diff options
Diffstat (limited to 'tools/testing/selftests/powerpc')
21 files changed, 1336 insertions, 92 deletions
diff --git a/tools/testing/selftests/powerpc/Makefile b/tools/testing/selftests/powerpc/Makefile index b3ad909aefbc..644770c3b754 100644 --- a/tools/testing/selftests/powerpc/Makefile +++ b/tools/testing/selftests/powerpc/Makefile @@ -26,6 +26,7 @@ SUB_DIRS = alignment \ switch_endian \ syscalls \ tm \ + eeh \ vphn \ math \ ptrace \ diff --git a/tools/testing/selftests/powerpc/copyloops/.gitignore b/tools/testing/selftests/powerpc/copyloops/.gitignore index ce12cd0e2967..12ef5b031974 100644 --- a/tools/testing/selftests/powerpc/copyloops/.gitignore +++ b/tools/testing/selftests/powerpc/copyloops/.gitignore @@ -1,13 +1,14 @@ copyuser_64_t0 copyuser_64_t1 copyuser_64_t2 -copyuser_power7_t0 -copyuser_power7_t1 +copyuser_p7_t0 +copyuser_p7_t1 memcpy_64_t0 memcpy_64_t1 memcpy_64_t2 -memcpy_power7_t0 -memcpy_power7_t1 +memcpy_p7_t0 +memcpy_p7_t1 copyuser_64_exc_t0 copyuser_64_exc_t1 copyuser_64_exc_t2 +memcpy_mcsafe_64 diff --git a/tools/testing/selftests/powerpc/copyloops/Makefile b/tools/testing/selftests/powerpc/copyloops/Makefile index 44574f3818b3..0917983a1c78 100644 --- a/tools/testing/selftests/powerpc/copyloops/Makefile +++ b/tools/testing/selftests/powerpc/copyloops/Makefile @@ -12,7 +12,7 @@ ASFLAGS = $(CFLAGS) -Wa,-mpower4 TEST_GEN_PROGS := copyuser_64_t0 copyuser_64_t1 copyuser_64_t2 \ copyuser_p7_t0 copyuser_p7_t1 \ memcpy_64_t0 memcpy_64_t1 memcpy_64_t2 \ - memcpy_p7_t0 memcpy_p7_t1 \ + memcpy_p7_t0 memcpy_p7_t1 memcpy_mcsafe_64 \ copyuser_64_exc_t0 copyuser_64_exc_t1 copyuser_64_exc_t2 EXTRA_SOURCES := validate.c ../harness.c stubs.S @@ -45,6 +45,11 @@ $(OUTPUT)/memcpy_p7_t%: memcpy_power7.S $(EXTRA_SOURCES) -D SELFTEST_CASE=$(subst memcpy_p7_t,,$(notdir $@)) \ -o $@ $^ +$(OUTPUT)/memcpy_mcsafe_64: memcpy_mcsafe_64.S $(EXTRA_SOURCES) + $(CC) $(CPPFLAGS) $(CFLAGS) \ + -D COPY_LOOP=test_memcpy_mcsafe \ + -o $@ $^ + $(OUTPUT)/copyuser_64_exc_t%: copyuser_64.S exc_validate.c ../harness.c \ copy_tofrom_user_reference.S stubs.S $(CC) $(CPPFLAGS) $(CFLAGS) \ diff --git a/tools/testing/selftests/powerpc/copyloops/asm/export.h b/tools/testing/selftests/powerpc/copyloops/asm/export.h index 05c1663c89b0..e6b80d5fbd14 100644 --- a/tools/testing/selftests/powerpc/copyloops/asm/export.h +++ b/tools/testing/selftests/powerpc/copyloops/asm/export.h @@ -1,3 +1,4 @@ /* SPDX-License-Identifier: GPL-2.0 */ #define EXPORT_SYMBOL(x) +#define EXPORT_SYMBOL_GPL(x) #define EXPORT_SYMBOL_KASAN(x) diff --git a/tools/testing/selftests/powerpc/copyloops/memcpy_mcsafe_64.S b/tools/testing/selftests/powerpc/copyloops/memcpy_mcsafe_64.S new file mode 120000 index 000000000000..f0feef3062f6 --- /dev/null +++ b/tools/testing/selftests/powerpc/copyloops/memcpy_mcsafe_64.S @@ -0,0 +1 @@ +../../../../../arch/powerpc/lib/memcpy_mcsafe_64.S
\ No newline at end of file diff --git a/tools/testing/selftests/powerpc/eeh/Makefile b/tools/testing/selftests/powerpc/eeh/Makefile new file mode 100644 index 000000000000..b397babd569b --- /dev/null +++ b/tools/testing/selftests/powerpc/eeh/Makefile @@ -0,0 +1,9 @@ +# SPDX-License-Identifier: GPL-2.0 +noarg: + $(MAKE) -C ../ + +TEST_PROGS := eeh-basic.sh +TEST_FILES := eeh-functions.sh + +top_srcdir = ../../../../.. +include ../../lib.mk diff --git a/tools/testing/selftests/powerpc/eeh/eeh-basic.sh b/tools/testing/selftests/powerpc/eeh/eeh-basic.sh new file mode 100755 index 000000000000..f988d2f42e8f --- /dev/null +++ b/tools/testing/selftests/powerpc/eeh/eeh-basic.sh @@ -0,0 +1,82 @@ +#!/bin/sh +# SPDX-License-Identifier: GPL-2.0-only + +. ./eeh-functions.sh + +if ! eeh_supported ; then + echo "EEH not supported on this system, skipping" + exit 0; +fi + +if [ ! -e "/sys/kernel/debug/powerpc/eeh_dev_check" ] && \ + [ ! -e "/sys/kernel/debug/powerpc/eeh_dev_break" ] ; then + echo "debugfs EEH testing files are missing. Is debugfs mounted?" + exit 1; +fi + +pre_lspci=`mktemp` +lspci > $pre_lspci + +# Bump the max freeze count to something absurd so we don't +# trip over it while breaking things. +echo 5000 > /sys/kernel/debug/powerpc/eeh_max_freezes + +# record the devices that we break in here. Assuming everything +# goes to plan we should get them back once the recover process +# is finished. +devices="" + +# Build up a list of candidate devices. +for dev in `ls -1 /sys/bus/pci/devices/ | grep '\.0$'` ; do + # skip bridges since we can't recover them (yet...) + if [ -e "/sys/bus/pci/devices/$dev/pci_bus" ] ; then + echo "$dev, Skipped: bridge" + continue; + fi + + # Skip VFs for now since we don't have a reliable way + # to break them. + if [ -e "/sys/bus/pci/devices/$dev/physfn" ] ; then + echo "$dev, Skipped: virtfn" + continue; + fi + + # Don't inject errosr into an already-frozen PE. This happens with + # PEs that contain multiple PCI devices (e.g. multi-function cards) + # and injecting new errors during the recovery process will probably + # result in the recovery failing and the device being marked as + # failed. + if ! pe_ok $dev ; then + echo "$dev, Skipped: Bad initial PE state" + continue; + fi + + echo "$dev, Added" + + # Add to this list of device to check + devices="$devices $dev" +done + +dev_count="$(echo $devices | wc -w)" +echo "Found ${dev_count} breakable devices..." + +failed=0 +for dev in $devices ; do + echo "Breaking $dev..." + + if ! pe_ok $dev ; then + echo "Skipping $dev, Initial PE state is not ok" + failed="$((failed + 1))" + continue; + fi + + if ! eeh_one_dev $dev ; then + failed="$((failed + 1))" + fi +done + +echo "$failed devices failed to recover ($dev_count tested)" +lspci | diff -u $pre_lspci - +rm -f $pre_lspci + +exit $failed diff --git a/tools/testing/selftests/powerpc/eeh/eeh-functions.sh b/tools/testing/selftests/powerpc/eeh/eeh-functions.sh new file mode 100755 index 000000000000..26112ab5cdf4 --- /dev/null +++ b/tools/testing/selftests/powerpc/eeh/eeh-functions.sh @@ -0,0 +1,76 @@ +#!