summaryrefslogtreecommitdiffstats
path: root/arch/x86_64
Commit message (Collapse)AuthorAgeFilesLines
* [PATCH] mostly_read data sectionChristoph Lameter2005-07-071-0/+4
| | | | | | | | | | | | | | | | | | | | | Add a new section called ".data.read_mostly" for data items that are read frequently and rarely written to like cpumaps etc. If these maps are placed in the .data section then these frequenly read items may end up in cachelines with data is is frequently updated. In that case all processors in an SMP system must needlessly reload the cachelines again and again containing elements of those frequently used variables. The ability to share these cachelines will allow each cpu in an SMP system to keep local copies of those shared cachelines thereby optimizing performance. Signed-off-by: Alok N Kataria <alokk@calsoftinc.com> Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com> Signed-off-by: Christoph Lameter <christoph@scalex86.org> Signed-off-by: Shai Fultheim <shai@scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] MTRR suspend/resume cleanupShaohua Li2005-07-072-0/+5
| | | | | | | | | | | | | There has been some discuss about solving the SMP MTRR suspend/resume breakage, but I didn't find a patch for it. This is an intent for it. The basic idea is moving mtrr initializing into cpu_identify for all APs (so it works for cpu hotplug). For BP, restore_processor_state is responsible for restoring MTRR. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [CRYPTO] Add x86_64 asm AESAndreas Steinmetz2005-07-064-1/+522
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implementation: =============== The encrypt/decrypt code is based on an x86 implementation I did a while ago which I never published. This unpublished implementation does include an assembler based key schedule and precomputed tables. For simplicity and best acceptance, however, I took Gladman's in-kernel code for table generation and key schedule for the kernel port of my assembler code and modified this code to produce the key schedule as required by my assembler implementation. File locations and Kconfig are kept similar to the i586 AES assembler implementation. It may seem a little bit strange to use 32 bit I/O and registers in the assembler implementation but this gives the best code size. My implementation takes one instruction more per round compared to Gladman's x86 assembler but it doesn't require any stack for local variables or saved registers and it is less serialized than Gladman's code. Note that all comparisons to Gladman's code were done after my code was implemented. I did only use FIPS PUB 197 for the implementation so my implementation is independent work. If anybody has a better assembler solution for x86_64 I'll be pleased to have my code replaced with the better solution. Testing: ======== The implementation passes the in-kernel crypto testing module and I'm running it without any problems on my laptop where it is mainly used for dm-crypt. Microbenchmark: =============== The microbenchmark was done in userspace with similar compile flags as used during kernel compile. Encrypt/decrypt is about 35% faster than the generic C implementation. As the generic C as well as my assembler implementation are both table I don't really expect that there is much room for further improvements though I'll be glad to be corrected here. The key schedule is about 5% slower than the generic C implementation. This is due to the fact that some more work has to be done in the key schedule routine to fit the schedule to the assembler implementation. Code Size: ========== Encrypt and decrypt are together about 2.1 Kbytes smaller than the generic C implementation which is important with regard to L1 cache usage. The key schedule routine is about 100 bytes larger than the generic C implementation. Data Size: ========== There's no difference in data size requirements between the assembler implementation and the generic C implementation. License: ======== Gladmans's code is dual BSD/GPL whereas my assembler code is GPLv2 only (I'm not going to change the license for my code). So I had to change the module license for the x86_64 aes module from 'Dual BSD/GPL' to 'GPL' to reflect the most restrictive license within the module. Signed-off-by: Andreas Steinmetz <ast@domdv.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PATCH] kprobes: fix namespace problem and sparc64 buildRusty Lynch2005-07-051-1/+1
| | | | | | | | | | | | The following renames arch_init, a kprobes function for performing any architecture specific initialization, to arch_init_kprobes in order to cleanup the namespace. Also, this patch adds arch_init_kprobes to sparc64 to fix the sparc64 kprobes build from the last return probe patch. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86: i8253/i8259A lock cleanupIngo Molnar2005-06-301-1/+0
| | | | | | | | Introduce proper declarations for i8253_lock and i8259A_lock. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6Greg KH2005-06-272-170/+95
|\
| * [PATCH] Return probe redesign: x86_64 specific changesRusty Lynch2005-06-271-63/+70
