetti nature of xfs_rename. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | | xfs: cleanup xfs_rename error handlingDave Chinner2015-03-251-33/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The jump labels are ambiguous and unclear and some of the error paths are used inconsistently. Rules for error jumps are: - use out_trans_cancel for unmodified transaction context - use out_bmap_cancel on ENOSPC errors - use out_trans_abort when transaction is likely to be dirty. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | | xfs: clean up inode locking for RENAME_WHITEOUTDave Chinner2015-03-251-78/+67
| | | |/ / / | | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When doing RENAME_WHITEOUT, we now have to lock 5 inodes into the rename transaction. This means we need to update xfs_sort_for_rename() and xfs_lock_inodes() to handle up to 5 inodes. Because of the vagaries of rename, this means we could have anywhere between 3 and 5 inodes locked into the transaction.... While xfs_lock_inodes() does not need anything other than an assert telling us we are passing more inodes that we ever thought we should see, it could do with a logic rework to remove all the indenting. This is not a functional change - it just makes the code a lot easier to read. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | | Merge branch 'xfs-mmap-lock' into for-nextDave Chinner2015-02-248-114/+217
| |\ \ \ \ \
| | * | | | | xfs: lock out page faults from extent swap operationsDave Chinner2015-02-231-16/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Extent swap operations are another extent manipulation operation that we need to ensure does not race against mmap page faults. The current code returns if the file is mapped prior to the swap being done, but it could potentially race against new page faults while the swap is in progress. Hence we should use the XFS_MMAPLOCK_EXCL for this operation, too. While there, fix the error path handling that can result in double unlocks of the inodes when cancelling the swapext transaction. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | | xfs: xfs_setattr_size no longer races with page faultsDave Chinner2015-02-231-42/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that truncate locks out new page faults, we no longer need to do special writeback hacks in truncate to work around potential races between page faults, page cache truncation and file size updates to ensure we get write page faults for extending truncates on sub-page block size filesystems. Hence we can remove the code in xfs_setattr_size() that handles this and update the comments around the code tha thandles page cache truncate and size updates to reflect the new reality. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | | xfs: take i_mmap_lock on extent manipulation operationsDave Chinner2015-02-233-2/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now we have the i_mmap_lock being held across the page fault IO path, we now add extent manipulation operation exclusion by adding the lock to the paths that directly modify extent maps. This includes truncate, hole punching and other fallocate based operations. The operations will now take both the i_iolock and the i_mmaplock in exclusive mode, thereby ensuring that all IO and page faults block without holding any page locks while the extent manipulation is in progress. This gives us the lock order during truncate of i_iolock -> i_mmaplock -> page_lock -> i_lock, hence providing the same lock order as the iolock provides the normal IO path without involving the mmap_sem. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | | xfs: use i_mmaplock on write faultsDave Chinner2015-02-232-15/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Take the i_mmaplock over write page faults. These come through the ->page_mkwrite callout, so we need to wrap that calls with the i_mmaplock. This gives us a lock order of mmap_sem -> i_mmaplock -> page_lock -> i_lock. Also, move the page_mkwrite wrapper to the same region of xfs_file.c as the read fault wrappers and add a tracepoint. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | | xfs: use i_mmaplock on read faultsDave Chinner2015-02-232-1/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Take the i_mmaplock over read page faults. These come through the ->fault callout, so we need to wrap the generic implementation with the i_mmaplock. While there, add tracepoints for the read fault as it passes through XFS. This gives us a lock order of mmap_sem -> i_mmaplock -> page_lock -> i_lock. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | | xfs: introduce mmap/truncate lockDave Chinner2015-02-233-38/+121
| | | |_|/ / | | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Right now we cannot serialise mmap against truncate or hole punch sanely. ->page_mkwrite is not able to take locks that the read IO path normally takes (i.e. the inode iolock) because that could result in lock inversions (read - iolock - page fault - page_mkwrite - iolock) and so we cannot use an IO path lock to serialise page write faults against truncate operations. Instead, introduce a new lock that is used *only* in the ->page_mkwrite path that is the equivalent of the iolock. The lock ordering in a page fault is i_mmaplock -> page lock -> i_ilock, and so in truncate we can i_iolock -> i_mmaplock and so lock out new write faults during the process of truncation. Because i_mmap_lock is outside the page lock, we can hold it across all the same operations we hold the i_iolock for. The only difference is that we never hold the i_mmaplock in the normal IO path and so do not ever have the possibility that we can page fault inside it. Hence there are no recursion issues on the i_mmap_lock and so we can use it to serialise page fault IO against inode modification operations that affect the IO path. This patch introduces the i_mmaplock infrastructure, lockdep annotations and initialisation/destruction code. Use of the new lock will be in subsequent patches. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| * | | | | Merge branch 'xfs-generic-sb-counters' into for-nextDave Chinner2015-02-2413-1129/+381