/bin/sh +# SPDX-License-Identifier: GPL-2.0-only + +pe_ok() { + local dev="$1" + local path="/sys/bus/pci/devices/$dev/eeh_pe_state" + + if ! [ -e "$path" ] ; then + return 1; + fi + + local fw_state="$(cut -d' ' -f1 < $path)" + local sw_state="$(cut -d' ' -f2 < $path)" + + # If EEH_PE_ISOLATED or EEH_PE_RECOVERING are set then the PE is in an + # error state or being recovered. Either way, not ok. + if [ "$((sw_state & 0x3))" -ne 0 ] ; then + return 1 + fi + + # A functioning PE should have the EEH_STATE_MMIO_ACTIVE and + # EEH_STATE_DMA_ACTIVE flags set. For some goddamn stupid reason + # the platform backends set these when the PE is in reset. The + # RECOVERING check above should stop any false positives though. + if [ "$((fw_state & 0x18))" -ne "$((0x18))" ] ; then + return 1 + fi + + return 0; +} + +eeh_supported() { + test -e /proc/powerpc/eeh && \ + grep -q 'EEH Subsystem is enabled' /proc/powerpc/eeh +} + +eeh_one_dev() { + local dev="$1" + + # Using this function from the command line is sometimes useful for + # testing so check that the argument is a well-formed sysfs device + # name. + if ! test -e /sys/bus/pci/devices/$dev/ ; then + echo "Error: '$dev' must be a sysfs device name (DDDD:BB:DD.F)" + return 1; + fi + + # Break it + echo $dev >/sys/kernel/debug/powerpc/eeh_dev_break + + # Force an EEH device check. If the kernel has already + # noticed the EEH (due to a driver poll or whatever), this + # is a no-op. + echo $dev >/sys/kernel/debug/powerpc/eeh_dev_check + + # Enforce a 30s timeout for recovery. Even the IPR, which is infamously + # slow to reset, should recover within 30s. + max_wait=30 + + for i in `seq 0 ${max_wait}` ; do + if pe_ok $dev ; then + break; + fi + echo "$dev, waited $i/${max_wait}" + sleep 1 + done + + if ! pe_ok $dev ; then + echo "$dev, Failed to recover!" + return 1; + fi + + echo "$dev, Recovered after $i seconds" + return 0; +} + diff --git a/tools/testing/selftests/powerpc/mm/Makefile b/tools/testing/selftests/powerpc/mm/Makefile index f1fbc15800c4..ed1565809d2b 100644 --- a/tools/testing/selftests/powerpc/mm/Makefile +++ b/tools/testing/selftests/powerpc/mm/Makefile @@ -4,6 +4,7 @@ noarg: TEST_GEN_PROGS := hugetlb_vs_thp_test subpage_prot prot_sao segv_errors wild_bctr \ large_vm_fork_separation +TEST_GEN_PROGS_EXTENDED := tlbie_test TEST_GEN_FILES := tempfile top_srcdir = ../../../../.. @@ -19,3 +20,4 @@ $(OUTPUT)/large_vm_fork_separation: CFLAGS += -m64 $(OUTPUT)/tempfile: dd if=/dev/zero of=$@ bs=64k count=1 +$(OUTPUT)/tlbie_test: LDLIBS += -lpthread diff --git a/tools/testing/selftests/powerpc/mm/tlbie_test.c b/tools/testing/selftests/powerpc/mm/tlbie_test.c new file mode 100644 index 000000000000..9868a5ddd847 --- /dev/null +++ b/tools/testing/selftests/powerpc/mm/tlbie_test.c @@ -0,0 +1,734 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2019, Nick Piggin, Gautham R. Shenoy, Aneesh Kumar K.V, IBM Corp. + */ + +/* + * + * Test tlbie/mtpidr race. We have 4 threads doing flush/load/compare/store + * sequence in a loop. The same threads also rung a context switch task + * that does sched_yield() in loop. + * + * The snapshot thread mark the mmap area PROT_READ in between, make a copy + * and copy it back to the original area. This helps us to detect if any + * store continued to happen after we marked the memory PROT_READ. + */ + +#define _GNU_SOURCE +#include <stdio.h> +#include <sys/mman.h> +#include <sys/types.h> +#include <sys/wait.h> +#include <sys/ipc.h> +#include <sys/shm.h> +#include <sys/stat.h> +#include <sys/time.h> +#include <linux/futex.h> +#include <unistd.h> +#include <asm/unistd.h> +#include <string.h> +#include <stdlib.h> +#include <fcntl.h> +#include <sched.h> +#include <time.h> +#include <stdarg.h> +#include <sched.h> +#include <pthread.h> +#include <signal.h> +#include <sys/prctl.h> + +static inline void dcbf(volatile unsigned int *addr) +{ + __asm__ __volatile__ ("dcbf %y0; sync" : : "Z"(*(unsigned char *)addr) : "memory"); +} + +static void err_msg(char *msg) +{ + + time_t now; + time(&now); + printf("=================================\n"); + printf(" Error: %s\n", msg); + printf(" %s", ctime(&now)); + printf("=================================\n"); + exit(1); +} + +static char *map1; +static char *map2; +static pid_t rim_process_pid; + +/* + * A "rim-sequence" is defined to be the sequence of the following + * operations performed on a memory word: + * 1) FLUSH the contents of that word. + * 2) LOAD the contents of that word. + * 3) COMPARE the contents of that word with the content that was + * previously stored at that word + * 4) STORE new content into that word. + * + * The threads in this test that perform the rim-sequence are termed + * as rim_threads. + */ + +/* + * A "corruption" is defined to be the failed COMPARE operation in a + * rim-sequence. + * + * A rim_thread that detects a corruption informs about it to all the + * other rim_threads, and the mem_snapshot thread. + */ +static volatile unsigned int corruption_found; + +/* + * This defines the maximum number of rim_threads in this test. + * + * The THREAD_ID_BITS denote the number of bits required + * to represent the thread_ids [0..MAX_THREADS - 1]. + * We are being a bit paranoid here and set it to 8 bits, + * though 6 bits suffice. + * + */ +#define MAX_THREADS 64 +#define THREAD_ID_BITS 8 +#define THREAD_ID_MASK ((1 << THREAD_ID_BITS) - 1) +static unsigned int rim_thread_ids[MAX_THREADS]; +static pthread_t rim_threads[MAX_THREADS]; + + +/* + * Each rim_thread works on an exclusive "chunk" of size + * RIM_CHUNK_SIZE. + * + * The ith rim_thread works on the ith chunk. + * + * The ith chunk begins at + * map1 + (i * RIM_CHUNK_SIZE) + */ +#define RIM_CHUNK_SIZE 1024 +#define BITS_PER_BYTE 8 +#define WORD_SIZE (sizeof(unsigned int)) +#define WORD_BITS (WORD_SIZE * BITS_PER_BYTE) +#define WORDS_PER_CHUNK (RIM_CHUNK_SIZE/WORD_SIZE) + +static inline char *compute_chunk_start_addr(unsigned int thread_id) +{ + char *chunk_start; + + chunk_start = (char *)((unsigned long)map1 + + (thread_id * RIM_CHUNK_SIZE)); + + return chunk_start; +} + +/* + * The "word-offset" of a word-aligned address inside a chunk, is + * defined to be the number of words that precede the address in that + * chunk. + * + * WORD_OFFSET_BITS denote the number of bits required to represent + * the word-offsets of all the word-aligned addresses of a chunk. + */ +#define WORD_OFFSET_BITS (__builtin_ctz(WORDS_PER_CHUNK)) +#define WORD_OFFSET_MASK ((1 << WORD_OFFSET_BITS) - 1) + +static inline unsigned int compute_word_offset(char *start, unsigned int *addr) +{ + unsigned int delta_bytes, ret; + delta_bytes = (unsigned long)addr - (unsigned long)start; + + ret = delta_bytes/WORD_SIZE; + + return ret; +} + +/* + * A "sweep" is defined to be the sequential execution of the + * rim-sequence by a rim_thread on its chunk one word at a time, + * starting from the first word of its chunk and ending with the last + * word of its chunk. + * + * Each sweep of a rim_thread is uniquely identified by a sweep_id. + * SWEEP_ID_BITS denote the number of bits required to represent + * the sweep_ids of rim_threads. + * + * As to why SWEEP_ID_BITS are computed as a function of THREAD_ID_BITS, + * WORD_OFFSET_BITS, and WORD_BITS, see the "store-pattern" below. + */ +#define SWEEP_ID_BITS (WORD_BITS - (THREAD_ID_BITS + WORD_OFFSET_BITS)) +#define SWEEP_ID_MASK ((1 << SWEEP_ID_BITS) - 1) + +/* + * A "store-pattern" is the word-pattern that is stored into a word + * location in the 4)STORE step of the rim-sequence. + * + * In the store-pattern, we shall encode: + * + * - The thread-id of the rim_thread performing the store + * (The most significant THREAD_ID_BITS) + * + * - The word-offset of the address into which the store is being + * performed (The next WORD_OFFSET_BITS) + * + * - The sweep_id of the current sweep in which the store is + * being performed. (The