summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kernel
Commit message (Collapse)AuthorAgeFilesLines
...
| * | | arm64: PCI: Remove node-local allocations when initialising host controllerPunit Agrawal2018-09-171-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Memory for host controller data structures is allocated local to the node to which the controller is associated with. This has been the behaviour since support for ACPI was added in commit 0cb0786bac15 ("ARM64: PCI: Support ACPI-based PCI host controller"). Drop the node local allocation as there is no benefit from doing so - the usage of these structures is independent from where the controller is located. Signed-off-by: Punit Agrawal <punit.agrawal@arm.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
* | | | Merge branch 'next-general' of ↵Linus Torvalds2018-10-241-1/+0
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull security subsystem updates from James Morris: "In this patchset, there are a couple of minor updates, as well as some reworking of the LSM initialization code from Kees Cook (these prepare the way for ordered stackable LSMs, but are a valuable cleanup on their own)" * 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: LSM: Don't ignore initialization failures LSM: Provide init debugging infrastructure LSM: Record LSM name in struct lsm_info LSM: Convert security_initcall() into DEFINE_LSM() vmlinux.lds.h: Move LSM_TABLE into INIT_DATA LSM: Convert from initcall to struct lsm_info LSM: Remove initcall tracing LSM: Rename .security_initcall section to .lsm_info vmlinux.lds.h: Avoid copy/paste of security_init section LSM: Correctly announce start of LSM initialization security: fix LSM description location keys: Fix the use of the C++ keyword "private" in uapi/linux/keyctl.h seccomp: remove unnecessary unlikely() security: tomoyo: Fix obsolete function security/capabilities: remove check for -EINVAL
| * | | | vmlinux.lds.h: Move LSM_TABLE into INIT_DATAKees Cook2018-10-101-1/+0
| | |/ / | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since the struct lsm_info table is not an initcall, we can just move it into INIT_DATA like all the other tables. Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: Casey Schaufler <casey@schaufler-ca.com> Reviewed-by: John Johansen <john.johansen@canonical.com> Reviewed-by: James Morris <james.morris@microsoft.com> Signed-off-by: James Morris <james.morris@microsoft.com>
* | | | Merge branch 'siginfo-linus' of ↵Linus Torvalds2018-10-245-65/+52
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull siginfo updates from Eric Biederman: "I have been slowly sorting out siginfo and this is the culmination of that work. The primary result is in several ways the signal infrastructure has been made less error prone. The code has been updated so that manually specifying SEND_SIG_FORCED is never necessary. The conversion to the new siginfo sending functions is now complete, which makes it difficult to send a signal without filling in the proper siginfo fields. At the tail end of the patchset comes the optimization of decreasing the size of struct siginfo in the kernel from 128 bytes to about 48 bytes on 64bit. The fundamental observation that enables this is by definition none of the known ways to use struct siginfo uses the extra bytes. This comes at the cost of a small user space observable difference. For the rare case of siginfo being injected into the kernel only what can be copied into kernel_siginfo is delivered to the destination, the rest of the bytes are set to 0. For cases where the signal and the si_code are known this is safe, because we know those bytes are not used. For cases where the signal and si_code combination is unknown the bits that won't fit into struct kernel_siginfo are tested to verify they are zero, and the send fails if they are not. I made an extensive search through userspace code and I could not find anything that would break because of the above change. If it turns out I did break something it will take just the revert of a single change to restore kernel_siginfo to the same size as userspace siginfo. Testing did reveal dependencies on preferring the signo passed to sigqueueinfo over si->signo, so bit the bullet and added the complexity necessary to handle that case. Testing also revealed bad things can happen if a negative signal number is passed into the system calls. Something no sane application will do but something a malicious program or a fuzzer might do. So I have fixed the code that performs the bounds checks to ensure negative signal numbers are handled" * 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (80 commits) signal: Guard against negative signal numbers in copy_siginfo_from_user32 signal: Guard against negative signal numbers in copy_siginfo_from_user signal: In sigqueueinfo prefer sig not si_signo signal: Use a smaller struct siginfo in the kernel signal: Distinguish between kernel_siginfo and siginfo signal: Introduce copy_siginfo_from_user and use it's return value signal: Remove the need for __ARCH_SI_PREABLE_SIZE and SI_PAD_SIZE signal: Fail sigqueueinfo if si_signo != sig signal/sparc: Move EMT_TAGOVF into the generic siginfo.h signal/unicore32: Use force_sig_fault where appropriate signal/unicore32: Generate siginfo in ucs32_notify_die signal/unicore32: Use send_sig_fault where appropriate signal/arc: Use force_sig_fault where appropriate signal/arc: Push siginfo generation into unhandled_exception signal/ia64: Use force_sig_fault where appropriate signal/ia64: Use the force_sig(SIGSEGV,...) in ia64_rt_sigreturn signal/ia64: Use the generic force_sigsegv in setup_frame signal/arm/kvm: Use send_sig_mceerr signal/arm: Use send_sig_fault where appropriate signal/arm: Use force_sig_fault where appropriate ...