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The following patch contains the x86_64 specific changes for the new return probe design. Changes include: * Removing the architecture specific functions for querying a return probe instance off a stack address * Complete rework onf arch_prepare_kretprobe() and trampoline_probe_handler() * Removing trampoline_post_handler() * Adding arch_init() so that now we handle registering the return probe trampoline instead of kernel/kprobes.c doing it NOTE: Note that with this new design, the dependency on calculating a pointer to the task off the stack pointer no longer exist (resolving the problem of interruption stacks as pointed out in the original feedback to this port.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
| * [PATCH] kprobes: fix single-step out of line - take2Ananth N Mavinakayanahalli2005-06-271-112/+1
| | | | | | | | | | | | | | | | | | | | | | Now that PPC64 has no-execute support, here is a second try to fix the single step out of line during kprobe execution. Kprobes on x86_64 already solved this problem by allocating an executable page and using it as the scratch area for stepping out of line. Reuse that. Signed-off-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
| * [PATCH] seccomp: tsc disableAndrea Arcangeli2005-06-271-0/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I believe at least for seccomp it's worth to turn off the tsc, not just for HT but for the L2 cache too. So it's up to you, either you turn it off completely (which isn't very nice IMHO) or I recommend to apply this below patch. This has been tested successfully on x86-64 against current cogito repository (i686 compiles so I didn't bother testing ;). People selling the cpu through cpushare may appreciate this bit for a peace of mind. There's no way to get any timing info anymore with this applied (gettimeofday is forbidden of course). The seccomp environment is completely deterministic so it can't be allowed to get timing info, it has to be deterministic so in the future I can enable a computing mode that does a parallel computing for each task with server side transparent checkpointing and verification that the output is the same from all the 2/3 seller computers for each task, without the buyer even noticing (for now the verification is left to the buyer client side and there's no checkpointing, since that would require more kernel changes to track the dirty bits but it'll be easy to extend once the basic mode is finished). Eliminating a cold-cache read of the cr4 global variable will save one cacheline during the tlb flush while making the code per-cpu-safe at the same time. Thanks to Mikael Pettersson for noticing the tlb flush wasn't per-cpu-safe. The global tlb flush can run from irq (IPI calling do_flush_tlb_all) but it'll be transparent to the switch_to code since the IPI won't make any change to the cr4 contents from the point of view of the interrupted code and since it's now all per-cpu stuff, it will not race. So no need to disable irqs in switch_to slow path. Signed-off-by: Andrea Arcangeli <andrea@cpushare.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] PCI: use the MCFG table to properly access pci devices (x86-64)Greg Kroah-Hartman2005-06-271-10/+48
| | | | | | | | | | | | | | | | | | | | | | | | Now that we have access to the whole MCFG table, let's properly use it for all pci device accesses (as that's what it is there for, some boxes don't put all the busses into one entry.) If, for some reason, the table is incorrect, we fallback to the "old style" of mmconfig accesses, namely, we just assume the first entry in the table is the one for us, and blindly use it. Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* | [PATCH] PCI: add proper MCFG table parsing to ACPI core.Greg Kroah-Hartman2005-06-271-7/+9
|/ | | | | | | | | | This patch is the first step in properly handling the MCFG PCI table. It defines the structures properly, and saves off the table so that the pci mmconfig code can access it. It moves the parsing of the table a little later in the boot process, but still before the information is needed. Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* Merge Christoph's freeze cleanup patchLinus Torvalds2005-06-251-1/+1
|\
| * [PATCH] Cleanup patch for process freezingChristoph Lameter2005-06-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1. Establish a simple API for process freezing defined in linux/include/sched.h: frozen(process) Check for frozen process freezing(process) Check if a process is being frozen freeze(process) Tell a process to freeze (go to refrigerator) thaw_process(process) Restart process frozen_process(process) Process is frozen now 2. Remove all references to PF_FREEZE and PF_FROZEN from all kernel sources except sched.h 3. Fix numerous locations where try_to_freeze is manually done by a driver 4. Remove the argument that is no longer necessary from two function calls. 5. Some whitespace cleanup 6. Clear potential race in refrigerator (provides an open window of PF_FREEZE cleared before setting PF_FROZEN, recalc_sigpending does not check PF_FROZEN). This patch does not address the problem of freeze_processes() violating the rule that a task may only modify its own flags by setting PF_FREEZE. This is not clean in an SMP environment. freeze(process) is therefore not SMP safe! Signed-off-by: Christoph Lameter <christoph@lameter.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] x86_64: coding style and whitespace fixupsDomen Puncer2005-06-255-12/+9
