| Commit message (Collapse) | Author | Age | Files | Lines |
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
They only set/clear/check a flag, no need for obfuscating this
with a macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Move the di_mode value from the xfs_icdinode to the VFS inode, reducing
the xfs_icdinode byte another 2 bytes and collapsing another 2 byte hole
in the structure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We can store the di_changecount in the i_version field of the VFS
inode and remove another 8 bytes from the xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull another 4 bytes out of the xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The VFS tracks the inode nlink just like the xfs_icdinode. We can
remove the variable from the icdinode and use the VFS inode variable
everywhere, reducing the size of the xfs_icdinode by a further 4
bytes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
So we don't have to carry an di_onlink variable around anymore, move
the inode conversion from v1 inode format to v2 inode format into
xfs_inode_from_disk(). This means we can remove the di_onlink fields
from the struct xfs_icdinode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that the struct xfs_icdinode is not directly related to the
on-disk format, we can cull things in it we really don't need to
store:
- magic number never changes
- padding is not necessary
- next_unlinked is never used
- inode number is redundant
- uuid is redundant
- lsn is accessed directly from dinode
- inode CRC is only accessed directly from dinode
Hence we can remove these from the struct xfs_icdinode and redirect
the code that uses them to the xfs_dinode appripriately. This
reduces the size of the struct icdinode from 152 bytes to 88 bytes,
and removes a fair chunk of unnecessary code, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The struct xfs_inode has two copies of the current timestamps in it,
one in the vfs inode and one in the struct xfs_icdinode. Now that we
no longer log the struct xfs_icdinode directly, we don't need to
keep the timestamps in this structure. instead we can copy them
straight out of the VFS inode when formatting the inode log item or
the on-disk inode.
This reduces the struct xfs_inode in size by 24 bytes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Rather than just being able to turn DAX on and off via a mount
option, some applications may only want to enable DAX for certain
performance critical files in a filesystem.
This patch introduces a new inode flag to enable DAX in the v3 inode
di_flags2 field. It adds support for setting and clearing flags in
the di_flags2 field via the XFS_IOC_FSSETXATTR ioctl, and sets the
S_DAX inode flag appropriately when it is seen.
When this flag is set on a directory, it acts as an "inherit flag".
That is, inodes created in the directory will automatically inherit
the on-disk inode DAX flag, enabling administrators to set up
directory heirarchies that automatically use DAX. Setting this flag
on an empty root directory will make the entire filesystem use DAX
by default.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that the ioctls have been hoisted up to the VFS level, use
the VFs definitions directly and remove the XFS specific definitions
completely. Userspace is going to have to handle the change of this
interface separately, so removing the definitions from xfs_fs.h is
not an issue here at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Calls to xfs_bmap_finish() and xfs_trans_ijoin(), and the
associated comments were replicated several times across
the attribute code, all dealing with what to do if the
transaction was or wasn't committed.
And in that replicated code, an ASSERT() test of an
uninitialized variable occurs in several locations:
error = xfs_attr_thing(&args);
if (!error) {
error = xfs_bmap_finish(&args.trans, args.flist,
&committed);
}
if (error) {
ASSERT(committed);
If the first xfs_attr_thing() failed, we'd skip the xfs_bmap_finish,
never set "committed", and then test it in the ASSERT.
Fix this up by moving the committed state internal to xfs_bmap_finish,
and add a new inode argument. If an inode is passed in, it is passed
through to __xfs_trans_roll() and joined to the transaction there if
the transaction was committed.
xfs_qm_dqalloc() was a little unique in that it called bjoin rather
than ijoin, but as Dave points out we can detect the committed state
but checking whether (*tpp != tp).
Addresses-Coverity-Id: 102360
Addresses-Coverity-Id: 102361
Addresses-Coverity-Id: 102363
Addresses-Coverity-Id: 102364
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
xfs: timestamp updates cause excessive fdatasync log traffic
Sage Weil reported that a ceph test workload was writing to the
log on every fdatasync during an overwrite workload. Event tracing
showed that the only metadata modification being made was the
timestamp updates during the write(2) syscall, but fdatasync(2)
is supposed to ignore them. The key observation was that the
transactions in the log all looked like this:
INODE: #regs: 4 ino: 0x8b flags: 0x45 dsize: 32
And contained a flags field of 0x45 or 0x85, and had data and
attribute forks following the inode core. This means that the
timestamp updates were triggering dirty relogging of previously
logged parts of the inode that hadn't yet been flushed back to
disk.