| * | | | signal/arm64: Use send_sig_fault where appropriateEric W. Biederman2018-09-271-7/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * | | | signal/arm64: Add and use arm64_force_sig_ptrace_errno_trapEric W. Biederman2018-09-272-1/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add arm64_force_sig_ptrace_errno_trap for consistency with arm64_force_sig_fault and use it where appropriate. This adds the show_signal logic to the force_sig_errno_trap case, where it was apparently overlooked earlier. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * | | | signal/arm64: In ptrace_hbptriggered name the signal description stringEric W. Biederman2018-09-271-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This will let the description be reused shortly. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * | | | signal/arm64: Remove arm64_force_sig_infoEric W. Biederman2018-09-271-6/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The function has no more callers so remove it. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * | | | signal/arm64: Add and use arm64_force_sig_mceerr as appropriateEric W. Biederman2018-09-271-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add arm64_force_sig_mceerr for consistency with arm64_force_sig_fault, and use it in the one location that can take advantage of it. This removes the fiddly filling out of siginfo before sending a signal reporting an memory error to userspace. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * | | | signal/arm64: Add and use arm64_force_sig_fault where appropriateEric W. Biederman2018-09-273-33/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wrap force_sig_fault with a helper that calls arm64_show_signal and call arm64_force_sig_fault where appropraite. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
| * | | | signal/arm64: Factor out arm64_show_signal from arm64_force_sig_infoEric W. Biederman2018-09-271-13/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Filling in siginfo is error prone and so it is wise to use more specialized helpers to do that work. Factor out the arm specific unhandled signal reporting from the work of delivering a signal so the code can be modified to use functions that take the information to fill out siginfo as parameters. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * | | | signal/arm64: Remove unneeded tsk parameter from arm64_force_sig_infoEric W. Biederman2018-09-273-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Every caller passes in current for tsk so there is no need to pass tsk. Instead make tsk a local variable initialized to current. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * | | | signal/arm64: Push siginfo generation into arm64_notify_dieEric W. Biederman2018-09-272-19/+18
| |/ / / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of generating a struct siginfo before calling arm64_notify_die pass the signal number, tne sicode and the fault address into arm64_notify_die and have it call force_sig_fault instead of force_sig_info to let the generic code generate the struct siginfo. This keeps code passing just the needed information into siginfo generating code, making it easier to see what is happening and harder to get wrong. Further by letting the generic code handle the generation of struct siginfo it reduces the number of sites generating struct siginfo making it possible to review them and verify that all of the fiddly details for a structure passed to userspace are handled properly. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* | | | Merge branch 'x86-paravirt-for-linus' of ↵Linus Torvalds2018-10-231-2/+2