| | | | | | | | | | | | | | | | | | | | | | Remove some of the unnecessary differences between arch/i386 and arch/x86_64. This patch fixes more whitespace issues, some miscellaneous typos, a wrong URL and a factually incorrect statement about the current boot sector code. Signed-off-by: Domen Puncer <domen@coderock.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] x86-64: add memcpy/memset prototypesrandy_dunlap2005-06-251-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Put function prototypes for memset() and memcpy() ahead of where there are used, to kill sparse warnings: arch/x86_64/boot/compressed/../../../../lib/inflate.c:317:3: warning: undefined identifier 'memset' arch/x86_64/boot/compressed/../../../../lib/inflate.c:601:11: warning: undefined identifier 'memcpy' arch/x86_64/boot/compressed/misc.c:151:2: warning: undefined identifier 'memcpy' arch/x86_64/boot/compressed/../../../../lib/inflate.c:317:3: warning: call with no type! arch/x86_64/boot/compressed/../../../../lib/inflate.c:601:17: warning: call with no type! arch/x86_64/boot/compressed/misc.c:151:9: warning: call with no type! Signed-off-by: randy_dunlap <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] kexec code cleanupManeesh Soni2005-06-251-22/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | o Following patch provides purely cosmetic changes and corrects CodingStyle guide lines related certain issues like below in kexec related files o braces for one line "if" statements, "for" loops, o more than 80 column wide lines, o No space after "while", "for" and "switch" key words o Changes: o take-2: Removed the extra tab before "case" key words. o take-3: Put operator at the end of line and space before "*/" Signed-off-by: Maneesh Soni <maneesh@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] kdump: Use real pt_regs from exceptionAlexander Nyberg2005-06-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Makes kexec_crashdump() take a pt_regs * as an argument. This allows to get exact register state at the point of the crash. If we come from direct panic assertion NULL will be passed and the current registers saved before crashdump. This hooks into two places: die(): check the conditions under which we will panic when calling do_exit and go there directly with the pt_regs that caused the fatal fault. die_nmi(): If we receive an NMI lockup while in the kernel use the pt_regs and go directly to crash_kexec(). We're probably nested up badly at this point so this might be the only chance to escape with proper information. Signed-off-by: Alexander Nyberg <alexn@telia.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] Kdump: Export crash notes section address through sysfsVivek Goyal2005-06-251-3/+0
| | | | | | | | | | | | | | | | | | o Following patch exports kexec global variable "crash_notes" to user space through sysfs as kernel attribute in /sys/kernel. Signed-off-by: Maneesh Soni <maneesh@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] crashdump: x86_64: crashkernel optionEric W. Biederman2005-06-252-0/+33
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the x86_64 implementation of the crashkernel option. It reserves a window of memory very early in the bootup process, so we never use it for anything but the kernel to switch to when the running kernel panics. In addition to reserving this memory a resource structure is registered so looking at /proc/iomem it is clear what happened to that memory. ISSUES: Is it possible to implement this in a architecture generic way? What should be done with architectures that always use an iommu and thus don't report their RAM memory resources in /proc/iomem? Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] kexec: x86_64 kexec implementationEric W. Biederman2005-06-256-1/+445
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the x86_64 implementation of machine kexec. 32bit compatibility support has been implemented, and machine_kexec has been enhanced to not care about the changing internal kernel paget table structures. From: Alexander Nyberg <alexn@dsv.su.se> build fix Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] kexec: x86_64: factor out apic shutdown codeEric W. Biederman2005-06-251-29/+33