lower SWEEP_ID_BITS) + * + * Store Pattern: 32 bits + * |------------------|--------------------|---------------------------------| + * | Thread id | Word offset | sweep_id | + * |------------------|--------------------|---------------------------------| + * THREAD_ID_BITS WORD_OFFSET_BITS SWEEP_ID_BITS + * + * In the store pattern, the (Thread-id + Word-offset) uniquely identify the + * address to which the store is being performed i.e, + * address == map1 + + * (Thread-id * RIM_CHUNK_SIZE) + (Word-offset * WORD_SIZE) + * + * And the sweep_id in the store pattern identifies the time when the + * store was performed by the rim_thread. + * + * We shall use this property in the 3)COMPARE step of the + * rim-sequence. + */ +#define SWEEP_ID_SHIFT 0 +#define WORD_OFFSET_SHIFT (SWEEP_ID_BITS) +#define THREAD_ID_SHIFT (WORD_OFFSET_BITS + SWEEP_ID_BITS) + +/* + * Compute the store pattern for a given thread with id @tid, at + * location @addr in the sweep identified by @sweep_id + */ +static inline unsigned int compute_store_pattern(unsigned int tid, + unsigned int *addr, + unsigned int sweep_id) +{ + unsigned int ret = 0; + char *start = compute_chunk_start_addr(tid); + unsigned int word_offset = compute_word_offset(start, addr); + + ret += (tid & THREAD_ID_MASK) << THREAD_ID_SHIFT; + ret += (word_offset & WORD_OFFSET_MASK) << WORD_OFFSET_SHIFT; + ret += (sweep_id & SWEEP_ID_MASK) << SWEEP_ID_SHIFT; + return ret; +} + +/* Extract the thread-id from the given store-pattern */ +static inline unsigned int extract_tid(unsigned int pattern) +{ + unsigned int ret; + + ret = (pattern >> THREAD_ID_SHIFT) & THREAD_ID_MASK; + return ret; +} + +/* Extract the word-offset from the given store-pattern */ +static inline unsigned int extract_word_offset(unsigned int pattern) +{ + unsigned int ret; + + ret = (pattern >> WORD_OFFSET_SHIFT) & WORD_OFFSET_MASK; + + return ret; +} + +/* Extract the sweep-id from the given store-pattern */ +static inline unsigned int extract_sweep_id(unsigned int pattern) + +{ + unsigned int ret; + + ret = (pattern >> SWEEP_ID_SHIFT) & SWEEP_ID_MASK; + + return ret; +} + +/************************************************************ + * * + * Logging the output of the verification * + * * + ************************************************************/ +#define LOGDIR_NAME_SIZE 100 +static char logdir[LOGDIR_NAME_SIZE]; + +static FILE *fp[MAX_THREADS]; +static const char logfilename[] ="Thread-%02d-Chunk"; + +static inline void start_verification_log(unsigned int tid, + unsigned int *addr, + unsigned int cur_sweep_id, + unsigned int prev_sweep_id) +{ + FILE *f; + char logfile[30]; + char path[LOGDIR_NAME_SIZE + 30]; + char separator[2] = "/"; + char *chunk_start = compute_chunk_start_addr(tid); + unsigned int size = RIM_CHUNK_SIZE; + + sprintf(logfile, logfilename, tid); + strcpy(path, logdir); + strcat(path, separator); + strcat(path, logfile); + f = fopen(path, "w"); + + if (!f) { + err_msg("Unable to create logfile\n"); + } + + fp[tid] = f; + + fprintf(f, "----------------------------------------------------------\n"); + fprintf(f, "PID = %d\n", rim_process_pid); + fprintf(f, "Thread id = %02d\n", tid); + fprintf(f, "Chunk Start Addr = 0x%016lx\n", (unsigned long)chunk_start); + fprintf(f, "Chunk Size = %d\n", size); + fprintf(f, "Next Store Addr = 0x%016lx\n", (unsigned long)addr); + fprintf(f, "Current sweep-id = 0x%08x\n", cur_sweep_id); + fprintf(f, "Previous sweep-id = 0x%08x\n", prev_sweep_id); + fprintf(f, "----------------------------------------------------------\n"); +} + +static inline void log_anamoly(unsigned int tid, unsigned int *addr, + unsigned int expected, unsigned int observed) +{ + FILE *f = fp[tid]; + + fprintf(f, "Thread %02d: Addr 0x%lx: Expected 0x%x, Observed 0x%x\n", + tid, (unsigned long)addr, expected, observed); + fprintf(f, "Thread %02d: Expected Thread id = %02d\n", tid, extract_tid(expected)); + fprintf(f, "Thread %02d: Observed Thread id = %02d\n", tid, extract_tid(observed)); + fprintf(f, "Thread %02d: Expected Word offset = %03d\n", tid, extract_word_offset(expected)); + fprintf(f, "Thread %02d: Observed Word offset = %03d\n", tid, extract_word_offset(observed)); + fprintf(f, "Thread %02d: Expected sweep-id = 0x%x\n", tid, extract_sweep_id(expected)); + fprintf(f, "Thread %02d: Observed sweep-id = 0x%x\n", tid, extract_sweep_id(observed)); + fprintf(f, "----------------------------------------------------------\n"); +} + +static inline void end_verification_log(unsigned int tid, unsigned nr_anamolies) +{ + FILE *f = fp[tid]; + char logfile[30]; + char path[LOGDIR_NAME_SIZE + 30]; + char separator[] = "/"; + + fclose(f); + + if (nr_anamolies == 0) { + remove(path); + return; + } + + sprintf(logfile, logfilename, tid); + strcpy(path, logdir); + strcat(path, separator); + strcat(path, logfile); + + printf("Thread %02d chunk has %d corrupted words. For details check %s\n", + tid, nr_anamolies, path); +} + +/* + * When a COMPARE step of a rim-sequence fails, the rim_thread informs + * everyone else via the shared_memory pointed to by + * corruption_found variable. On seeing this, every thread verifies the + * content of its chunk as follows. + * + * Suppose a thread identified with @tid was about to store (but not + * yet stored) to @next_store_addr in its current sweep identified + * @cur_sweep_id. Let @prev_sweep_id indicate the previous sweep_id. + * + * This implies that for all the addresses @addr < @next_store_addr, + * Thread @tid has already performed a store as part of its current + * sweep. Hence we expect the content of such @addr to be: + * |-------------------------------------------------| + * | tid | word_offset(addr) | cur_sweep_id | + * |-------------------------------------------------| + * + * Since Thread @tid is yet to perform stores on address + * @next_store_addr and above, we expect the content of such an + * address @addr to be: + * |-------------------------------------------------| + * | tid | word_offset(addr) | prev_sweep_id | + * |-------------------------------------------------| + * + * The verifier function @verify_chunk does this verification and logs + * any anamolies that it finds. + */ +static void verify_chunk(unsigned int tid, unsigned int *next_store_addr, + unsigned int cur_sweep_id, + unsigned int prev_sweep_id) +{ + unsigned int *iter_ptr; + unsigned int size = RIM_CHUNK_SIZE; + unsigned int expected; + unsigned int observed; + char *chunk_start = compute_chunk_start_addr(tid); + + int nr_anamolies = 0; + + start_verification_log(tid, next_store_addr, + cur_sweep_id, prev_sweep_id); + + for (iter_ptr = (unsigned int *)chunk_start; + (unsigned long)iter_ptr < (unsigned long)chunk_start + size; + iter_ptr++) { + unsigned int expected_sweep_id; + + if (iter_ptr < next_store_addr) { + expected_sweep_id = cur_sweep_id; + } else { + expected_sweep_id = prev_sweep_id; + } + + expected = compute_store_pattern(tid, iter_ptr, expected_sweep_id); + + dcbf((volatile unsigned int*)iter_ptr); //Flush before reading + observed = *iter_ptr; + + if (observed != expected) { + nr_anamolies++; + log_anamoly(tid, iter_ptr, expected, observed); + } + } + + end_verification_log(tid, nr_anamolies); +} + +static void set_pthread_cpu(pthread_t th, int cpu) +{ + cpu_set_t run_cpu_mask; + struct sched_param param; + + CPU_ZERO(&run_cpu_mask); + CPU_SET(cpu, &run_cpu_mask); + pthread_setaffinity_np(th, sizeof(cpu_set_t), &run_cpu_mask); + + param.sched_priority = 1; + if (0 && sched_setscheduler(0, SCHED_FIFO, ¶m) == -1) { + /* haven't reproduced with this setting, it kills random preemption which may be a factor */ + fprintf(stderr, "could not set SCHED_FIFO, run as root?