There are two parts to this problem. The first is that XFS relogs
dirty regions in subsequent transactions, so it carries around the
fields that have been dirtied since the last time the inode was
written back to disk, not since the last time the inode was forced
into the log.
The second part is that on v5 filesystems, the inode change count
update during inode dirtying also sets the XFS_ILOG_CORE flag, so
on v5 filesystems this makes a timestamp update dirty the entire
inode.
As a result when fdatasync is run, it looks at the dirty fields in
the inode, and sees more than just the timestamp flag, even though
the only metadata change since the last fdatasync was just the
timestamps. Hence we force the log on every subsequent fdatasync
even though it is not needed.
To fix this, add a new field to the inode log item that tracks
changes since the last time fsync/fdatasync forced the log to flush
the changes to the journal. This flag is updated when we dirty the
inode, but we do it before updating the change count so it does not
carry the "core dirty" flag from timestamp updates. The fields are
zeroed when the inode is marked clean (due to writeback/freeing) or
when an fsync/datasync forces the log. Hence if we only dirty the
timestamps on the inode between fsync/fdatasync calls, the fdatasync
will not trigger another log force.
Over 100 runs of the test program:
Ext4 baseline:
runtime: 1.63s +/- 0.24s
avg lat: 1.59ms +/- 0.24ms
iops: ~2000
XFS, vanilla kernel:
runtime: 2.45s +/- 0.18s
avg lat: 2.39ms +/- 0.18ms
log forces: ~400/s
iops: ~1000
XFS, patched kernel:
runtime: 1.49s +/- 0.26s
avg lat: 1.46ms +/- 0.25ms
log forces: ~30/s
iops: ~1500
Reported-by: Sage Weil <sage@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch modifies the stats counting macros and the callers
to those macros to properly increment, decrement, and add-to
the xfs stats counts. The counts for global and per-fs stats
are correctly advanced, and cleared by writing a "1" to the
corresponding clear file.
global counts: /sys/fs/xfs/stats/stats
per-fs counts: /sys/fs/xfs/sda*/stats/stats
global clear: /sys/fs/xfs/stats/stats_clear
per-fs clear: /sys/fs/xfs/sda*/stats/stats_clear
[dchinner: cleaned up macro variables, removed CONFIG_FS_PROC around
stats structures and macros. ]
Signed-off-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
SO, now if we enable lockdep without enabling CONFIG_XFS_DEBUG,
the lockdep annotations throw a warning because the assert that uses
the lockdep define is not built in:
fs/xfs/xfs_inode.c:367:1: warning: 'xfs_lockdep_subclass_ok' defined but not used [-Wunused-function]
xfs_lockdep_subclass_ok(
So now we need to create an ifdef mess to sort this all out, because
we need to handle all the combinations of CONFIG_XFS_DEBUG=[y|n],
CONFIG_XFS_WARNING=[y|n] and CONFIG_LOCKDEP=[y|n] appropriately.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ \
| |/ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Fix CONFIG_LOCKDEP=n build, because asserts I put in to ensure we
aren't overrunning lockdep subclasses in commit 0952c81 ("xfs:
clean up inode lockdep annotations") use a define that doesn't
exist when CONFIG_LOCKDEP=n
Only check the subclass limits when lockdep is actually enabled.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The recent change to the readdir locking made in 40194ec ("xfs:
reinstate the ilock in xfs_readdir") for CXFS directory sanity was
probably the wrong thing to do. Deep in the readdir code we
can take page faults in the filldir callback, and so taking a page
fault while holding an inode ilock creates a new set of locking
issues that lockdep warns all over the place about.
The locking order for regular inodes w.r.t. page faults is io_lock
-> pagefault -> mmap_sem -> ilock. The directory readdir code now
triggers ilock -> page fault -> mmap_sem. While we cannot deadlock
at this point, it inverts all the locking patterns that lockdep
normally sees on XFS inodes, and so triggers lockdep. We worked
around this with commit 93a8614 ("xfs: fix directory inode iolock
lockdep false positive"), but that then just moved the lockdep
warning to deeper in the page fault path and triggered on security
inode locks. Fixing the shmem issue there just moved the lockdep
reports somewhere else, and now we are getting false positives from
filesystem freezing annotations getting confused.