| | | | | | | | | | | | | | | | | | Factor out the apic and smp shutdown code from machine_restart so it can be called by in the kexec reboot path as well. Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] kexec: x86_64: add CONFIG_PHYSICAL_STARTEric W. Biederman2005-06-254-15/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For one kernel to report a crash another kernel has created we need to have 2 kernels loaded simultaneously in memory. To accomplish this the two kernels need to built to run at different physical addresses. This patch adds the CONFIG_PHYSICAL_START option to the x86_64 kernel so we can do just that. You need to know what you are doing and the ramifications are before changing this value, and most users won't care so I have made it depend on CONFIG_EMBEDDED bzImage kernels will work and run at a different address when compiled with this option but they will still load at 1MB. If you need a kernel loaded at a different address as well you need to boot a vmlinux. Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] kexec: x86_64: vmlinux: fix physical addressesEric W. Biederman2005-06-252-43/+87
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The vmlinux on x86_64 does not report the correct physical address of the kernel. Instead in the physical address field it currently reports the virtual address of the kernel. This is patch is a bug fix that corrects vmlinux to report the proper physical addresses. This is potentially a help for crash dump analysis tools. This definitiely allows bootloaders that load vmlinux as a standard ELF executable. Bootloaders directly loading vmlinux become of practical importance when we consider the kexec on panic case. Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] kexec: x86_64: restore apic virtual wire mode on shutdownEric W. Biederman2005-06-252-3/+71
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When coming out of apic mode attempt to set the appropriate apic back into virtual wire mode. This improves on previous versions of this patch by by never setting bot the local apic and the ioapic into veritual wire mode. This code looks at data from the mptable to see if an ioapic has an ExtInt input to make this decision. A future improvement is to figure out which apic or ioapic was in virtual wire mode at boot time and to remember it. That is potentially a more accurate method, of selecting which apic to place in virutal wire mode. Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] kexec: x86_64: add i8259 shutdown methodEric W. Biederman2005-06-251-0/+12
| | | | | | | | | | | | | | | | | | | | From: Eric W. Biederman <ebiederm@xmission.com The following patch simply adds a shutdown method to the x86_64 i8259 code. Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] kexec: x86_64: e820 64bit fixEric W. Biederman2005-06-251-2/+0
| | | | | | | | | | | | | | | | | | | | From: Eric W. Biederman <ebiederm@xmission.com> It is ok to reserve resources > 4G on x86_64 struct resource is 64bit now :) Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] consolidate PREEMPT options into kernel/Kconfig.preemptIngo Molnar2005-06-251-27/+2
| | | | | | | | | | | | | | | | | | | | | | This patch consolidates the CONFIG_PREEMPT and CONFIG_PREEMPT_BKL preemption options into kernel/Kconfig.preempt. This, besides reducing source-code, also enables more centralized tweaking of preemption related options. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] RCU: clean up a few remaining synchronize_kernel() callsPaul E. McKenney2005-06-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 2.6.12-rc6-mm1 has a few remaining synchronize_kernel()s, some (but not all) in comments. This patch changes these synchronize_kernel() calls (and comments) to synchronize_rcu() or synchronize_sched() as follows: - arch/x86_64/kernel/mce.c mce_read(): change to synchronize_sched() to handle races with machine-check exceptions (synchronize_rcu() would not cut it given RCU implementations intended for hardcore realtime use. - drivers/input/serio/i8042.c i8042_stop(): change to synchronize_sched() to handle races with i8042_interrupt() interrupt handler. Again, synchronize_rcu() would not cut it given RCU implementations intended for hardcore realtime use. - include/*/kdebug.h comments: change to synchronize_sched() to handle races with NMIs. As before, synchronize_rcu() would not cut it... - include/linux/list.h comment: change to synchronize_rcu(), since this comment is for list_del_rcu(). - security/keys/key.c unregister_key_type(): change to synchronize_rcu(), since this is interacting with RCU read side. - security/keys/process_keys.c install_session_keyring(): change to synchronize_rcu(), since this is interacting with RCU read side. Signed-off-by: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] swsusp: clean assembly partsPavel Machek2005-06-251-9/+9
| | | | | | | | | | | | | | | | | | | | | | This patch fixes register saving so that each register is only saved once, and adds missing saving of %cr8 on x86-64. Some reordering so that save/restore is more logical/safer (segment registers should be restored after gdt). Signed-off-by: Pavel Machek <pavel@suse.cz> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] s-t-RAM: load gdt the right wayPavel Machek2005-06-251-1/+1
| | | | | | | | | | | | | | | | | | Sleep code uses wrong version of lgdt, that does the wrong thing when gdt is beyond 16MB or so. Signed-off-by: Pavel Machek <pavel@suse.cz> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] x86_64: Provide ability to choose using shortcuts for IPI in flat mode.Ashok Raj2005-06-251-14/+82