\n"); + } +} + +static void set_mycpu(int cpu) +{ + cpu_set_t run_cpu_mask; + struct sched_param param; + + CPU_ZERO(&run_cpu_mask); + CPU_SET(cpu, &run_cpu_mask); + sched_setaffinity(0, sizeof(cpu_set_t), &run_cpu_mask); + + param.sched_priority = 1; + if (0 && sched_setscheduler(0, SCHED_FIFO, ¶m) == -1) { + fprintf(stderr, "could not set SCHED_FIFO, run as root?\n"); + } +} + +static volatile int segv_wait; + +static void segv_handler(int signo, siginfo_t *info, void *extra) +{ + while (segv_wait) { + sched_yield(); + } + +} + +static void set_segv_handler(void) +{ + struct sigaction sa; + + sa.sa_flags = SA_SIGINFO; + sa.sa_sigaction = segv_handler; + + if (sigaction(SIGSEGV, &sa, NULL) == -1) { + perror("sigaction"); + exit(EXIT_FAILURE); + } +} + +int timeout = 0; +/* + * This function is executed by every rim_thread. + * + * This function performs sweeps over the exclusive chunks of the + * rim_threads executing the rim-sequence one word at a time. + */ +static void *rim_fn(void *arg) +{ + unsigned int tid = *((unsigned int *)arg); + + int size = RIM_CHUNK_SIZE; + char *chunk_start = compute_chunk_start_addr(tid); + + unsigned int prev_sweep_id; + unsigned int cur_sweep_id = 0; + + /* word access */ + unsigned int pattern = cur_sweep_id; + unsigned int *pattern_ptr = &pattern; + unsigned int *w_ptr, read_data; + + set_segv_handler(); + + /* + * Let us initialize the chunk: + * + * Each word-aligned address addr in the chunk, + * is initialized to : + * |-------------------------------------------------| + * | tid | word_offset(addr) | 0 | + * |-------------------------------------------------| + */ + for (w_ptr = (unsigned int *)chunk_start; + (unsigned long)w_ptr < (unsigned long)(chunk_start) + size; + w_ptr++) { + + *pattern_ptr = compute_store_pattern(tid, w_ptr, cur_sweep_id); + *w_ptr = *pattern_ptr; + } + + while (!corruption_found && !timeout) { + prev_sweep_id = cur_sweep_id; + cur_sweep_id = cur_sweep_id + 1; + + for (w_ptr = (unsigned int *)chunk_start; + (unsigned long)w_ptr < (unsigned long)(chunk_start) + size; + w_ptr++) { + unsigned int old_pattern; + + /* + * Compute the pattern that we would have + * stored at this location in the previous + * sweep. + */ + old_pattern = compute_store_pattern(tid, w_ptr, prev_sweep_id); + + /* + * FLUSH:Ensure that we flush the contents of + * the cache before loading + */ + dcbf((volatile unsigned int*)w_ptr); //Flush + + /* LOAD: Read the value */ + read_data = *w_ptr; //Load + + /* + * COMPARE: Is it the same as what we had stored + * in the previous sweep ? It better be! + */ + if (read_data != old_pattern) { + /* No it isn't! Tell everyone */ + corruption_found = 1; + } + + /* + * Before performing a store, let us check if + * any rim_thread has found a corruption. + */ + if (corruption_found || timeout) { + /* + * Yes. Someone (including us!) has found + * a corruption :( + * + * Let us verify that our chunk is + * correct. + */ + /* But first, let us allow the dust to settle down! */ + verify_chunk(tid, w_ptr, cur_sweep_id, prev_sweep_id); + + return 0; + } + + /* + * Compute the new pattern that we are going + * to write to this location + */ + *pattern_ptr = compute_store_pattern(tid, w_ptr, cur_sweep_id); + + /* + * STORE: Now let us write this pattern into + * the location + */ + *w_ptr = *pattern_ptr; + } + } + + return NULL; +} + + +static unsigned long start_cpu = 0; +static unsigned long nrthreads = 4; + +static pthread_t mem_snapshot_thread; + +static void *mem_snapshot_fn(void *arg) +{ + int page_size = getpagesize(); + size_t size = page_size; + void *tmp = malloc(size); + + while (!corruption_found && !timeout) { + /* Stop memory migration once corruption is found */ + segv_wait = 1; + + mprotect(map1, size, PROT_READ); + + /* + * Load from the working alias (map1). Loading from map2 + * also fails. + */ + memcpy(tmp, map1, size); + + /* + * Stores must go via map2 which has write permissions, but + * the corrupted data tends to be seen in the snapshot buffer, + * so corruption does not appear to be introduced at the + * copy-back via map2 alias here. + */ + memcpy(map2, tmp, size); + /* + * Before releasing other threads, must ensure the copy + * back to + */ + asm volatile("sync" ::: "memory"); + mprotect(map1, size, PROT_READ|PROT_WRITE); + asm volatile("sync" ::: "memory"); + segv_wait = 0; + + usleep(1); /* This value makes a big difference */ + } + + return 0; +} + +void alrm_sighandler(int sig) +{ + timeout = 1; +} + +int main(int argc, char *argv[]) +{ + int c; + int page_size = getpagesize(); + time_t now; + int i, dir_error; + pthread_attr_t attr; + key_t shm_key = (key_t) getpid(); + int shmid, run_time = 20 * 60; + struct sigaction sa_alrm; + + snprintf(logdir, LOGDIR_NAME_SIZE, + "/tmp/logdir-%u", (unsigned int)getpid()); + while ((c = getopt(argc, argv, "r:hn:l:t:")) != -1) { + switch(c) { + case 'r': + start_cpu = strtoul(optarg, NULL, 10); + break; + case 'h': + printf("%s [-r <start_cpu>] [-n <nrthreads>] [-l <logdir>] [-t <timeout>]\n", argv[0]); + exit(0); + break; + case 'n': + nrthreads = strtoul(optarg, NULL, 10); + break; + case 'l': + strncpy(logdir, optarg, LOGDIR_NAME_SIZE); + break; + case 't': + run_time = strtoul(optarg, NULL, 10); + break; + default: + printf("invalid option\n"); + exit(0); + break; + } + } + + if (nrthreads > MAX_THREADS) + nrthreads = MAX_THREADS; + + shmid = shmget(shm_key, page_size, IPC_CREAT|0666); + if (shmid < 0) { + err_msg("Failed shmget\n"); + } + + map1 = shmat(shmid, NULL, 0); + if (map1 == (void *) -1) { + err_msg("Failed shmat"); + } + + map2 = shmat(shmid, NULL, 0); + if (map2 == (void *) -1) { + err_msg("Failed shmat"); + } + + dir_error = mkdir(logdir, 0755); + + if (dir_error) { + err_msg("Failed mkdir"); + } + + printf("start_cpu list:%lu\n", start_cpu); + printf("number of worker threads:%lu + 1 snapshot thread\n", nrthreads); + printf("Allocated address:0x%016lx + secondary map:0x%016lx\n", (unsigned long)map1, (unsigned long)map2); + printf("logdir at : %s\n", logdir); + printf("Timeout: %d seconds\n", run_time); + + time(&now); + printf("=================================\n"); + printf(" Starting