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 paravirt updates from Ingo Molnar: "Two main changes: - Remove no longer used parts of the paravirt infrastructure and put large quantities of paravirt ops under a new config option PARAVIRT_XXL=y, which is selected by XEN_PV only. (Joergen Gross) - Enable PV spinlocks on Hyperv (Yi Sun)" * 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/hyperv: Enable PV qspinlock for Hyper-V x86/hyperv: Add GUEST_IDLE_MSR support x86/paravirt: Clean up native_patch() x86/paravirt: Prevent redefinition of SAVE_FLAGS macro x86/xen: Make xen_reservation_lock static x86/paravirt: Remove unneeded mmu related paravirt ops bits x86/paravirt: Move the Xen-only pv_mmu_ops under the PARAVIRT_XXL umbrella x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrella x86/paravirt: Move items in pv_info under PARAVIRT_XXL umbrella x86/paravirt: Introduce new config option PARAVIRT_XXL x86/paravirt: Remove unused paravirt bits x86/paravirt: Use a single ops structure x86/paravirt: Remove clobbers from struct paravirt_patch_site x86/paravirt: Remove clobbers parameter from paravirt patch functions x86/paravirt: Make paravirt_patch_call() and paravirt_patch_jmp() static x86/xen: Add SPDX identifier in arch/x86/xen files x86/xen: Link platform-pci-unplug.o only if CONFIG_XEN_PVHVM x86/xen: Move pv specific parts of arch/x86/xen/mmu.c to mmu_pv.c x86/xen: Move pv irq related functions under CONFIG_XEN_PV umbrella
| * | | | x86/paravirt: Use a single ops structureJuergen Gross2018-09-031-2/+2
| |/ / / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of using six globally visible paravirt ops structures combine them in a single structure, keeping the original structures as sub-structures. This avoids the need to assemble struct paravirt_patch_template at runtime on the stack each time apply_paravirt() is being called (i.e. when loading a module). [ tglx: Made the struct and the initializer tabular for readability sake ] Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: xen-devel@lists.xenproject.org Cc: virtualization@lists.linux-foundation.org Cc: akataria@vmware.com Cc: rusty@rustcorp.com.au Cc: boris.ostrovsky@oracle.com Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180828074026.820-9-jgross@suse.com
* | | | Merge branch 'locking-core-for-linus' of ↵Linus Torvalds2018-10-231-3/+3
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking and misc x86 updates from Ingo Molnar: "Lots of changes in this cycle - in part because locking/core attracted a number of related x86 low level work which was easier to handle in a single tree: - Linux Kernel Memory Consistency Model updates (Alan Stern, Paul E. McKenney, Andrea Parri) - lockdep scalability improvements and micro-optimizations (Waiman Long) - rwsem improvements (Waiman Long) - spinlock micro-optimization (Matthew Wilcox) - qspinlocks: Provide a liveness guarantee (more fairness) on x86. (Peter Zijlstra) - Add support for relative references in jump tables on arm64, x86 and s390 to optimize jump labels (Ard Biesheuvel, Heiko Carstens) - Be a lot less permissive on weird (kernel address) uaccess faults on x86: BUG() when uaccess helpers fault on kernel addresses (Jann Horn) - macrofy x86 asm statements to un-confuse the GCC inliner. (Nadav Amit) - ... and a handful of other smaller changes as well" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits) locking/lockdep: Make global debug_locks* variables read-mostly locking/lockdep: Fix debug_locks off performance problem locking/pvqspinlock: Extend node size when pvqspinlock is configured locking/qspinlock_stat: Count instances of nested lock slowpaths locking/qspinlock, x86: Provide liveness guarantee x86/asm: 'Simplify' GEN_*_RMWcc() macros locking/qspinlock: Rework some comments locking/qspinlock: Re-order code locking/lockdep: Remove duplicated 'lock_class_ops' percpu array x86/defconfig: Enable CONFIG_USB_XHCI_HCD=y futex: Replace spin_is_locked() with lockdep locking/lockdep: Make class->ops a percpu counter and move it under CONFIG_DEBUG_LOCKDEP=y x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs x86/cpufeature: Macrofy inline assembly code to work around GCC inlining bugs x86/extable: Macrofy inline assembly code to work around GCC inlining bugs x86/paravirt: Work around GCC inlining bugs when compiling paravirt ops x86/bug: Macrofy the BUG table section handling, to work around GCC inlining bugs x86/alternatives: Macrofy lock prefixes to work around GCC inlining bugs x86/refcount: Work around GCC inlining bug x86/objtool: Use asm macros to work around GCC inlining bugs ...