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch provides an option to switch broadcast or use mask version for sending IPI's. If CONFIG_HOTPLUG_CPU is defined, we choose not to use broadcast shortcuts by default, otherwise we choose broadcast mode as default. both cases, one can change this via startup cmd line option, to choose no-broadcast mode. no_ipi_broadcast=1 This is provided on request from Andi Kleen, since he doesnt agree with replacing IPI shortcuts as a solution for CPU hotplug. Without removing broadcast IPI's, it would mean lots of new code for __cpu_up() path, which would acheive the same results. Signed-off-by: Ashok Raj <ashok.raj@intel.com> Acked-by: Andi Kleen <ak@muc.de> Acked-by: Zwane Mwaikambo <zwane@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] x86_64: Dont use broadcast shortcut to make it cpu hotplug safe.Ashok Raj2005-06-253-17/+54
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Broadcast IPI's provide un-expected behaviour for cpu hotplug. CPU's in offline state also end up receiving the IPI. Once the cpus become online they receive these stale IPI's which are bad and introduce unexpected behaviour. This is easily avoided by not sending a broadcast and addressing just the CPU's in online map. Doing prelim cycle counts it appears there is no big overhead and numbers seem around 0x3000-0x3900 on an average on x86 and x86_64 systems with CPUS running 3G, both for broadcast and mask version of the API's. The shortcuts are useful only for flat mode (where the perf shows no degradation), and in cluster mode, its unicast anyway. Its simpler to just not use broadcast anymore. Signed-off-by: Ashok Raj <ashok.raj@intel.com> Acked-by: Andi Kleen <ak@muc.de> Acked-by: Zwane Mwaikambo <zwane@arm.linux.org.uk> Signed-off-by: Shaohua Li <shaohua.li@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] x86_64: CPU hotplug sibling map cleanupAshok Raj2005-06-251-48/+36
| | | | | | | | | | | | | | | | | | | | | | This patch is a minor cleanup to the cpu sibling/core map. It is required that this setup happens on a per-cpu bringup time. Signed-off-by: Ashok Raj <ashok.raj@intel.com> Acked-by: Andi Kleen <ak@muc.de> Acked-by: Zwane Mwaikambo <zwane@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] x86_64: CPU hotplug supportAshok Raj2005-06-255-17/+263
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Experimental CPU hotplug patch for x86_64 ----------------------------------------- This supports logical CPU online and offline. - Test with maxcpus=1, and then kick other cpu's off to test if init code is all cleaned up. CONFIG_SCHED_SMT works as well. - idle threads are forked on demand from keventd threads for clean startup TBD: 1. Not tested on a real NUMA machine (tested with numa=fake=2) 2. Handle ACPI pieces for physical hotplug support. Signed-off-by: Ashok Raj <ashok.raj@intel.com> Acked-by: Andi Kleen <ak@muc.de> Acked-by: Zwane Mwaikambo <zwane@arm.linux.org.uk> Signed-off-by: Shaohua.li<shaohua.li@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* | [PATCH] x86_64: Change init sections for CPU hotplug supportAshok Raj2005-06-2510-37/+32
|/ | | | | | | | | | | | | | | | | | | | | This patch adds __cpuinit and __cpuinitdata sections that need to exist past boot to support cpu hotplug. Caveat: This is done *only* for EM64T CPU Hotplug support, on request from Andi Kleen. Much of the generic hotplug code in kernel, and none of the other archs that support CPU hotplug today, i386, ia64, ppc64, s390 and parisc dont mark sections with __cpuinit, but only mark them as __devinit, and __devinitdata. If someone is motivated to change generic code, we need to make sure all existing hotplug code does not break, on other arch's that dont use __cpuinit, and __cpudevinit. Signed-off-by: Ashok Raj <ashok.raj@intel.com> Acked-by: Andi Kleen <ak@muc.de> Acked-by: Zwane Mwaikambo <zwane@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] kprobes: Temporary disarming of reentrant probe for x86_64Prasanna S Panchamukhi2005-06-231-14/+62
| | | | | | | | | | This patch includes x86_64 architecture specific changes to support temporary disarming on reentrancy of probes. Signed-of-by: Prasanna S Panchamukhi <prasanna@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Move kprobe [dis]arming into arch specific codeRusty Lynch2005-06-231-8/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The architecture independent code of the current kprobes implementation is arming and disarming kprobes at registration time. The problem is that the code is assuming that arming and disarming is a just done by a simple write of some magic value to an address. This is problematic for ia64 where our instructions look more like structures, and we can not insert break points by just doing something like: *p->addr = BREAKPOINT_INSTRUCTION; The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent functions: * void arch_arm_kprobe(struct kprobe *p) * void arch_disarm_kprobe(struct kprobe *p) and then adds the new functions for each of the architectures that already implement kprobes (spar64/ppc64/i386/x86_64). I thought arch_[dis]arm_kprobe was the most descriptive of what was really happening, but each of the architectures already had a disarm_kprobe() function that was really a "disarm and do some other clean-up items as needed when you stumble across a recursive kprobe." So... I took the liberty of changing the code that was calling disarm_kprobe() to call arch_disarm_kprobe(), and then do the cleanup in the block of code dealing with the recursive kprobe case. So far this patch as been tested on i386, x86_64, and ppc64, but still needs to be tested in sparc64. Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86_64 specific function return probesRusty Lynch2005-06-232-1/+113