Further, if we enter memory reclaim in a readdir path, we now get
lockdep warning about potential deadlocks because the ilock is held
when we enter reclaim. This, again, is different to a regular file
in that we never allow memory reclaim to run while holding the ilock
for regular files. Hence lockdep now throws
ilock->kmalloc->reclaim->ilock warnings.
Basically, the problem is that the ilock is being used to protect
the directory data and the inode metadata, whereas for a regular
file the iolock protects the data and the ilock protects the
metadata. From the VFS perspective, the i_mutex serialises all
accesses to the directory data, and so not holding the ilock for
readdir doesn't matter. The issue is that CXFS doesn't access
directory data via the VFS, so it has no "data serialisaton"
mechanism. Hence we need to hold the IOLOCK in the correct places to
provide this low level directory data access serialisation.
The ilock can then be used just when the extent list needs to be
read, just like we do for regular files. The directory modification
code can take the iolock exclusive when the ilock is also taken,
and this then ensures that readdir is correct excluded while
modifications are in progress.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Lockdep annotations are a maintenance nightmare. Locking has to be
modified to suit the limitations of the annotations, and we're
always having to fix the annotations because they are unable to
express the complexity of locking heirarchies correctly.
So, next up, we've got more issues with lockdep annotations for
inode locking w.r.t. XFS_LOCK_PARENT:
- lockdep classes are exclusive and can't be ORed together
to form new classes.
- IOLOCK needs multiple PARENT subclasses to express the
changes needed for the readdir locking rework needed to
stop the endless flow of lockdep false positives involving
readdir calling filldir under the ILOCK.
- there are only 8 unique lockdep subclasses available,
so we can't create a generic solution.
IOWs we need to treat the 3-bit space available to each lock type
differently:
- IOLOCK uses xfs_lock_two_inodes(), so needs:
- at least 2 IOLOCK subclasses
- at least 2 IOLOCK_PARENT subclasses
- MMAPLOCK uses xfs_lock_two_inodes(), so needs:
- at least 2 MMAPLOCK subclasses
- ILOCK uses xfs_lock_inodes with up to 5 inodes, so needs:
- at least 5 ILOCK subclasses
- one ILOCK_PARENT subclass
- one RTBITMAP subclass
- one RTSUM subclass
For the IOLOCK, split the space into two sets of subclasses.
For the MMAPLOCK, just use half the space for the one subclass to
match the non-parent lock classes of the IOLOCK.
For the ILOCK, use 0-4 as the ILOCK subclasses, 5-7 for the
remaining individual subclasses.
Because they are now all different, modify xfs_lock_inumorder() to
handle the nested subclasses, and to assert fail if passed an
invalid subclass. Further, annotate xfs_lock_inodes() to assert fail
if an invalid combination of lock primitives and inode counts are
passed that would result in a lockdep subclass annotation overflow.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
After changing the UUID on a v5 filesystem, xfstests fails
immediately on a debug kernel with:
XFS: Assertion failed: uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid), file: fs/xfs/xfs_inode.c, line: 799
This needs to check against the sb_meta_uuid, not the user visible
UUID that was changed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ \ |
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If a failure occurs after the bmap free list is populated and before
xfs_bmap_finish() completes successfully (which returns a partial
list on failure), the bmap free list must be cancelled. Otherwise,
the extent items on the list are never freed and a memory leak
occurs.
Several random error paths throughout the code suffer this problem.
Fix these up such that xfs_bmap_cancel() is always called on error.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|/
|
|
|
|
|
|
|
|
|
| |
xfs_create() and xfs_create_tmpfile() have useless jumps to identical
labels. Simplify them.