| * | | | arm64/kernel: jump_label: Switch to relative referencesArd Biesheuvel2018-09-271-3/+3
| | |/ / | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On a randomly chosen distro kernel build for arm64, vmlinux.o shows the following sections, containing jump label entries, and the associated RELA relocation records, respectively: ... [38088] __jump_table PROGBITS 0000000000000000 00e19f30 000000000002ea10 0000000000000000 WA 0 0 8 [38089] .rela__jump_table RELA 0000000000000000 01fd8bb0 000000000008be30 0000000000000018 I 38178 38088 8 ... In other words, we have 190 KB worth of 'struct jump_entry' instances, and 573 KB worth of RELA entries to relocate each entry's code, target and key members. This means the RELA section occupies 10% of the .init segment, and the two sections combined represent 5% of vmlinux's entire memory footprint. So let's switch from 64-bit absolute references to 32-bit relative references for the code and target field, and a 64-bit relative reference for the 'key' field (which may reside in another module or the core kernel, which may be more than 4 GB way on arm64 when running with KASLR enable): this reduces the size of the __jump_table by 33%, and gets rid of the RELA section entirely. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-s390@vger.kernel.org Cc: Arnd Bergmann <arnd@arndb.de> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Jessica Yu <jeyu@kernel.org> Link: https://lkml.kernel.org/r/20180919065144.25010-4-ard.biesheuvel@linaro.org
* | | | Merge tag 'arm64-upstream' of ↵Linus Torvalds2018-10-2214-100/+546
|\ \ \ \ | | |_|/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "Apart from some new arm64 features and clean-ups, this also contains the core mmu_gather changes for tracking the levels of the page table being cleared and a minor update to the generic compat_sys_sigaltstack() introducing COMPAT_SIGMINSKSZ. Summary: - Core mmu_gather changes which allow tracking the levels of page-table being cleared together with the arm64 low-level flushing routines - Support for the new ARMv8.5 PSTATE.SSBS bit which can be used to mitigate Spectre-v4 dynamically without trapping to EL3 firmware - Introduce COMPAT_SIGMINSTKSZ for use in compat_sys_sigaltstack - Optimise emulation of MRS instructions to ID_* registers on ARMv8.4 - Support for Common Not Private (CnP) translations allowing threads of the same CPU to share the TLB entries - Accelerated crc32 routines - Move swapper_pg_dir to the rodata section - Trap WFI instruction executed in user space - ARM erratum 1188874 workaround (arch_timer) - Miscellaneous fixes and clean-ups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (78 commits) arm64: KVM: Guests can skip __install_bp_hardening_cb()s HYP work arm64: cpufeature: Trap CTR_EL0 access only where it is necessary arm64: cpufeature: Fix handling of CTR_EL0.IDC field arm64: cpufeature: ctr: Fix cpu capability check for late CPUs Documentation/arm64: HugeTLB page implementation arm64: mm: Use __pa_symbol() for set_swapper_pgd() arm64: Add silicon-errata.txt entry for ARM erratum 1188873 Revert "arm64: uaccess: implement unsafe accessors" arm64: mm: Drop the unused cpu parameter MAINTAINERS: fix bad sdei paths arm64: mm: Use #ifdef for the __PAGETABLE_P?D_FOLDED defines arm64: Fix typo in a comment in arch/arm64/mm/kasan_init.c arm64: xen: Use existing helper to check interrupt status arm64: Use daifflag_restore after bp_hardening arm64: daifflags: Use irqflags functions for daifflags arm64: arch_timer: avoid unused function warning arm64: Trap WFI executed in userspace arm64: docs: Document SSBS HWCAP arm64: docs: Fix typos in ELF hwcaps arm64/kprobes: remove an extra semicolon in arch_prepare_kprobe ...