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The following patch adds the x86_64 architecture specific implementation for function return probes. Function return probes is a mechanism built on top of kprobes that allows a caller to register a handler to be called when a given function exits. For example, to instrument the return path of sys_mkdir: static int sys_mkdir_exit(struct kretprobe_instance *i, struct pt_regs *regs) { printk("sys_mkdir exited\n"); return 0; } static struct kretprobe return_probe = { .handler = sys_mkdir_exit, }; <inside setup function> return_probe.kp.addr = (kprobe_opcode_t *) kallsyms_lookup_name("sys_mkdir"); if (register_kretprobe(&return_probe)) { printk(KERN_DEBUG "Unable to register return probe!\n"); /* do error path */ } <inside cleanup function> unregister_kretprobe(&return_probe); The way this works is that: * At system initialization time, kernel/kprobes.c installs a kprobe on a function called kretprobe_trampoline() that is implemented in the arch/x86_64/kernel/kprobes.c (More on this later) * When a return probe is registered using register_kretprobe(), kernel/kprobes.c will install a kprobe on the first instruction of the targeted function with the pre handler set to arch_prepare_kretprobe() which is implemented in arch/x86_64/kernel/kprobes.c. * arch_prepare_kretprobe() will prepare a kretprobe instance that stores: - nodes for hanging this instance in an empty or free list - a pointer to the return probe - the original return address - a pointer to the stack address With all this stowed away, arch_prepare_kretprobe() then sets the return address for the targeted function to a special trampoline function called kretprobe_trampoline() implemented in arch/x86_64/kernel/kprobes.c * The kprobe completes as normal, with control passing back to the target function that executes as normal, and eventually returns to our trampoline function. * Since a kprobe was installed on kretprobe_trampoline() during system initialization, control passes back to kprobes via the architecture specific function trampoline_probe_handler() which will lookup the instance in an hlist maintained by kernel/kprobes.c, and then call the handler function. * When trampoline_probe_handler() is done, the kprobes infrastructure single steps the original instruction (in this case just a top), and then calls trampoline_post_handler(). trampoline_post_handler() then looks up the instance again, puts the instance back on the free list, and then makes a long jump back to the original return instruction. So to recap, to instrument the exit path of a function this implementation will cause four interruptions: - A breakpoint at the very beginning of the function allowing us to switch out the return address - A single step interruption to execute the original instruction that we replaced with the break instruction (normal kprobe flow) - A breakpoint in the trampoline function where our instrumented function returned to - A single step interruption to execute the original instruction that we replaced with the break instruction (normal kprobe flow) Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] xen: x86_64: use more usermode macroVincent Hanquez2005-06-233-12/+12
| | | | | | | | | | | Make use of the user_mode macro where it's possible. This is useful for Xen because it will need only to redefine only the macro to a hypervisor call. Signed-off-by: Vincent Hanquez <vincent.hanquez@cl.cam.ac.uk> Cc: Ian Pratt <m+Ian.Pratt@cl.cam.ac.uk> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] xen: x86_64: Add macro for debugregVincent Hanquez2005-06-232-3/+3
| | | | | | | | | | | Add 2 macros to set and get debugreg on x86_64. This is useful for Xen because it will need only to redefine each macro to a hypervisor call. Signed-off-by: Vincent Hanquez <vincent.hanquez@cl.cam.ac.uk> Cc: Ian Pratt <m+Ian.Pratt@cl.cam.ac.uk> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86_64: avoid wasting IRQsNatalie Protasevich2005-06-231-1/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I suggest to change the way IRQs are handed out to PCI devices. Currently, each I/O APIC pin gets associated with an IRQ, no matter if the pin is used or not. It is expected that each pin can potentually be engaged by a device inserted into the corresponding PCI slot. However, this imposes severe limitation on systems that have designs that employ many I/O APICs, only utilizing couple lines of each, such as P64H2 chipset. It is used in ES7000, and currently, there is no way to boot the system with more