Signed-off-by: Jan Kara <jack@suse.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This avoids all kinds of unessecary casts in an envrionment like Linux where
we can assume that pointer arithmetics are support on void pointers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ \
| | |
| | |
| | |
| | | |
Conflicts:
fs/xfs/xfs_attr_inactive.c
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The flags argument to xfs_trans_commit is not useful for most callers, as
a commit of a transaction without a permanent log reservation must pass
0 here, and all callers for a transaction with a permanent log reservation
except for xfs_trans_roll must pass XFS_TRANS_RELEASE_LOG_RES. So remove
the flags argument from the public xfs_trans_commit interfaces, and
introduce low-level __xfs_trans_commit variant just for xfs_trans_roll
that regrants a log reservation instead of releasing it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
xfs_trans_cancel takes two flags arguments: XFS_TRANS_RELEASE_LOG_RES and
XFS_TRANS_ABORT. Both of them are a direct product of the transaction
state, and can be deducted:
- any dirty transaction needs XFS_TRANS_ABORT to be properly canceled,
and XFS_TRANS_ABORT is a noop for a transaction that is not dirty.
- any transaction with a permanent log reservation needs
XFS_TRANS_RELEASE_LOG_RES to be properly canceled, and passing
XFS_TRANS_RELEASE_LOG_RES for a transaction without a permanent
log reservation is invalid.
So just remove the flags argument and do the right thing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We have three remaining callers of xfs_trans_dup:
- xfs_itruncate_extents which open codes xfs_trans_roll
- xfs_bmap_finish doesn't have an xfs_inode argument and thus leaves
attaching them to it's callers, but otherwise is identical to
xfs_trans_roll
- xfs_dir_ialloc looks at the log reservations in the old xfs_trans
structure instead of the log reservation parameters, but otherwise
is identical to xfs_trans_roll.
By allowing a NULL xfs_inode argument to xfs_trans_roll we can switch
these three remaining users over to xfs_trans_roll and mark xfs_trans_dup
static.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ \ \ |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The kbuild test robot reports the following compilation failure with a
32-bit kernel configuration:
fs/built-in.o: In function `xfs_ifree_cluster':
>> xfs_inode.c:(.text+0x17ac84): undefined reference to `__umoddi3'
This is due to the use of the modulus operator on a 64-bit variable in
the ASSERT() added as part of the following commit:
xfs: skip unallocated regions of inode chunks in xfs_ifree_cluster()
This ASSERT() simply checks that the offset of the inode in a sparse
cluster is appropriately aligned. Since the maximum inode record offset
is 63 (for a 64 inode record) and the calculated offset here should be
something less than that, just use a 32-bit variable to store the offset
and call the do_mod() helper.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ \ \ \
| |/ / /
| | | /
| |_|/
|/| | |
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
xfs_ifree_cluster() is called to mark all in-memory inodes and inode
buffers as stale. This occurs after we've removed the inobt records and
dropped any references of inobt data. xfs_ifree_cluster() uses the
starting inode number to walk the namespace of inodes expected for a
single chunk a cluster buffer at a time. The cluster buffer disk
addresses are calculated by decoding the sequential inode numbers
expected from the chunk.
The problem with this approach is that if the inode chunk being removed
is a sparse chunk, not all of the buffer addresses that are calculated
as part of this sequence may be inode clusters. Attempting to acquire
the buffer based on expected inode characterstics (i.e., cluster length)
can lead to errors and is generally incorrect.
We already use a couple variables to carry requisite state from
xfs_difree() to xfs_ifree_cluster(). Rather than add a third, define a
new internal structure to carry the existing parameters through these
functions. Add an alloc field that represents the physical allocation
bitmap of inodes in the chunk being removed. Modify xfs_ifree_cluster()
to check each inode against the bitmap and skip the clusters that were
never allocated as real inodes on disk.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
XFS uses the internal tmpfile() infrastructure for the whiteout inode
used for RENAME_WHITEOUT operations. For tmpfile inodes, XFS allocates
the inode, drops di_nlink, adds the inode to the agi unlinked list,
calls d_tmpfile() which correspondingly drops i_nlink of the vfs inode,
and then finishes the common inode setup (e.g., clear I_NEW and unlock).
The d_tmpfile() call was originally made inxfs_create_tmpfile(), but was
pulled up out of that function as part of the following commit to
resolve a deadlock issue:
330033d6 xfs: fix tmpfile/selinux deadlock and initialize security
As a result, callers of xfs_create_tmpfile() are responsible for either
calling d_tmpfile() or fixing up i_nlink appropriately. The whiteout
tmpfile allocation helper does neither. As a result, the vfs ->i_nlink
becomes inconsistent with the on-disk ->di_nlink once xfs_rename() links
it back into the source dentry and calls xfs_bumplink().
