summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/include/asm/spinlock.h
Commit message (Collapse)AuthorAgeFilesLines
* powerpc: Add smp_mb() to arch_spin_is_locked()Michael Ellerman2014-08-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The kernel defines the function spin_is_locked(), which can be used to check if a spinlock is currently locked. Using spin_is_locked() on a lock you don't hold is obviously racy. That is, even though you may observe that the lock is unlocked, it may become locked at any time. There is (at least) one exception to that, which is if two locks are used as a pair, and the holder of each checks the status of the other before doing any update. Assuming *A and *B are two locks, and *COUNTER is a shared non-atomic value: The first CPU does: spin_lock(*A) if spin_is_locked(*B) # nothing else smp_mb() LOAD r = *COUNTER r++ STORE *COUNTER = r spin_unlock(*A) And the second CPU does: spin_lock(*B) if spin_is_locked(*A) # nothing else smp_mb() LOAD r = *COUNTER r++ STORE *COUNTER = r spin_unlock(*B) Although this is a strange locking construct, it should work. It seems to be understood, but not documented, that spin_is_locked() is not a memory barrier, so in the examples above and below the caller inserts its own memory barrier before acting on the result of spin_is_locked(). For now we assume spin_is_locked() is implemented as below, and we break it out in our examples: bool spin_is_locked(*LOCK) { LOAD l = *LOCK return l.locked } Our intuition is that there should be no problem even if the two code sequences run simultaneously such as: CPU 0 CPU 1 ================================================== spin_lock(*A) spin_lock(*B) LOAD b = *B LOAD a = *A if b.locked # true if a.locked # true # nothing # nothing spin_unlock(*A) spin_unlock(*B) If one CPU gets the lock before the other then it will do the update and the other CPU will back off: CPU 0 CPU 1 ================================================== spin_lock(*A) LOAD b = *B spin_lock(*B) if b.locked # false LOAD a = *A else if a.locked # true smp_mb() # nothing LOAD r1 = *COUNTER spin_unlock(*B) r1++ STORE *COUNTER = r1 spin_unlock(*A) However in reality spin_lock() itself is not indivisible. On powerpc we implement it as a load-and-reserve and store-conditional. Ignoring the retry logic for the lost reservation case, it boils down to: spin_lock(*LOCK) { LOAD l = *LOCK l.locked = true STORE *LOCK = l ACQUIRE_BARRIER } The ACQUIRE_BARRIER is required to give spin_lock() ACQUIRE semantics as defined in memory-barriers.txt: This acts as a one-way permeable barrier. It guarantees that all memory operations after the ACQUIRE operation will appear to happen after the ACQUIRE operation with respect to the other components of the system. On modern powerpc systems we use lwsync for ACQUIRE_BARRIER. lwsync is also know as "lightweight sync", or "sync 1". As described in Power ISA v2.07 section B.2.1.1, in this scenario the lwsync is not the barrier itself. It instead causes the LOAD of *LOCK to act as the barrier, preventing any loads or stores in the locked region from occurring prior to the load of *LOCK. Whether this behaviour is in accordance with the definition of ACQUIRE semantics in memory-barriers.txt is open to discussion, we may switch to a different barrier in future. What this means in practice is that the following can occur: CPU 0 CPU 1 ================================================== LOAD a = *A LOAD b = *B a.locked = true b.locked = true LOAD b = *B LOAD a = *A STORE *A = a STORE *B = b if b.locked # false if a.locked # false else else smp_mb() smp_mb() LOAD r1 = *COUNTER LOAD r2 = *COUNTER r1++ r2++ STORE *COUNTER = r1 STORE *COUNTER = r2 # Lost update spin_unlock(*A) spin_unlock(*B) That is, the load of *B can occur prior to the store that makes *A visibly locked. And similarly for CPU 1. The result is both CPUs hold their lock and believe the other lock is unlocked. The easiest fix for this is to add a full memory barrier to the start of spin_is_locked(), so adding to our previous definition would give us: bool spin_is_locked(*LOCK) { smp_mb() LOAD l = *LOCK return l.locked } The new barrier orders the store to the lock we are locking vs the load of the other lock: CPU 0 CPU 1 ================================================== LOAD a = *A LOAD b = *B a.locked = true b.locked = true STORE *A = a STORE *B = b smp_mb() smp_mb() LOAD b = *B LOAD a = *A if b.locked # true if a.locked # true # nothing # nothing spin_unlock(*A) spin_unlock(*B) Although the above example is theoretical, there is code similar to this example in sem_lock() in ipc/sem.c. This commit in addition to the next commit appears to be a fix for crashes we are seeing in that code where we believe this race happens in practice. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* Merge branch 'next' of ↵Linus Torvalds2014-01-271-2/+10