that 9 I/O APICs. The simple change below allows to boot a system with say 64 (or more) I/O APICs, each providing 1 slot, which otherwise impossible because of the IRQ gaps created for unused lines on each I/O APIC. It does not resolve the problem with number of devices that exceeds number of possible IRQs, but eases up a tension for IRQs on any large system with potentually large number of devices. I only implemented this for the ACPI boot, since if the system is this big and using newer chipsets it is probably (better be!) an ACPI based system :). The change is completely "mechanical" and does not alter any internal structures or interrupt model/implementation. The patch works for both i386 and x86_64 archs. It works with MSIs just fine, and should not intervene with implementations like shared vectors, when they get worked out and incorporated. To illustrate, below is the interrupt distribution for 2-cell ES7000 with 20 I/O APICs, and an Ethernet card in the last slot, which should be eth1 and which was not configured because its IRQ exceeded allowable number (it actially turned out huge - 480!): zorro-tb2:~ # cat /proc/interrupts CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 0: 65716 30012 30007 30002 30009 30010 30010 30010 IO-APIC-edge timer 4: 373 0 725 280 0 0 0 0 IO-APIC-edge serial 8: 0 0 0 0 0 0 0 0 IO-APIC-edge rtc 9: 0 0 0 0 0 0 0 0 IO-APIC-level acpi 14: 39 3 0 0 0 0 0 0 IO-APIC-edge ide0 16: 108 13 0 0 0 0 0 0 IO-APIC-level uhci_hcd:usb1 18: 0 0 0 0 0 0 0 0 IO-APIC-level uhci_hcd:usb3 19: 15 0 0 0 0 0 0 0 IO-APIC-level uhci_hcd:usb2 23: 3 0 0 0 0 0 0 0 IO-APIC-level ehci_hcd:usb4 96: 4240 397 18 0 0 0 0 0 IO-APIC-level aic7xxx 97: 15 0 0 0 0 0 0 0 IO-APIC-level aic7xxx 192: 847 0 0 0 0 0 0 0 IO-APIC-level eth0 NMI: 0 0 0 0 0 0 0 0 LOC: 273423 274528 272829 274228 274092 273761 273827 273694 ERR: 7 MIS: 0 Even though the system doesn't have that many devices, some don't get enabled only because of IRQ numbering model. This is the IRQ picture after the patch was applied: zorro-tb2:~ # cat /proc/interrupts CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 0: 44169 10004 10004 10001 10004 10003 10004 6135 IO-APIC-edge timer 4: 345 0 0 0 0 244 0 0 IO-APIC-edge serial 8: 0 0 0 0 0 0 0 0 IO-APIC-edge rtc 9: 0 0 0 0 0 0 0 0 IO-APIC-level acpi 14: 39 0 3 0 0 0 0 0 IO-APIC-edge ide0 17: 4425 0 9 0 0 0 0 0 IO-APIC-level aic7xxx 18: 15 0 0 0 0 0 0 0 IO-APIC-level aic7xxx, uhci_hcd:usb3 21: 231 0 0 0 0 0 0 0 IO-APIC-level uhci_hcd:usb1 22: 26 0 0 0 0 0 0 0 IO-APIC-level uhci_hcd:usb2 23: 3 0 0 0 0 0 0 0 IO-APIC-level ehci_hcd:usb4 24: 348 0 0 0 0 0 0 0 IO-APIC-level eth0 25: 6 192 0 0 0 0 0 0 IO-APIC-level eth1 NMI: 0 0 0 0 0 0 0 0 LOC: 107981 107636 108899 108698 108489 108326 108331 108254 ERR: 7 MIS: 0 Not only we see the card in the last I/O APIC, but we are not even close to using up available IRQs, since we didn't waste any. Signed-off-by: Natalie Protasevich <Natalie.Protasevich@unisys.com> Acked-by: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86_64: never block forced SIGSEGVRoland McGrath2005-06-232-18/+23
| | | | | | | | | | | | | | | | | | | This is the x86_64 version of the signal fix I just posted for i386. This problem was first noticed on PPC and has already been fixed there. But the exact same issue applies to other platforms in the same way. The signal blocking for sa_mask and the handled signal takes place after the handler setup. When the stack is bogus, the handler setup forces a SIGSEGV. But then this will be blocked, and returning to user mode will fault again and iterate. This patch fixes the problem by checking whether signal handler setup failed, and not doing the signal-blocking if so. This copies what was done in the ppc code. I think all architectures' signal handler setup code follows this pattern and needs the change. Signed-off-by: Roland McGrath <roland@redhat.com> Cc: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86_64: fix hpet for systems that don't support legacy replacementjohn stultz2005-06-231-14/+28
| | | | | | | | | | | | | | | | | | | | Currently the x86-64 HPET code assumes the entire HPET implementation from the spec is present. This breaks on boxes that do not implement the optional legacy timer replacement functionality portion of the spec. This patch fixes this issue, allowing x86-64 systems that cannot use the HPET for the timer interrupt and RTC to still use the HPET as a time source. I've tested this patch on a system systems without HPET, with HPET but without legacy timer replacement, as well as HPET with legacy timer replacement. This version adds a minor check to cap the HPET counter value in gettimeoffset_hpet to avoid possible time inconsistencies. Please ignore the A2 version I sent to you earlier. Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86_64: i8259.c iso99 structure initializationAlexander Nyberg2005-06-231-8/+7
| | | | | | Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] i386: Selectable Frequency of the Timer InterruptChristoph Lameter2005-06-231-0/+2