Test\n"); + printf(" %s", ctime(&now)); + printf("=================================\n"); + + for (i = 0; i < nrthreads; i++) { + if (1 && !fork()) { + prctl(PR_SET_PDEATHSIG, SIGKILL); + set_mycpu(start_cpu + i); + for (;;) + sched_yield(); + exit(0); + } + } + + + sa_alrm.sa_handler = &alrm_sighandler; + sigemptyset(&sa_alrm.sa_mask); + sa_alrm.sa_flags = 0; + + if (sigaction(SIGALRM, &sa_alrm, 0) == -1) { + err_msg("Failed signal handler registration\n"); + } + + alarm(run_time); + + pthread_attr_init(&attr); + for (i = 0; i < nrthreads; i++) { + rim_thread_ids[i] = i; + pthread_create(&rim_threads[i], &attr, rim_fn, &rim_thread_ids[i]); + set_pthread_cpu(rim_threads[i], start_cpu + i); + } + + pthread_create(&mem_snapshot_thread, &attr, mem_snapshot_fn, map1); + set_pthread_cpu(mem_snapshot_thread, start_cpu + i); + + + pthread_join(mem_snapshot_thread, NULL); + for (i = 0; i < nrthreads; i++) { + pthread_join(rim_threads[i], NULL); + } + + if (!timeout) { + time(&now); + printf("=================================\n"); + printf(" Data Corruption Detected\n"); + printf(" %s", ctime(&now)); + printf(" See logfiles in %s\n", logdir); + printf("=================================\n"); + return 1; + } + return 0; +} diff --git a/tools/testing/selftests/powerpc/ptrace/.gitignore b/tools/testing/selftests/powerpc/ptrace/.gitignore index 07ec449a2767..dce19f221c46 100644 --- a/tools/testing/selftests/powerpc/ptrace/.gitignore +++ b/tools/testing/selftests/powerpc/ptrace/.gitignore @@ -10,3 +10,6 @@ ptrace-tm-spd-vsx ptrace-tm-spr ptrace-hwbreak perf-hwbreak +core-pkey +ptrace-pkey +ptrace-syscall diff --git a/tools/testing/selftests/powerpc/security/.gitignore b/tools/testing/selftests/powerpc/security/.gitignore new file mode 100644 index 000000000000..0b969fba3beb --- /dev/null +++ b/tools/testing/selftests/powerpc/security/.gitignore @@ -0,0 +1 @@ +rfi_flush diff --git a/tools/testing/selftests/powerpc/stringloops/.gitignore b/tools/testing/selftests/powerpc/stringloops/.gitignore index 0b43da74ee46..31a17e0ba884 100644 --- a/tools/testing/selftests/powerpc/stringloops/.gitignore +++ b/tools/testing/selftests/powerpc/stringloops/.gitignore @@ -1 +1,4 @@ -memcmp +memcmp_64 +memcmp_32 +strlen +strlen_32 diff --git a/tools/testing/selftests/powerpc/tm/.gitignore b/tools/testing/selftests/powerpc/tm/.gitignore index 951fe855f7cd..98f2708d86cc 100644 --- a/tools/testing/selftests/powerpc/tm/.gitignore +++ b/tools/testing/selftests/powerpc/tm/.gitignore @@ -17,3 +17,4 @@ tm-vmx-unavail tm-unavailable tm-trap tm-sigreturn +tm-poison diff --git a/tools/testing/selftests/powerpc/tm/Makefile b/tools/testing/selftests/powerpc/tm/Makefile index c0734ed0ef56..b15a1a325bd0 100644 --- a/tools/testing/selftests/powerpc/tm/Makefile +++ b/tools/testing/selftests/powerpc/tm/Makefile @@ -5,7 +5,7 @@ SIGNAL_CONTEXT_CHK_TESTS := tm-signal-context-chk-gpr tm-signal-context-chk-fpu TEST_GEN_PROGS := tm-resched-dscr tm-syscall tm-signal-msr-resv tm-signal-stack \ tm-vmxcopy tm-fork tm-tar tm-tmspr tm-vmx-unavail tm-unavailable tm-trap \ $(SIGNAL_CONTEXT_CHK_TESTS) tm-sigreturn tm-signal-sigreturn-nt \ - tm-signal-context-force-tm + tm-signal-context-force-tm tm-poison top_srcdir = ../../../../.. include ../../lib.mk diff --git a/tools/testing/selftests/powerpc/tm/tm-poison.c b/tools/testing/selftests/powerpc/tm/tm-poison.c new file mode 100644 index 000000000000..977558497c16 --- /dev/null +++ b/tools/testing/selftests/powerpc/tm/tm-poison.c @@ -0,0 +1,179 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright 2019, Gustavo Romero, Michael Neuling, IBM Corp. + * + * This test will spawn two processes. Both will be attached to the same + * CPU (CPU 0). The child will be in a loop writing to FP register f31 and + * VMX/VEC/Altivec register vr31 a known value, called poison, calling + * sched_yield syscall after to allow the parent to switch on the CPU. + * Parent will set f31 and vr31 to 1 and in a loop will check if f31 and + * vr31 remain 1 as expected until a given timeout (2m). If the issue is + * present child's poison will leak into parent's f31 or vr31 registers, + * otherwise, poison will never leak into parent's f31 and vr31 registers. + */ + +#define _GNU_SOURCE +#include <stdio.h> +#include <stdlib.h> +#include <unistd.h> +#include <inttypes.h> +#include <sched.h> +#include <sys/types.h> +#include <signal.h> +#include <inttypes.h> + +#include "tm.h" + +int tm_poison_test(void) +{ + int pid; + cpu_set_t cpuset; + uint64_t poison = 0xdeadbeefc0dec0fe; + uint64_t unknown = 0; + bool fail_fp = false; + bool fail_vr = false; + + SKIP_IF(!have_htm()); + + /* Attach both Child and Parent to CPU 0 */ + CPU_ZERO(&cpuset); + CPU_SET(0, &cpuset); + sched_setaffinity(0, sizeof(cpuset), &cpuset); + + pid = fork(); + if (!pid) { + /** + * child + */ + while (1) { + sched_yield(); + asm ( + "mtvsrd 31, %[poison];" // f31 = poison + "mtvsrd 63, %[poison];" // vr31 = poison + + : : [poison] "r" (poison) : ); + } + } + + /** + * parent + */ + asm ( + /* + * Set r3, r4, and f31 to known value 1 before entering + * in transaction. They won't be written after that. + */ + " li 3, 0x1 ;" + " li 4, 0x1 ;" + " mtvsrd 31, 4 ;" + + /* + * The Time Base (TB) is a 64-bit counter register that is + * independent of the CPU clock and which is incremented + * at a frequency of 512000000 Hz, so every 1.953125ns. + * So it's necessary 120s/0.000000001953125s = 61440000000 + * increments to get a 2 minutes timeout. Below we set that + * value in r5 and then use r6 to track initial TB value, + * updating TB values in r7 at every iteration and comparing it + * to r6. When r7 (current) - r6 (initial) > 61440000000 we bail + * out since for sure we spent already 2 minutes in the loop. + * SPR 268 is the TB register. + */ + " lis 5, 14 ;" + " ori 5, 5, 19996 ;" + " sldi 5, 5, 16 ;" // r5 = 61440000000 + + " mfspr 6, 268 ;" // r6 (TB initial) + "1: mfspr 7, 268 ;" // r7 (TB current) + " subf 7, 6, 7 ;" // r7 - r6 > 61440000000 ? + " cmpd 7, 5 ;" + " bgt 3f ;" // yes, exit + + /* + * Main loop to check f31 + */ + " tbegin. ;" // no, try again + " beq 1b ;" // restart if no timeout + " mfvsrd 3, 31 ;" // read f31 + " cmpd 3, 4 ;" // f31 == 1 ? + " bne 2f ;" // broken :-( + " tabort. 3 ;" // try another transaction + "2: tend. ;" // commit transaction + "3: mr %[unknown], 3 ;" // record r3 + + : [unknown] "=r" (unknown) + : + : "cr0", "r3", "r4", "r5", "r6", "r7", "vs31" + + ); + + /* + * On leak 'unknown' will contain 'poison' value from child, + * otherwise (no leak) 'unknown' will contain the same value + * as r3 before entering in transactional mode, i.e. 0x1. + */ + fail_fp = unknown != 0x1; + if (fail_fp) + printf("Unknown value %#"PRIx64" leaked into f31!