| * | | arm64: KVM: Guests can skip __install_bp_hardening_cb()s HYP workJames Morse2018-10-191-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | enable_smccc_arch_workaround_1() passes NULL as the hyp_vecs start and end if the HVC conduit is in use, and ARM_SMCCC_ARCH_WORKAROUND_1 is detected. If the guest kernel happened to be built with KVM_INDIRECT_VECTORS, we go on to allocate a slot, memcpy() the empty workaround in and do the appropriate cache maintenance. This works as we always tell memcpy() the range is 0, so it never accesses the NULL src pointer, but we still do the cache maintenance. If hyp_vecs_start is NULL we know we're a guest, just update the fn like the !KVM_INDIRECT_VECTORS version. Reviewed-by: Julien Thierry <julien.thierry@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: cpufeature: Trap CTR_EL0 access only where it is necessarySuzuki K Poulose2018-10-161-1/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When there is a mismatch in the CTR_EL0 field, we trap access to CTR from EL0 on all CPUs to expose the safe value. However, we could skip trapping on a CPU which matches the safe value. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: cpufeature: Fix handling of CTR_EL0.IDC fieldSuzuki K Poulose2018-10-163-5/+47
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CTR_EL0.IDC reports the data cache clean requirements for instruction to data coherence. However, if the field is 0, we need to check the CLIDR_EL1 fields to detect the status of the feature. Currently we don't do this and generate a warning with tainting the kernel, when there is a mismatch in the field among the CPUs. Also the userspace doesn't have a reliable way to check the CLIDR_EL1 register to check the status. This patch fixes the problem by checking the CLIDR_EL1 fields, when (CTR_EL0.IDC == 0) and updates the kernel's copy of the CTR_EL0 for the CPU with the actual status of the feature. This would allow the sanity check infrastructure to do the proper checking of the fields and also allow the CTR_EL0 emulation code to supply the real status of the feature. Now, if a CPU has raw CTR_EL0.IDC == 0 and effective IDC == 1 (with overall system wide IDC == 1), we need to expose the real value to the user. So, we trap CTR_EL0 access on the CPU which reports incorrect CTR_EL0.IDC. Fixes: commit 6ae4b6e057888 ("arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC") Cc: Shanker Donthineni <shankerd@codeaurora.org> Cc: Philip Elcan <pelcan@codeaurora.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: cpufeature: ctr: Fix cpu capability check for late CPUsSuzuki K Poulose2018-10-161-4/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The matches() routine for a capability must honor the "scope" passed to it and return the proper results. i.e, when passed with SCOPE_LOCAL_CPU, it should check the status of the capability on the current CPU. This is used by verify_local_cpu_capabilities() on a late secondary CPU to make sure that it's compliant with the established system features. However, ARM64_HAS_CACHE_{IDC/DIC} always checks the system wide registers and this could mean that a late secondary CPU could return "true" (since the CPU hasn't updated the system wide registers yet) and thus lead the system in an inconsistent state, where the system assumes it has IDC/DIC feature, while the new CPU doesn't. Fixes: commit 6ae4b6e0578886eb36 ("arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC") Cc: Philip Elcan <pelcan@codeaurora.org> Cc: Shanker Donthineni <shankerd@codeaurora.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: Trap WFI executed in userspaceMarc Zyngier2018-10-012-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It recently came to light that userspace can execute WFI, and that the arm64 kernel doesn't trap this event. This sounds rather benign, but the kernel should decide when it wants to wait for an interrupt, and not userspace. Let's trap WFI and immediately return after having skipped the instruction. This effectively makes WFI a rather expensive NOP. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64/kprobes: remove an extra semicolon in arch_prepare_kprobezhong jiang2018-10-011-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | There is an extra semicolon in arch_prepare_kprobe, remove it. Signed-off-by: zhong jiang <zhongjiang@huawei.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: arch_timer: Add workaround for ARM erratum 1188873Marc Zyngier2018-10-011-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When running on Cortex-A76, a timer access from an AArch32 EL0 task may end up with a corrupted value or register. The workaround for this is to trap these accesses at EL1/EL2 and execute them there. This only affects versions r0p0, r1p0 and r2p0 of the CPU. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: compat: Add CNTFRQ trap handlerMarc Zyngier2018-10-011-0/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Just like CNTVCT, we need to handle userspace trapping into the kernel if we're decided that the timer wasn't fit for purpose... 