Update the assert in xfs_rename() to help detect this problem in the
future and update xfs_rename_alloc_whiteout() to decrement the link
count as part of the manual tmpfile inode setup.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
xfs_attr_inactive() is supposed to clean up the attribute fork when
the inode is being freed. While it removes attribute fork extents,
it completely ignores attributes in local format, which means that
there can still be active attributes on the inode after
xfs_attr_inactive() has run.
This leads to problems with concurrent inode writeback - the in-core
inode attribute fork is removed without locking on the assumption
that nothing will be attempting to access the attribute fork after a
call to xfs_attr_inactive() because it isn't supposed to exist on
disk any more.
To fix this, make xfs_attr_inactive() completely remove all traces
of the attribute fork from the inode, regardless of it's state.
Further, also remove the in-core attribute fork structure safely so
that there is nothing further that needs to be done by callers to
clean up the attribute fork. This means we can remove the in-core
and on-disk attribute forks atomically.
Also, on error simply remove the in-memory attribute fork. There's
nothing that can be done with it once we have failed to remove the
on-disk attribute fork, so we may as well just blow it away here
anyway.
cc: <stable@vger.kernel.org> # 3.12 to 4.0
Reported-by: Waiman Long <waiman.long@hp.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\
| |
| |
| |
| |
| | |
Conflicts:
fs/xfs/libxfs/xfs_bmap.c
fs/xfs/xfs_inode.c
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
new_parent and src_is_directory are only used in 0/1 context.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ \
| | |
| | |
| | |
| | | |
Conflicts:
fs/xfs/xfs_inode.c
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Whiteouts are used by overlayfs - it has a crazy convention that a
whiteout is a character device inode with a major:minor of 0:0.
Because it's not documented anywhere, here's an example of what
RENAME_WHITEOUT does on ext4:
# echo foo > /mnt/scratch/foo
# echo bar > /mnt/scratch/bar
# ls -l /mnt/scratch
total 24
-rw-r--r-- 1 root root 4 Feb 11 20:22 bar
-rw-r--r-- 1 root root 4 Feb 11 20:22 foo
drwx------ 2 root root 16384 Feb 11 20:18 lost+found
# src/renameat2 -w /mnt/scratch/foo /mnt/scratch/bar
# ls -l /mnt/scratch
total 20
-rw-r--r-- 1 root root 4 Feb 11 20:22 bar
c--------- 1 root root 0, 0 Feb 11 20:23 foo
drwx------ 2 root root 16384 Feb 11 20:18 lost+found
# cat /mnt/scratch/bar
foo
#
In XFS rename terms, the operation that has been done is that source
(foo) has been moved to the target (bar), which is like a nomal
rename operation, but rather than the source being removed, it have
been replaced with a whiteout.
We can't allocate whiteout inodes within the rename transaction due
to allocation being a multi-commit transaction: rename needs to
be a single, atomic commit. Hence we have several options here, form
most efficient to least efficient:
- use DT_WHT in the target dirent and do no whiteout inode
allocation. The main issue with this approach is that we need
hooks in lookup to create a virtual chardev inode to present
to userspace and in places where we might need to modify the
dirent e.g. unlink. Overlayfs also needs to be taught about
DT_WHT. Most invasive change, lowest overhead.
- create a special whiteout inode in the root directory (e.g. a
".wino" dirent) and then hardlink every new whiteout to it.
This means we only need to create a single whiteout inode, and
rename simply creates a hardlink to it. We can use DT_WHT for
these, though using DT_CHR means we won't have to modify
overlayfs, nor anything in userspace. Downside is we have to
look up the whiteout inode on every operation and create it if
it doesn't exist.
- copy ext4: create a special whiteout chardev inode for every
whiteout. This is more complex than the above options because
of the lack of atomicity between inode creation and the rename
operation, requiring us to create a tmpfile inode and then
linking it into the directory structure during the rename. At
least with a tmpfile inode crashes between the create and
rename doesn't leave unreferenced inodes or directory
pollution around.
By far the simplest thing to do in the short term is to copy ext4.