\n", unknown); + else + printf("Good, no poison or leaked value into FP registers\n"); + + asm ( + /* + * Set r3, r4, and vr31 to known value 1 before entering + * in transaction. They won't be written after that. + */ + " li 3, 0x1 ;" + " li 4, 0x1 ;" + " mtvsrd 63, 4 ;" + + " lis 5, 14 ;" + " ori 5, 5, 19996 ;" + " sldi 5, 5, 16 ;" // r5 = 61440000000 + + " mfspr 6, 268 ;" // r6 (TB initial) + "1: mfspr 7, 268 ;" // r7 (TB current) + " subf 7, 6, 7 ;" // r7 - r6 > 61440000000 ? + " cmpd 7, 5 ;" + " bgt 3f ;" // yes, exit + + /* + * Main loop to check vr31 + */ + " tbegin. ;" // no, try again + " beq 1b ;" // restart if no timeout + " mfvsrd 3, 63 ;" // read vr31 + " cmpd 3, 4 ;" // vr31 == 1 ? + " bne 2f ;" // broken :-( + " tabort. 3 ;" // try another transaction + "2: tend. ;" // commit transaction + "3: mr %[unknown], 3 ;" // record r3 + + : [unknown] "=r" (unknown) + : + : "cr0", "r3", "r4", "r5", "r6", "r7", "vs63" + + ); + + /* + * On leak 'unknown' will contain 'poison' value from child, + * otherwise (no leak) 'unknown' will contain the same value + * as r3 before entering in transactional mode, i.e. 0x1. + */ + fail_vr = unknown != 0x1; + if (fail_vr) + printf("Unknown value %#"PRIx64" leaked into vr31!\n", unknown); + else + printf("Good, no poison or leaked value into VEC registers\n"); + + kill(pid, SIGKILL); + + return (fail_fp | fail_vr); +} + +int main(int argc, char *argv[]) +{ + /* Test completes in about 4m */ + test_harness_set_timeout(250); + return test_harness(tm_poison_test, "tm_poison_test"); +} diff --git a/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-fpu.c b/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-fpu.c index d57c2d2ab6ec..254f912ad611 100644 --- a/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-fpu.c +++ b/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-fpu.c @@ -5,10 +5,11 @@ * Test the kernel's signal frame code. * * The kernel sets up two sets of ucontexts if the signal was to be - * delivered while the thread was in a transaction. + * delivered while the thread was in a transaction (referred too as + * first and second contexts). * Expected behaviour is that the checkpointed state is in the user - * context passed to the signal handler. The speculated state can be - * accessed with the uc_link pointer. + * context passed to the signal handler (first context). The speculated + * state can be accessed with the uc_link pointer (second context). * * The rationale for this is that if TM unaware code (which linked * against TM libs) installs a signal handler it will not know of the @@ -28,17 +29,20 @@ #define MAX_ATTEMPT 500000 -#define NV_FPU_REGS 18 +#define NV_FPU_REGS 18 /* Number of non-volatile FP registers */ +#define FPR14 14 /* First non-volatile FP register to check in f14-31 subset */ long tm_signal_self_context_load(pid_t pid, long *gprs, double *fps, vector int *vms, vector int *vss); -/* Be sure there are 2x as many as there are NV FPU regs (2x18) */ +/* Test only non-volatile registers, i.e. 18 fpr registers from f14 to f31 */ static double fps[] = { + /* First context will be set with these values, i.e. non-speculative */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, + /* Second context will be set with these values, i.e. speculative */ -1,-2,-3,-4,-5,-6,-7,-8,-9,-10,-11,-12,-13,-14,-15,-16,-17,-18 }; -static sig_atomic_t fail; +static sig_atomic_t fail, broken; static void signal_usr1(int signum, siginfo_t *info, void *uc) { @@ -46,11 +50,24 @@ static void signal_usr1(int signum, siginfo_t *info, void *uc) ucontext_t *ucp = uc; ucontext_t *tm_ucp = ucp->uc_link; - for (i = 0; i < NV_FPU_REGS && !fail; i++) { - fail = (ucp->uc_mcontext.fp_regs[i + 14] != fps[i]); - fail |= (tm_ucp->uc_mcontext.fp_regs[i + 14] != fps[i + NV_FPU_REGS]); - if (fail) - printf("Failed on %d FP %g or %g\n", i, ucp->uc_mcontext.fp_regs[i + 14], tm_ucp->uc_mcontext.fp_regs[i + 14]); + for (i = 0; i < NV_FPU_REGS; i++) { + /* Check first context. Print all mismatches. */ + fail = (ucp->uc_mcontext.fp_regs[FPR14 + i] != fps[i]); + if (fail) { + broken = 1; + printf("FPR%d (1st context) == %g instead of %g (expected)\n", + FPR14 + i, ucp->uc_mcontext.fp_regs[FPR14 + i], fps[i]); + } + } + + for (i = 0; i < NV_FPU_REGS; i++) { + /* Check second context. Print all mismatches. */ + fail = (tm_ucp->uc_mcontext.fp_regs[FPR14 + i] != fps[NV_FPU_REGS + i]); + if (fail) { + broken = 1; + printf("FPR%d (2nd context) == %g instead of %g (expected)\n", + FPR14 + i, tm_ucp->uc_mcontext.fp_regs[FPR14 + i], fps[NV_FPU_REGS + i]); + } } } @@ -72,13 +89,19 @@ static int tm_signal_context_chk_fpu() } i = 0; - while (i < MAX_ATTEMPT && !fail) { + while (i < MAX_ATTEMPT && !broken) { + /* + * tm_signal_self_context_load will set both first and second + * contexts accordingly to the values passed through non-NULL + * array pointers to it, in that case 'fps', and invoke the + * signal handler installed for SIGUSR1. + */ rc = tm_signal_self_context_load(pid, NULL, fps, NULL, NULL); FAIL_IF(rc != pid); i++; } - return fail; + return (broken); } int main(void) diff --git a/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-gpr.c b/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-gpr.c index 4d05f8b0254c..0cc680f61828 100644 --- a/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-gpr.c +++ b/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-gpr.c @@ -5,10 +5,11 @@ * Test the kernel's signal frame code. * * The kernel sets up two sets of ucontexts if the signal was to be - * delivered while the thread was in a transaction. + * delivered while the thread was in a transaction (referred too as + * first and second contexts). * Expected behaviour is that the checkpointed state is in the user - * context passed to the signal handler. The speculated state can be - * accessed with the uc_link pointer. + * context passed to the signal handler (first context). The speculated + * state can be accessed with the uc_link pointer (second context). * * The rationale for this is that if TM unaware code (which linked * against TM libs) installs a signal handler it will not know of the @@ -28,14 +29,22 @@ #define MAX_ATTEMPT 500000 -#define NV_GPR_REGS 18 +#define NV_GPR_REGS 18 /* Number of non-volatile GPR registers */ +#define R14 14 /* First non-volatile register to check in r14-r31 subset */ long tm_signal_self_context_load(pid_t pid, long *gprs, double *fps, vector int *vms, vector int *vss); -static sig_atomic_t fail; +static sig_atomic_t fail, broken; -static long gps[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, - -1,-2,-3,-4,-5,-6,-7,-8,-9,-10,-11,-12,-13,-14,-15,-16,-17,-18}; +/* Test only non-volatile general purpose registers, i.e. r14-r31 */ +static long gprs[] = { + /* First context will be set with these values, i.e. non-speculative */ + /* R14, R15, ... */ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, + /* Second context will be set with these values, i.e. speculative */ + /* R14, R15, ... */ + -1,-2,-3,-4,-5,-6,-7,-8,-9,-10,-11,-12,-13,-14,-15,-16,-17,-18 +}; static void signal_usr1(int signum, siginfo_t *info, void *uc) { @@ -43,12 +52,24 @@ static void signal_usr1(int signum, siginfo_t *info, void *uc) ucontext_t *ucp = uc; ucontext_t *tm_ucp = ucp->uc_link; - for (i = 0; i < NV_GPR_REGS && !fail; i++) { - fail = (ucp->uc_mcontext.gp_regs[i + 14] != gps[i]); - fail |= (tm_ucp->uc_mcontext.gp_regs[i + 14] != gps[i + NV_GPR_REGS]); - if (fail) - printf("Failed on %d GPR %lu or %lu\n", i, - ucp->uc_mcontext.gp_regs[i + 14], tm_ucp->uc_mcontext.gp_regs[i + 14]); + /* Check first context. Print all mismatches. */ + for (i = 0; i < NV_GPR_REGS; i++) { + fail = (ucp->uc_mcontext.gp_regs[R14 + i] != gprs[i]); + if (fail) { + broken = 1; + printf("GPR%d (1st context) == %lu instead of %lu (expected)\n", + R14 + i, ucp->uc_mcontext.gp_regs[R14 + i], gprs[i]); + } + } + + /* Check second context. Print all mismatches. */ + for (i = 0; i < NV_GPR_REGS; i++) { + fail = (tm_ucp->uc_mcontext.gp_regs[R14 + i] != gprs[NV_GPR_REGS + i]); + if (fail) { + broken = 1; + printf("GPR%d (2nd context) == %lu instead of %lu (expected)\n", + R14 + i, tm_ucp->uc_mcontext.gp_regs[R14 + i], gprs[NV_GPR_REGS + i]); + } } } @@ -70,13 +91,19 @@ static int tm_signal_context_chk_gpr() } i = 0; - while (i < MAX_ATTEMPT && !fail) { - rc = tm_signal_self_context_load(pid, gps, NULL, NULL, NULL); + while (i < MAX_ATTEMPT && !broken) { + /* + * tm_signal_self_context_load will set both first and second + * contexts accordingly to the values passed through non-NULL + * array pointers to it, in that case 'gprs', and invoke the + * signal handler installed for SIGUSR1. + */ + rc = tm_signal_self_context_load(pid, gprs, NULL, NULL, NULL); FAIL_IF(rc != pid); i++; } - return fail; + return broken; } int main(void) diff --git a/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-vmx.c b/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-vmx.c index 48ad01499b1a..b6d52730a0d8 100644 --- a/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-vmx.c +++ b/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-vmx.c @@ -5,10 +5,11 @@ * Test the kernel's signal frame code. * * The kernel sets up two sets of ucontexts if the signal was to be - * delivered while the thread was in a transaction. + * delivered while the thread was in a transaction (referred too as + * first and second contexts). * Expected behaviour is that the checkpointed state is in the user - * context passed to the signal handler. The speculated state can be - * accessed with the uc_link pointer. + * context passed to the signal handler (first context). The speculated + * state can be accessed with the uc_link pointer (second context). * * The rationale for this is that if TM unaware code (which linked * against TM libs) installs a signal handler it will not know of the @@ -29,18 +30,24 @@ #define MAX_ATTEMPT 500000 -#define NV_VMX_REGS 12 +#define NV_VMX_REGS 12 /* Number of non-volatile VMX registers */ +#define VMX20 20 /* First non-volatile register to check in vr20-31 subset */ long tm_signal_self_context_load(pid_t pid, long *gprs, double *fps, vector int *vms, vector int *vss); -static sig_atomic_t fail; +static sig_atomic_t fail, broken; +/* Test only non-volatile registers, i.e. 12 vmx registers from vr20 to vr31 */ vector int vms[] = { - {1, 2, 3, 4 },{5, 6, 7, 8 },{9, 10,11,12}, + /* First context will be set with these values, i.e. non-speculative */ + /* VMX20 , VMX21 , ... */ + { 1, 2, 3, 4},{ 5, 6, 7, 8},{ 9,10,11,12}, {13,14,15,16},{17,18,19,20},{21,22,23,24}, {25,26,27,28},{29,30,31,32},{33,34,35,36}, {37,38,39,40},{41,42,43,44},{45,46,47,48}, - {-1, -2, -3, -4}, {-5, -6, -7, -8}, {-9, -10,-11,-12}, + /* Second context will be set with these values, i.e. speculative */ + /* VMX20 , VMX21 , ... */ + { -1, -2, -3, -4},{ -5, -6, -7, -8},{ -9,-10,-11,-12}, {-13,-14,-15,-16},{-17,-18,-19,-20},{-21,-22,-23,-24}, {-25,-26,-27,-28},{-29,-30,-31,-32},{-33,-34,-35,-36}, {-37,-38,-39,-40},{-41,-42,-43,-44},{-45,-46,-47,-48} @@ -48,26 +55,43 @@ vector int vms[] = { static void signal_usr1(int signum, siginfo_t *info, void *uc) { - int i; + int i, j; ucontext_t *ucp = uc; ucontext_t *tm_ucp = ucp->uc_link; - for (i = 0; i < NV_VMX_REGS && !fail; i++) { - fail = memcmp(ucp->uc_mcontext.v_regs->vrregs[i + 20], + for (i = 0; i < NV_VMX_REGS; i++) { + /* Check first context. Print all mismatches. */ + fail = memcmp(ucp->uc_mcontext.v_regs->vrregs[VMX20 + i], &vms[i], sizeof(vector int)); - fail |= memcmp(tm_ucp->uc_mcontext.v_regs->vrregs[i + 20], - &vms[i + NV_VMX_REGS], sizeof (vector int)); - if (fail) { - int j; + broken = 1; + printf("VMX%d (1st context) == 0x", VMX20 + i); + /* Print actual value in first context. */ + for (j = 0; j < 4; j++) + printf("%08x", ucp->uc_mcontext.v_regs->vrregs[VMX20 + i][j]); + printf(" instead of 0x"); + /* Print expected value. */ + for (j = 0; j < 4; j++) + printf("%08x", vms[i][j]); + printf(" (expected)\n"); + } + } - fprintf(stderr, "Failed on %d vmx 0x", i); + for (i = 0; i < NV_VMX_REGS; i++) { + /* Check second context. Print all mismatches. */ + fail = memcmp(tm_ucp->uc_mcontext.v_regs->vrregs[VMX20 + i], + &vms[NV_VMX_REGS + i], sizeof (vector int)); + if (fail) { + broken = 1; + printf("VMX%d (2nd context) == 0x", NV_VMX_REGS + i); + /* Print actual value in second context. */ + for (j = 0; j < 4; j++) + printf("%08x", tm_ucp->uc_mcontext.v_regs->vrregs[VMX20 + i][j]); + printf(" instead of 0x"); + /* Print expected value. */ for (j = 0; j < 4; j++) - fprintf(stderr, "%04x", ucp->uc_mcontext.v_regs->vrregs[i + 20][j]); - fprintf(stderr, " vs 0x"); - for (j = 0 ; j < 4; j++) - fprintf(stderr, "%04x", tm_ucp->uc_mcontext.v_regs->vrregs[i + 20][j]); - fprintf(stderr, "\n"); + printf("%08x", vms[NV_VMX_REGS + i][j]); + printf(" (expected)\n"); } } } @@ -90,13 +114,19 @@ static int tm_signal_context_chk() } i = 0; - while (i < MAX_ATTEMPT && !fail) { + while (i < MAX_ATTEMPT && !broken) { + /* + * tm_signal_self_context_load will set both first and second + * contexts accordingly to the values passed through non-NULL + * array pointers to it, in that case 'vms', and invoke the + * signal handler installed for SIGUSR1. + */ rc = tm_signal_self_context_load(pid, NULL, NULL, vms, NULL); FAIL_IF(rc != pid); i++; } - return fail; + return (broken); } int main(void) diff --git a/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-vsx.c b/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-vsx.c index 8c8677a408bb..8e25e2072ecd 100644 --- a/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-vsx.c +++ b/tools/testing/selftests/powerpc/tm/tm-signal-context-chk-vsx.c @@ -5,10 +5,11 @@ * Test the kernel's signal frame code. * * The kernel sets up two sets of ucontexts if the signal was to be - * delivered while the thread was in a transaction. + * delivered while the thread was in a transaction (referred too as + * first and second contexts). * Expected behaviour is that the checkpointed state is in the user - * context passed to the signal handler. The speculated