64bit userspace is already dealt with, but we're missing the equivalent compat handling. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: compat: Add CNTVCT trap handlerMarc Zyngier2018-10-011-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since people seem to make a point in breaking the userspace visible counter, we have no choice but to trap the access. We already do this for 64bit userspace, but this is lacking for compat. Let's provide the required handler. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: compat: Add cp15_32 and cp15_64 handler arraysMarc Zyngier2018-10-011-0/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We're now ready to start handling CP15 access. Let's add (empty) arrays for both 32 and 64bit accessors, and the code that deals with them. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: compat: Add condition code checks and IT advanceMarc Zyngier2018-10-011-0/+85
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Here's a /really nice/ part of the architecture: a CP15 access is allowed to trap even if it fails its condition check, and SW must handle it. This includes decoding the IT state if this happens in am IT block. As a consequence, SW must also deal with advancing the IT state machine. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: compat: Add separate CP15 trapping hookMarc Zyngier2018-10-012-2/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of directly generating an UNDEF when trapping a CP15 access, let's add a new entry point to that effect (which only generates an UNDEF for now). Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: remove unused asm/compiler.h header fileArd Biesheuvel2018-10-011-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | arm64 does not define CONFIG_HAVE_ARCH_COMPILER_H, nor does it keep anything useful in its copy of asm/compiler.h, so let's remove it before anybody starts using it. Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64/mm: move runtime pgds to rodataJun Yao2018-09-252-21/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that deliberate writes to swapper_pg_dir are made via the fixmap, we can defend against errant writes by moving it into the rodata section. Since tramp_pg_dir and reserved_ttbr0 must be at a fixed offset from swapper_pg_dir, and are not modified at runtime, these are also moved into the rodata section. Likewise, idmap_pg_dir is not modified at runtime, and is moved into rodata. Signed-off-by: Jun Yao <yaojun8558363@gmail.com> Reviewed-by: James Morse <james.morse@arm.com> [Mark: simplify linker script, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64/mm: Separate boot-time page tables from swapper_pg_dirJun Yao2018-09-252-6/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since the address of swapper_pg_dir is fixed for a given kernel image, it is an attractive target for manipulation via an arbitrary write. To mitigate this we'd like to make it read-only by moving it into the rodata section. We require that swapper_pg_dir is at a fixed offset from tramp_pg_dir and reserved_ttbr0, so these will also need to move into rodata. However, swapper_pg_dir is allocated along with some transient page tables used for boot which we do not want to move into rodata. As a step towards this, this patch separates the boot-time page tables into a new init_pg_dir, and reduces swapper_pg_dir to the single page it needs to be. This allows us to retain the relationship between swapper_pg_dir, tramp_pg_dir, and swapper_pg_dir, while cleanly separating these from the boot-time page tables. The init_pg_dir holds all of the pgd/pud/pmd/pte levels needed during boot, and all of these levels will be freed when we switch to the swapper_pg_dir, which is initialized by the existing code in paging_init(). Since we start off on the init_pg_dir, we no longer need to allocate a transient page table in paging_init() in order to ensure that swapper_pg_dir isn't live while we initialize it. There should be no functional change as a result of this patch. Signed-off-by: Jun Yao <yaojun8558363@gmail.com> Reviewed-by: James Morse <james.morse@arm.com> [Mark: place init_pg_dir after BSS, fold mm changes, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64/mm: Pass ttbr1 as a parameter to __enable_mmu()Jun Yao2018-09-252-9/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In subsequent patches we'll use a transient pgd during the primary cpu's boot process. To make this work while allowing secondary cpus to use the swapper_pg_dir, we need to pass the relevant TTBR1 pgd as a parameter to __enable_mmu(). This patch updates __enable__mmu() to take this as a parameter, updating callsites to pass swapper_pg_dir for now. There should be no functional change as a result of this patch. Signed-off-by: Jun Yao <yaojun8558363@gmail.com> Reviewed-by: James Morse <james.morse@arm.com> [Mark: simplify assembly, clarify commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: Remove unused VGA console supportAndrew Murray2018-09-211-4/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Support for VGA_CONSOLE is not allowable due to commit ee23794b8668 ("video: vgacon: Don't build on arm64"), thus remove the associated unused code. Whilst PCI on arm64 would support VGA a valid screen_info structure is missing. Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Murray <andrew.murray@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64/cpufeatures: Emulate MRS instructions by parsing ESR_ELx.ISSAnshuman Khandual2018-09-211-0/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Armv8.4-A extension enables MRS instruction encodings inside ESR_ELx.ISS during exception class ESR_ELx_EC_SYS64 (0x18). This encoding can be used to emulate MRS instructions which can avoid fetch/decode from user space thus improving performance. This adds a new sys64_hook structure element with applicable ESR mask/value pair for MRS instructions on various system registers but constrained by sysreg encodings which is currently allowed to be emulated. Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64/cpufeatures: Factorize emulate_mrs()Anshuman Khandual2018-09-211-10/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MRS emulation gets triggered with exception class (0x00 or 0x18) eventually calling the function emulate_mrs() which fetches the user space instruction and analyses it's encodings (OP0, OP1, OP2, CRN, CRM, RT). The kernel tries to emulate the given instruction looking into the encoding details. Going forward these encodings can also be parsed from ESR_ELx.ISS fields without requiring to fetch/decode faulting userspace instruction which can improve performance. This factorizes emulate_mrs() function in a way that it can be called directly with MRS encodings (OP0, OP1, OP2, CRN, CRM) for any given target register which can then be used directly from 0x18 exception class. Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64/cpufeatures: Introduce ESR_ELx_SYS64_ISS_RT()Anshuman Khandual2018-09-211-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Extracting target register from ESR.ISS encoding has already been required at multiple instances. Just make it a macro definition and replace all the existing use cases. Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: cpu_errata: Remove ARM64_MISMATCHED_CACHE_LINE_SIZEWill Deacon2018-09-191-13/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There's no need to treat mismatched cache-line sizes reported by CTR_EL0 differently to any other mismatched fields that we treat as "STRICT" in the cpufeature code. In both cases we need to trap and emulate EL0 accesses to the register, so drop ARM64_MISMATCHED_CACHE_LINE_SIZE and rely on ARM64_MISMATCHED_CACHE_TYPE instead. Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> [catalin.marinas@arm.com: move ARM64_HAS_CNP in the empty cpucaps.h slot] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: mm: Support Common Not Private translationsVladimir Murzin2018-09-182-0/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Common Not Private (CNP) is a feature of ARMv8.2 extension which allows translation table entries to be shared between different PEs in the same inner shareable domain, so the hardware can use this fact to optimise the caching of such entries in the TLB. CNP occupies one bit in TTBRx_ELy and VTTBR_EL2, which advertises to the hardware that the translation table entries pointed to by this TTBR are the same as every PE in the same inner shareable domain for which the equivalent TTBR also has CNP bit set. In case CNP bit is set but TTBR does not point at the same translation table entries for a given ASID and VMID, then the system is mis-configured, so the results of translations are UNPREDICTABLE. For kernel we postpone setting CNP till all cpus are up and rely on cpufeature framework to 1) patch the code which is sensitive to CNP and 2) update TTBR1_EL1 with CNP bit set. TTBR1_EL1 can be reprogrammed as result of hibernation or cpuidle (via __enable_mmu). For these two cases we restore CnP bit via __cpu_suspend_exit(). There are a few cases we need to care of changes in TTBR0_EL1: - a switch to idmap - software emulated PAN we rule out latter via Kconfig options and for the former we make sure that CNP is set for non-zero ASIDs only. Reviewed-by: James Morse <james.morse@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> [catalin.marinas@arm.com: default y for CONFIG_ARM64_CNP] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: sysreg: Clean up instructions for modifying PSTATE fieldsSuzuki K Poulose2018-09-171-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instructions for modifying the PSTATE fields which were not supported in the older toolchains (e.g, PAN, UAO) are generated using macros. We have so far used the normal sys_reg() helper for defining the PSTATE fields. While this works fine, it is really difficult to correlate the code with the Arm ARM definition. As per Arm ARM, the PSTATE fields are defined only using Op1, Op2 fields, with fixed values for Op0, CRn. Also the CRm field has been reserved for the Immediate value for the instruction. So using the sys_reg() looks quite confusing. This patch cleans up the instruction helpers by bringing them in line with the Arm ARM definitions to make it easier to correlate code with the document. No functional changes. Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: fix for bad_mode() handler to always result in panicHari Vyas2018-09-141-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The bad_mode() handler is called if we encounter an uunknown exception, with the expectation that the subsequent call to panic() will halt the system. Unfortunately, if the exception calling bad_mode() is taken from EL0, then the call to die() can end up killing the current user task and calling schedule() instead of falling through to panic(). Remove the die() call altogether, since we really want to bring down the machine in this "impossible" case. Signed-off-by: Hari Vyas <hari.vyas@broadcom.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: force_signal_inject: WARN if called from kernel contextWill Deacon2018-09-141-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | force_signal_inject() is designed to send a fatal signal to userspace, so WARN if the current pt_regs indicates a kernel context. This can currently happen for the undefined instruction trap, so patch that up so we always BUG() if we didn't have a handler. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: cpu: Move errata and feature enable callbacks closer to callersWill Deacon2018-09-143-11/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The cpu errata and feature enable callbacks are only called via their respective arm64_cpu_capabilities structure and therefore shouldn't exist in the global namespace. Move the PAN, RAS and cache maintenance emulation enable callbacks into the same files as their corresponding arm64_cpu_capabilities structures, making them static in the process. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: ssbd: Add support for PSTATE.SSBS rather than trapping to EL3Will Deacon2018-09-144-2/+94
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On CPUs with support for PSTATE.SSBS, the kernel can toggle the SSBD state without needing to call into firmware. This patch hooks into the existing SSBD infrastructure so that SSBS is used on CPUs that support it, but it's all made horribly complicated by the very real possibility of big/little systems that don't uniformly provide the new capability. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: entry: Allow handling of undefined instructions from EL1Will Deacon2018-09-142-5/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rather than panic() when taking an undefined instruction exception from EL1, allow a hook to be registered in case we want to emulate the instruction, like we will for the SSBS PSTATE manipulation instructions. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: ssbd: Drop #ifdefs for PR_SPEC_STORE_BYPASSWill Deacon2018-09-141-3/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that we're all merged nicely into mainline, there's no need to check to see if PR_SPEC_STORE_BYPASS is defined. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: cpufeature: Detect SSBS and advertise to userspaceWill Deacon2018-09-142-2/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Armv8.5 introduces a new PSTATE bit known as Speculative Store Bypass Safe (SSBS) which can be used as a mitigation against Spectre variant 4. Additionally, a CPU may provide instructions to manipulate PSTATE.SSBS directly, so that userspace can toggle the SSBS control without trapping to the kernel. This patch probes for the existence of SSBS and advertise the new instructions to userspace if they exist. Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | arm64: cpufeature: add feature for CRC32 instructionsArd Biesheuvel2018-09-101-0/+9
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | Add a CRC32 feature bit and wire it up to the CPU id register so we will be able to use alternatives patching for CRC32 operations. Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* | | arm64: perf: Reject stand-alone CHAIN events for PMUv3Will Deacon2018-10-121-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It doesn't make sense for a perf event to be configured as a CHAIN event in isolation, so extend the arm_pmu structure with a ->filter_match() function to allow the backend PMU implementation to reject CHAIN events early. Cc: <stable@vger.kernel.org> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
OpenPOWER on IntegriCloud