| | | | | | | | | | | Make the timer frequency selectable. The timer interrupt may cause bus and memory contention in large NUMA systems since the interrupt occurs on each processor HZ times per second. Signed-off-by: Christoph Lameter <christoph@lameter.com> Signed-off-by: Shai Fultheim <shai@scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] allow early printk to use more than 25 linesJan Beulich2005-06-231-3/+10
| | | | | | | | | | Allow early printk code to take advantage of the full size of the screen, not just the first 25 lines. Signed-off-by: Jan Beulich <jbeulich@novell.com> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] x86/x86_64: pcibus_to_nodeChristoph Lameter2005-06-232-16/+4
| | | | | | | | | | | | | | | Define pcibus_to_node to be able to figure out which NUMA node contains a given PCI device. This defines pcibus_to_node(bus) in include/linux/topology.h and adjusts the macros for i386 and x86_64 that already provided a way to determine the cpumask of a pci device. x86_64 was changed to not build an array of cpumasks anymore. Instead an array of nodes is build which can be used to generate the cpumask via node_to_cpumask. Signed-off-by: Christoph Lameter <christoph@lameter.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Platform SMIs and their interferance with tsc based delay calibrationVenkatesh Pallipadi2005-06-231-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Issue: Current tsc based delay_calibration can result in significant errors in loops_per_jiffy count when the platform events like SMIs (System Management Interrupts that are non-maskable) are present. This could lead to potential kernel panic(). This issue is becoming more visible with 2.6 kernel (as default HZ is 1000) and on platforms with higher SMI handling latencies. During the boot time, SMIs are mostly used by BIOS (for things like legacy keyboard emulation). Description: The psuedocode for current delay calibration with tsc based delay looks like (0) Estimate a value for loops_per_jiffy (1) While (loops_per_jiffy estimate is accurate enough) (2) wait for jiffy transition (jiffy1) (3) Note down current tsc (tsc1) (4) loop until tsc becomes tsc1 + loops_per_jiffy (5) check whether jiffy changed since jiffy1 or not and refine loops_per_jiffy estimate Consider the following cases Case 1: If SMIs happen between (2) and (3) above, we can end up with a loops_per_jiffy value that is too low. This results in shorted delays and kernel can panic () during boot (Mostly at IOAPIC timer initialization timer_irq_works() as we don't have enough timer interrupts in a specified interval). Case 2: If SMIs happen between (3) and (4) above, then we can end up with a loops_per_jiffy value that is too high. And with current i386 code, too high lpj value (greater than 17M) can result in a overflow in delay.c:__const_udelay() again resulting in shorter delay and panic(). Solution: The patch below makes the calibration routine aware of asynchronous events like SMIs. We increase the delay calibration time and also identify any significant errors (greater than 12.5%) in the calibration and notify it to user. Patch below changes both i386 and x86-64 architectures to use this new and improved calibrate_delay_direct() routine. Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] use ${CROSS_COMPILE}installkernel in arch/*/boot/install.shIan Campbell2005-06-231-2/+2
| | | | | | | | | | | | | | | | | | | | | | | The attached patch causes the various arch specific install.sh scripts to look for ${CROSS_COMPILE}installkernel rather than just installkernel (in both /sbin/ and ~/bin/ where the script already did this). This allows you to have e.g. arm-linux-installkernel as a handy way to install on your cross target. It also prevents the script picking up on the host /sbin/installkernel which causes the script to fall through and do the install itself (which is what I actually use myself, with $INSTALL_PATH set). I don't believe it causes back-compatibility problems since calling the host installkernel was never likely to work or be what you wanted when cross compiling anyway. If $CROSS_COMPILE isn't set then nothing changes. I only use ARM and i386 myself but I figured it couldn't hurt to do the whole lot. I've cc'd those who I hope are the arch maintainers for files that I've touched. Signed-off-by: Ian Campbell <icampbell@arcom.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] add x86-64 specific support for sparsememMatt Tolentino2005-06-232-10/+25
| | | | | | | | | | | | | | | | | | | | | This patch adds in the necessary support for sparsemem such that x86-64 kernels may use sparsemem as an alternative to discontigmem for NUMA kernels. Note that this does no preclude one from continuing to build NUMA kernels using discontigmem, but merely allows the option to build NUMA kernels with sparsemem. Interestingly, the use of sparsemem in lieu of discontigmem in NUMA kernels results in reduced text size for otherwise equivalent kernels as shown in the example builds below: text data bss dec hex filename 2371036 765884 1237108 4374028 42be0c vmlinux.discontig 2366549 776484 1302772 4445805 43d66d vmlinux.sparse Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
OpenPOWER on IntegriCloud