state can be - * accessed with the uc_link pointer. + * context passed to the signal handler (first context). The speculated + * state can be accessed with the uc_link pointer (second context). * * The rationale for this is that if TM unaware code (which linked * against TM libs) installs a signal handler it will not know of the @@ -29,17 +30,24 @@ #define MAX_ATTEMPT 500000 -#define NV_VSX_REGS 12 +#define NV_VSX_REGS 12 /* Number of VSX registers to check. */ +#define VSX20 20 /* First VSX register to check in vsr20-vsr31 subset */ +#define FPR20 20 /* FPR20 overlaps VSX20 most significant doubleword */ long tm_signal_self_context_load(pid_t pid, long *gprs, double *fps, vector int *vms, vector int *vss); -static sig_atomic_t fail; +static sig_atomic_t fail, broken; -vector int vss[] = { - {1, 2, 3, 4 },{5, 6, 7, 8 },{9, 10,11,12}, +/* Test only 12 vsx registers from vsr20 to vsr31 */ +vector int vsxs[] = { + /* First context will be set with these values, i.e. non-speculative */ + /* VSX20 , VSX21 , ... */ + { 1, 2, 3, 4},{ 5, 6, 7, 8},{ 9,10,11,12}, {13,14,15,16},{17,18,19,20},{21,22,23,24}, {25,26,27,28},{29,30,31,32},{33,34,35,36}, {37,38,39,40},{41,42,43,44},{45,46,47,48}, + /* Second context will be set with these values, i.e. speculative */ + /* VSX20 , VSX21 , ... */ {-1, -2, -3, -4 },{-5, -6, -7, -8 },{-9, -10,-11,-12}, {-13,-14,-15,-16},{-17,-18,-19,-20},{-21,-22,-23,-24}, {-25,-26,-27,-28},{-29,-30,-31,-32},{-33,-34,-35,-36}, @@ -48,41 +56,91 @@ vector int vss[] = { static void signal_usr1(int signum, siginfo_t *info, void *uc) { - int i; - uint8_t vsc[sizeof(vector int)]; - uint8_t vst[sizeof(vector int)]; + int i, j; + uint8_t vsx[sizeof(vector int)]; + uint8_t vsx_tm[sizeof(vector int)]; ucontext_t *ucp = uc; ucontext_t *tm_ucp = ucp->uc_link; /* - * The other half of the VSX regs will be after v_regs. + * FP registers and VMX registers overlap the VSX registers. + * + * FP registers (f0-31) overlap the most significant 64 bits of VSX + * registers vsr0-31, whilst VMX registers vr0-31, being 128-bit like + * the VSX registers, overlap fully the other half of VSX registers, + * i.e. vr0-31 overlaps fully vsr32-63. + * + * Due to compatibility and historical reasons (VMX/Altivec support + * appeared first on the architecture), VMX registers vr0-31 (so VSX + * half vsr32-63 too) are stored right after the v_regs pointer, in an + * area allocated for 'vmx_reverse' array (please see + * arch/powerpc/include/uapi/asm/sigcontext.h for details about the + * mcontext_t structure on Power). + * + * The other VSX half (vsr0-31) is hence stored below vr0-31/vsr32-63 + * registers, but only the least significant 64 bits of vsr0-31. The + * most significant 64 bits of vsr0-31 (f0-31), as it overlaps the FP + * registers, is kept in fp_regs. + * + * v_regs is a 16 byte aligned pointer at the start of vmx_reserve + * (vmx_reserve may or may not be 16 aligned) where the v_regs structure + * exists, so v_regs points to where vr0-31 / vsr32-63 registers are + * fully stored. Since v_regs type is elf_vrregset_t, v_regs + 1 + * skips all the slots used to store vr0-31 / vsr32-64 and points to + * part of one VSX half, i.e. v_regs + 1 points to the least significant + * 64 bits of vsr0-31. The other part of this half (the most significant + * part of vsr0-31) is stored in fp_regs. * - * In short, vmx_reserve array holds everything. v_regs is a 16 - * byte aligned pointer at the start of vmx_reserve (vmx_reserve - * may or may not be 16 aligned) where the v_regs structure exists. - * (half of) The VSX regsters are directly after v_regs so the - * easiest way to find them below. */ + /* Get pointer to least significant doubleword of vsr0-31 */ long *vsx_ptr = (long *)(ucp->uc_mcontext.v_regs + 1); long *tm_vsx_ptr = (long *)(tm_ucp->uc_mcontext.v_regs + 1); - for (i = 0; i < NV_VSX_REGS && !fail; i++) { - memcpy(vsc, &ucp->uc_mcontext.fp_regs[i + 20], 8); - memcpy(vsc + 8, &vsx_ptr[20 + i], 8); - fail = memcmp(vsc, &vss[i], sizeof(vector int)); - memcpy(vst, &tm_ucp->uc_mcontext.fp_regs[i + 20], 8); - memcpy(vst + 8, &tm_vsx_ptr[20 + i], 8); - fail |= memcmp(vst, &vss[i + NV_VSX_REGS], sizeof(vector int)); - if (fail) { - int j; + /* Check first context. Print all mismatches. */ + for (i = 0; i < NV_VSX_REGS; i++) { + /* + * Copy VSX most significant doubleword from fp_regs and + * copy VSX least significant one from 64-bit slots below + * saved VMX registers. + */ + memcpy(vsx, &ucp->uc_mcontext.fp_regs[FPR20 + i], 8); + memcpy(vsx + 8, &vsx_ptr[VSX20 + i], 8); + + fail = memcmp(vsx, &vsxs[i], sizeof(vector int)); - fprintf(stderr, "Failed on %d vsx 0x", i); + if (fail) { + broken = 1; + printf("VSX%d (1st context) == 0x", VSX20 + i); for (j = 0; j < 16; j++) - fprintf(stderr, "%02x", vsc[j]); - fprintf(stderr, " vs 0x"); + printf("%02x", vsx[j]); + printf(" instead of 0x"); + for (j = 0; j < 4; j++) + printf("%08x", vsxs[i][j]); + printf(" (expected)\n"); + } + } + + /* Check second context. Print all mismatches. */ + for (i = 0; i < NV_VSX_REGS; i++) { + /* + * Copy VSX most significant doubleword from fp_regs and + * copy VSX least significant one from 64-bit slots below + * saved VMX registers. + */ + memcpy(vsx_tm, &tm_ucp->uc_mcontext.fp_regs[FPR20 + i], 8); + memcpy(vsx_tm + 8, &tm_vsx_ptr[VSX20 + i], 8); + + fail = memcmp(vsx_tm, &vsxs[NV_VSX_REGS + i], sizeof(vector int)); + + if (fail) { + broken = 1; + printf("VSX%d (2nd context) == 0x", VSX20 + i); for (j = 0; j < 16; j++) - fprintf(stderr, "%02x", vst[j]); - fprintf(stderr, "\n"); + printf("%02x", vsx_tm[j]); + printf(" instead of 0x"); + for (j = 0; j < 4; j++) + printf("%08x", vsxs[NV_VSX_REGS + i][j]); + printf("(expected)\n"); } } } @@ -105,13 +163,19 @@ static int tm_signal_context_chk() } i = 0; - while (i < MAX_ATTEMPT && !fail) { - rc = tm_signal_self_context_load(pid, NULL, NULL, NULL, vss); + while (i < MAX_ATTEMPT && !broken) { + /* + * tm_signal_self_context_load will set both first and second + * contexts accordingly to the values passed through non-NULL + * array pointers to it, in that case 'vsxs', and invoke the + * signal handler installed for SIGUSR1. + */ + rc = tm_signal_self_context_load(pid, NULL, NULL, NULL, vsxs); FAIL_IF(rc != pid); i++; } - return fail; + return (broken); } int main(void) diff --git a/tools/testing/selftests/powerpc/tm/tm.h b/tools/testing/selftests/powerpc/tm/tm.h index 97f9f491c541..c402464b038f 100644 --- a/tools/testing/selftests/powerpc/tm/tm.h +++ b/tools/testing/selftests/powerpc/tm/tm.h @@ -55,7 +55,8 @@ static inline bool failure_is_unavailable(void) static inline bool failure_is_reschedule(void) { if ((failure_code() & TM_CAUSE_RESCHED) == TM_CAUSE_RESCHED || - (failure_code() & TM_CAUSE_KVM_RESCHED) == TM_CAUSE_KVM_RESCHED) + (failure_code() & TM_CAUSE_KVM_RESCHED) == TM_CAUSE_KVM_RESCHED || + (failure_code() & TM_CAUSE_KVM_FAC_UNAV) == TM_CAUSE_KVM_FAC_UNAV) return true; return false; |