| |\ \ \ \ \ | | | |_|/ / | | |/| | | | | | | | | | | | | | | Conflicts: fs/xfs/xfs_super.c
| | * | | | xfs: remove xfs_mod_incore_sb APIDave Chinner2015-02-234-204/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that there are no users of the bitfield based incore superblock modification API, just remove the whole damn lot of it, including all the bitfield definitions. This finally removes a lot of cruft that has been around for a long time. Credit goes to Christoph Hellwig for providing a great patch connecting all the dots to enale us to do this. This patch is derived from that work. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: replace xfs_mod_incore_sb_batchedDave Chinner2015-02-233-134/+126
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce helper functions for modifying fields in the superblock into xfs_trans.c, the only caller of xfs_mod_incore_sb_batch(). We can then use these directly in xfs_trans_unreserve_and_mod_sb() and so remove another user of the xfs_mode_incore_sb() API without losing any functionality or scalability of the transaction commit code.. Based on a patch from Christoph Hellwig. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: introduce xfs_mod_frextentsDave Chinner2015-02-234-21/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a new helper to modify the incore counter of free realtime extents. This matches the helpers used for inode and data block counters, and removes a significant users of the xfs_mod_incore_sb() interface. Based on a patch originally from Christoph Hellwig. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: Remove icsb infrastructureDave Chinner2015-02-239-621/+72
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that the in-core superblock infrastructure has been replaced with generic per-cpu counters, we don't need it anymore. Nuke it from orbit so we are sure that it won't haunt us again... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: use generic percpu counters for free block counterDave Chinner2015-02-238-131/+134
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. The free block counter is special in that it is used for ENOSPC detection outside transaction contexts for for delayed allocation. This means that the counter needs to be accurate at zero. The current per-cpu counter code jumps through lots of hoops to ensure we never run past zero, but we don't need to make all those jumps with the generic counter implementation. The generic counter implementation allows us to pass a "batch" threshold at which the addition/subtraction to the counter value will be folded back into global value under lock. We can use this feature to reduce the batch size as we approach 0 in a very similar manner to the existing counters and their rebalance algorithm. If we use a batch size of 1 as we approach 0, then every addition and subtraction will be done against the global value and hence allow accurate detection of zero threshold crossing. Hence we can replace the handrolled, accurate-at-zero counters with generic percpu counters. Note: this removes just enough of the icsb infrastructure to compile without warnings. The rest will go in subsequent commits. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: use generic percpu counters for free inode counterDave Chinner2015-02-236-48/+42
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. The free inode counter is not used for any limit enforcement - the per-AG free inode counters are used during allocation to determine if there are inode available for allocation. Hence we don't need any of the complexity of the hand-rolled counters and we can simply replace them with generic per-cpu counters similar to the inode counter. This version introduces a xfs_mod_ifree() helper function from Christoph Hellwig. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
| | * | | | xfs: use generic percpu counters for inode counterDave Chinner2015-02-237-52/+54
| | |/ / / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. There are some warts around the use of them for the inode counter as the hand rolled counter is designed to be accurate at zero, but has no specific accurracy at any other value. This design causes problems for the maximum inode count threshold enforcement, as there is no trigger that balances the counters as they get close tothe maximum threshold. Instead of designing new triggers for balancing, just replace the handrolled per-cpu counter with a generic counter. This enables us to update the counter through the normal superblock modification funtions, but rather than do that we add a xfs_mod_icount() helper function (from Christoph Hellwig) and keep the percpu counter outside the superblock in the struct xfs_mount. This means we still need to initialise the per-cpu counter specifically when we read the superblock, and vice versa when we log/write it, but it does mean that we don't need to change any other code. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
OpenPOWER on IntegriCloud