While it is the most inefficient way of supporting whiteouts, but as
an initial implementation we can simply reuse existing functions and
add a small amount of extra code the the rename operation.
When we get full whiteout support in the VFS (via the dentry cache)
we can then look to supporting DT_WHT method outlined as the first
method of supporting whiteouts. But until then, we'll stick with
what overlayfs expects us to be: dumb and stupid.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Now that xfs_finish_rename() exists, there is no reason for
xfs_cross_rename() to return to xfs_rename() to finish off the
rename transaction. Drive the completion code into
xfs_cross_rename() and handle all errors there so as to simplify
the xfs_rename() code.
Further, push the rename exchange target_ip check to early in the
rename code so as to make the error handling easy and obviously
correct.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Rather than use a jump label for the final transaction commit in
the rename, factor it into a simple helper function and call it
appropriately. This slightly reduces the spaghetti nature of
xfs_rename.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The jump labels are ambiguous and unclear and some of the error
paths are used inconsistently. Rules for error jumps are:
- use out_trans_cancel for unmodified transaction context
- use out_bmap_cancel on ENOSPC errors
- use out_trans_abort when transaction is likely to be dirty.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When doing RENAME_WHITEOUT, we now have to lock 5 inodes into the
rename transaction. This means we need to update
xfs_sort_for_rename() and xfs_lock_inodes() to handle up to 5
inodes. Because of the vagaries of rename, this means we could have
anywhere between 3 and 5 inodes locked into the transaction....
While xfs_lock_inodes() does not need anything other than an assert
telling us we are passing more inodes that we ever thought we should
see, it could do with a logic rework to remove all the indenting.
This is not a functional change - it just makes the code a lot
easier to read.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ \ \ |
|
| | |/
| |/|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Right now we cannot serialise mmap against truncate or hole punch
sanely. ->page_mkwrite is not able to take locks that the read IO
path normally takes (i.e. the inode iolock) because that could
result in lock inversions (read - iolock - page fault - page_mkwrite
- iolock) and so we cannot use an IO path lock to serialise page
write faults against truncate operations.
Instead, introduce a new lock that is used *only* in the
->page_mkwrite path that is the equivalent of the iolock. The lock
ordering in a page fault is i_mmaplock -> page lock -> i_ilock,
and so in truncate we can i_iolock -> i_mmaplock and so lock out
new write faults during the process of truncation.
Because i_mmap_lock is outside the page lock, we can hold it across
all the same operations we hold the i_iolock for. The only
difference is that we never hold the i_mmaplock in the normal IO
path and so do not ever have the possibility that we can page fault
inside it. Hence there are no recursion issues on the i_mmap_lock
and so we can use it to serialise page fault IO against inode
modification operations that affect the IO path.
This patch introduces the i_mmaplock infrastructure, lockdep
annotations and initialisation/destruction code. Use of the new lock
will be in subsequent patches.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|\ \ \
| | |/
| |/| |
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Al Viro noticed a generic set of issues to do with filehandle lookup
racing with dentry cache setup. They involve a filehandle lookup
occurring while an inode is being created and the filehandle lookup
racing with the dentry creation for the real file. This can lead to
multiple dentries for the one path being instantiated. There are a
host of other issues around this same set of paths.
The underlying cause is that file handle lookup only waits on inode
cache instantiation rather than full dentry cache instantiation. XFS
is mostly immune to the problems discovered due to it's own internal
inode cache, but there are a couple of corner cases where races can
happen.
We currently clear the XFS_INEW flag when the inode is fully set up
after insertion into the cache. Newly allocated inodes are inserted
locked and so aren't usable until the allocation transaction
commits. This, however, occurs before the dentry and security
information is fully initialised and hence the inode is unlocked and
available for lookups to find too early.
To solve the problem, only clear the XFS_INEW flag for newly created
inodes once the dentry is fully instantiated. This means lookups
will retry until the XFS_INEW flag is removed from the inode and
hence avoids the race conditions in questions.
THis also means that xfs_create(), xfs_create_tmpfile() and
xfs_symlink() need to finish the setup of the inode in their error
paths if we had allocated the inode but failed later in the creation
process. xfs_symlink(), in particular, needed a lot of help to make
it's error handling match that of xfs_create().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|