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc Pull powerpc updates from Ben Herrenschmidt: "So here's my next branch for powerpc. A bit late as I was on vacation last week. It's mostly the same stuff that was in next already, I just added two patches today which are the wiring up of lockref for powerpc, which for some reason fell through the cracks last time and is trivial. The highlights are, in addition to a bunch of bug fixes: - Reworked Machine Check handling on kernels running without a hypervisor (or acting as a hypervisor). Provides hooks to handle some errors in real mode such as TLB errors, handle SLB errors, etc... - Support for retrieving memory error information from the service processor on IBM servers running without a hypervisor and routing them to the memory poison infrastructure. - _PAGE_NUMA support on server processors - 32-bit BookE relocatable kernel support - FSL e6500 hardware tablewalk support - A bunch of new/revived board support - FSL e6500 deeper idle states and altivec powerdown support You'll notice a generic mm change here, it has been acked by the relevant authorities and is a pre-req for our _PAGE_NUMA support" * 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (121 commits) powerpc: Implement arch_spin_is_locked() using arch_spin_value_unlocked() powerpc: Add support for the optimised lockref implementation powerpc/powernv: Call OPAL sync before kexec'ing powerpc/eeh: Escalate error on non-existing PE powerpc/eeh: Handle multiple EEH errors powerpc: Fix transactional FP/VMX/VSX unavailable handlers powerpc: Don't corrupt transactional state when using FP/VMX in kernel powerpc: Reclaim two unused thread_info flag bits powerpc: Fix races with irq_work Move precessing of MCE queued event out from syscall exit path. pseries/cpuidle: Remove redundant call to ppc64_runlatch_off() in cpu idle routines powerpc: Make add_system_ram_resources() __init powerpc: add SATA_MV to ppc64_defconfig powerpc/powernv: Increase candidate fw image size powerpc: Add debug checks to catch invalid cpu-to-node mappings powerpc: Fix the setup of CPU-to-Node mappings during CPU online powerpc/iommu: Don't detach device without IOMMU group powerpc/eeh: Hotplug improvement powerpc/eeh: Call opal_pci_reinit() on powernv for restoring config space powerpc/eeh: Add restore_config operation ...
| * powerpc: Implement arch_spin_is_locked() using arch_spin_value_unlocked()Michael Ellerman2014-01-281-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | At a glance these are just the inverse of each other. The one subtlety is that arch_spin_value_unlocked() takes the lock by value, rather than as a pointer, which is important for the lockref code. On the other hand arch_spin_is_locked() doesn't really care, so implement it in terms of arch_spin_value_unlocked(). Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
| * powerpc: Add support for the optimised lockref implementationMichael Ellerman2014-01-281-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds the architecture support required to enable the optimised implementation of lockrefs. That's as simple as defining arch_spin_value_unlocked() and selecting the Kconfig option. We also define cmpxchg64_relaxed(), because the lockref code does not need the cmpxchg to have barrier semantics. Using Linus' test case[1] on one system I see a 4x improvement for the basic enablement, and a further 1.3x for cmpxchg64_relaxed(), for a total of 5.3x vs the baseline. On another system I see more like 2x improvement. [1]: http://marc.info/?l=linux-fsdevel&m=137782380714721&w=4 Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | powerpc: Full barrier for smp_mb__after_unlock_lock()Paul E. McKenney2013-12-161-0/+2
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The powerpc lock acquisition sequence is as follows: lwarx; cmpwi; bne; stwcx.; lwsync; Lock release is as follows: lwsync; stw; If CPU 0 does a store (say, x=1) then a lock release, and CPU 1 does a lock acquisition then a load (say, r1=y), then there is no guarantee of a full memory barrier between the store to 'x' and the load from 'y'. To see this, suppose that CPUs 0 and 1 are hardware threads in the same core that share a store buffer, and that CPU 2 is in some other core, and that CPU 2 does the following: y = 1; sync; r2 = x; If 'x' and 'y' are both initially zero, then the lock acquisition and release sequences above can result in r1 and r2 both being equal to zero, which could not happen if unlock+lock was a full barrier. This commit therefore makes powerpc's smp_mb__after_unlock_lock() be a full barrier. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: linuxppc-dev@lists.ozlabs.org Cc: <linux-arch@vger.kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1386799151-2219-8-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* powerpc: Make rwlocks endian safeAnton Blanchard2013-08-141-0/+4
| | | | | | | | | Our ppc64 spinlocks and rwlocks use a trick where a lock token and the paca index are placed in the lock with a single store. Since we are using two u16s they need adjusting for little endian. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Stop using non-architected shared_proc field in lppacaAnton Blanchard2013-08-141-1/+1
| | | | | | | | | | | | | Although the shared_proc field in the lppaca works today, it is not architected. A shared processor partition will always have a non zero yield_count so use that instead. Create a wrapper so users don't have to know about the details. In order for older kernels to continue to work on KVM we need to set the shared_proc bit. While here, remove the ugly bitfield. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Avoid debug_smp_processor_id() check in SHARED_PROCESSORLi Zhong2013-01-291-1/+1
| | | | | | | | | | Use local_paca directly in macro SHARED_PROCESSOR, as all processors have the same value for the field shared_proc, so we don't need care racy here. Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Remove the remaining CONFIG_PPC_ISERIES piecesStephen Rothwell2012-03-211-3/+2
| | | | | Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Rename LWSYNC_ON_SMP to PPC_RELEASE_BARRIER, ISYNC_ON_SMP to ↵Anton Blanchard2010-02-171-12/+13
| | | | | | | | | | | PPC_ACQUIRE_BARRIER For performance reasons we are about to change ISYNC_ON_SMP to sometimes be lwsync. Now that the macro name doesn't make sense, change it and LWSYNC_ON_SMP to better explain what the barriers are doing. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Use lwarx hint in spinlocksAnton Blanchard2010-02-171-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Recent versions of the PowerPC architecture added a hint bit to the larx instructions to differentiate between an atomic operation and a lock operation: > 0 Other programs might attempt to modify the word in storage addressed by EA > even if the subsequent Store Conditional succeeds. > > 1 Other programs will not attempt to modify the word in storage addressed by > EA until the program that has acquired the lock performs a subsequent store > releasing the lock. To avoid a binutils dependency this patch create macros for the extended lwarx format and uses it in the spinlock code. To test this change I used a simple test case that acquires and releases a global pthread mutex: pthread_mutex_lock(&mutex); pthread_mutex_unlock(&mutex); On a 32 core POWER6, running 32 test threads we spend almost all our time in the futex spinlock code: 94.37% perf [kernel] [k] ._raw_spin_lock | |--99.95%-- ._raw_spin_lock | | | |--63.29%-- .futex_wake | | | |--36.64%-- .futex_wait_setup Which is a good test for this patch. The results (in lock/unlock operations per second) are: before: 1538203 ops/sec after: 2189219 ops/sec An improvement of 42% A 32 core POWER7 improves even more: before: 1279529 ops/sec after: 2282076 ops/sec An improvement of 78% Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* locking: Convert raw_rwlock functions to arch_rwlockThomas Gleixner2009-12-141-16/+16
| | | | | | | | | | Name space cleanup for rwlock functions. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: linux-arch@vger.kernel.org
* locking: Convert raw_rwlock to arch_rwlockThomas Gleixner2009-12-141-9/+9
| | | | | | | | | | | | | | Not strictly necessary for -rt as -rt does not have non sleeping rwlocks, but it's odd to not have a consistent naming convention. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: linux-arch@vger.kernel.org
* locking: Convert __raw_spin* functions to arch_spin*Thomas Gleixner2009-12-141-16/+16
| | | | | | | | | | Name space cleanup. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: linux-arch@vger.kernel.org
* locking: Convert raw_spinlock to arch_spinlockThomas Gleixner2009-12-141-7/+7
| | | | | | | | | | | | | | | | | | | The raw_spin* namespace was taken by lockdep for the architecture specific implementations. raw_spin_* would be the ideal name space for the spinlocks which are not converted to sleeping locks in preempt-rt. Linus suggested to convert the raw_ to arch_ locks and cleanup the name space instead of using an artifical name like core_spin, atomic_spin or whatever No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: linux-arch@vger.kernel.org
* locking, powerpc: Rename __spin_try_lock() and friendsHeiko Carstens2009-08-311-10/+10
| | | | | | | | | | | | | | | | | | | | | | | | Needed to avoid namespace conflicts when the common code function bodies of _spin_try_lock() etc. are moved to a header file where the function name would be __spin_try_lock(). Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Horst Hartmann <horsth@linux.vnet.ibm.com> Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David Miller <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <20090831124415.918799705@de.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Allow rwlocks to re-enable interruptsRobin Holt2009-04-021-0/+3
| | | | | | | | | | | | | | | | | Pass the original flags to rwlock arch-code, so that it can re-enable interrupts if implemented for that architecture. Initially, make __raw_read_lock_flags and __raw_write_lock_flags stubs which just do the same thing as non-flags variants. Signed-off-by: Petr Tesarik <ptesarik@suse.cz> Signed-off-by: Robin Holt <holt@sgi.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: <linux-arch@vger.kernel.org> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* powerpc: Tell gcc when we clobber the carry in inline asmPaul Mackerras2008-11-191-1/+1
| | | | | | | | | | | | We have several instances of inline assembly code that use the addic or addic. instructions, but don't include XER in the list of clobbers. The addic and addic. instructions affect the carry bit, which is in the XER register. This adds "xer" to the list of clobbers for those inline asm statements that use addic or addic. and didn't already have it. Signed-off-by: Paul Mackerras <paulus@samba.org>
* powerpc: Move include files to arch/powerpc/include/asmStephen Rothwell2008-08-041-0/+295
from include/asm-powerpc. This is the result of a mkdir arch/powerpc/include/asm git mv include/asm-powerpc/* arch/powerpc/include/asm Followed by a few documentation/comment fixups and a couple of places where <asm-powepc/...> was being used explicitly. Of the latter only one was outside the arch code and it is a driver only built for powerpc. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
OpenPOWER on IntegriCloud