summaryrefslogtreecommitdiffstats
path: root/mm/slab.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slab.c')
-rw-r--r--mm/slab.c1233
1 files changed, 760 insertions, 473 deletions
diff --git a/mm/slab.c b/mm/slab.c
index d0bd7f07ab04..4cbf8bb13557 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -50,7 +50,7 @@
* The head array is strictly LIFO and should improve the cache hit rates.
* On SMP, it additionally reduces the spinlock operations.
*
- * The c_cpuarray may not be read with enabled local interrupts -
+ * The c_cpuarray may not be read with enabled local interrupts -
* it's changed with a smp_call_function().
*
* SMP synchronization:
@@ -94,6 +94,7 @@
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/compiler.h>
+#include <linux/cpuset.h>
#include <linux/seq_file.h>
#include <linux/notifier.h>
#include <linux/kallsyms.h>
@@ -170,15 +171,15 @@
#if DEBUG
# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
SLAB_POISON | SLAB_HWCACHE_ALIGN | \
- SLAB_NO_REAP | SLAB_CACHE_DMA | \
+ SLAB_CACHE_DMA | \
SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
- SLAB_DESTROY_BY_RCU)
+ SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
#else
-# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
+# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
- SLAB_DESTROY_BY_RCU)
+ SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
#endif
/*
@@ -203,7 +204,8 @@
typedef unsigned int kmem_bufctl_t;
#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
-#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
+#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
+#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
/* Max number of objs-per-slab for caches which use off-slab slabs.
* Needed to avoid a possible looping condition in cache_grow().
@@ -266,16 +268,17 @@ struct array_cache {
unsigned int batchcount;
unsigned int touched;
spinlock_t lock;
- void *entry[0]; /*
- * Must have this definition in here for the proper
- * alignment of array_cache. Also simplifies accessing
- * the entries.
- * [0] is for gcc 2.95. It should really be [].
- */
+ void *entry[0]; /*
+ * Must have this definition in here for the proper
+ * alignment of array_cache. Also simplifies accessing
+ * the entries.
+ * [0] is for gcc 2.95. It should really be [].
+ */
};
-/* bootstrap: The caches do not work without cpuarrays anymore,
- * but the cpuarrays are allocated from the generic caches...
+/*
+ * bootstrap: The caches do not work without cpuarrays anymore, but the
+ * cpuarrays are allocated from the generic caches...
*/
#define BOOT_CPUCACHE_ENTRIES 1
struct arraycache_init {
@@ -291,13 +294,13 @@ struct kmem_list3 {
struct list_head slabs_full;
struct list_head slabs_free;
unsigned long free_objects;
- unsigned long next_reap;
- int free_touched;
unsigned int free_limit;
unsigned int colour_next; /* Per-node cache coloring */
spinlock_t list_lock;
struct array_cache *shared; /* shared per node */
struct array_cache **alien; /* on other nodes */
+ unsigned long next_reap; /* updated without locking */
+ int free_touched; /* updated without locking */
};
/*
@@ -310,10 +313,8 @@ struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define SIZE_L3 (1 + MAX_NUMNODES)
/*
- * This function must be completely optimized away if
- * a constant is passed to it. Mostly the same as
- * what is in linux/slab.h except it returns an
- * index.
+ * This function must be completely optimized away if a constant is passed to
+ * it. Mostly the same as what is in linux/slab.h except it returns an index.
*/
static __always_inline int index_of(const size_t size)
{
@@ -351,14 +352,14 @@ static void kmem_list3_init(struct kmem_list3 *parent)
parent->free_touched = 0;
}
-#define MAKE_LIST(cachep, listp, slab, nodeid) \
- do { \
- INIT_LIST_HEAD(listp); \
- list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
+#define MAKE_LIST(cachep, listp, slab, nodeid) \
+ do { \
+ INIT_LIST_HEAD(listp); \
+ list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
} while (0)
-#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
- do { \
+#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
+ do { \
MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
@@ -373,28 +374,30 @@ static void kmem_list3_init(struct kmem_list3 *parent)
struct kmem_cache {
/* 1) per-cpu data, touched during every alloc/free */
struct array_cache *array[NR_CPUS];
+/* 2) Cache tunables. Protected by cache_chain_mutex */
unsigned int batchcount;
unsigned int limit;
unsigned int shared;
+
unsigned int buffer_size;
-/* 2) touched by every alloc & free from the backend */
+/* 3) touched by every alloc & free from the backend */
struct kmem_list3 *nodelists[MAX_NUMNODES];
- unsigned int flags; /* constant flags */
- unsigned int num; /* # of objs per slab */
- spinlock_t spinlock;
-/* 3) cache_grow/shrink */
+ unsigned int flags; /* constant flags */
+ unsigned int num; /* # of objs per slab */
+
+/* 4) cache_grow/shrink */
/* order of pgs per slab (2^n) */
unsigned int gfporder;
/* force GFP flags, e.g. GFP_DMA */
gfp_t gfpflags;
- size_t colour; /* cache colouring range */
+ size_t colour; /* cache colouring range */
unsigned int colour_off; /* colour offset */
struct kmem_cache *slabp_cache;
unsigned int slab_size;
- unsigned int dflags; /* dynamic flags */
+ unsigned int dflags; /* dynamic flags */
/* constructor func */
void (*ctor) (void *, struct kmem_cache *, unsigned long);
@@ -402,11 +405,11 @@ struct kmem_cache {
/* de-constructor func */
void (*dtor) (void *, struct kmem_cache *, unsigned long);
-/* 4) cache creation/removal */
+/* 5) cache creation/removal */
const char *name;
struct list_head next;
-/* 5) statistics */
+/* 6) statistics */
#if STATS
unsigned long num_active;
unsigned long num_allocations;
@@ -438,8 +441,9 @@ struct kmem_cache {
#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
#define BATCHREFILL_LIMIT 16
-/* Optimization question: fewer reaps means less
- * probability for unnessary cpucache drain/refill cycles.
+/*
+ * Optimization question: fewer reaps means less probability for unnessary
+ * cpucache drain/refill cycles.
*
* OTOH the cpuarrays can contain lots of objects,
* which could lock up otherwise freeable slabs.
@@ -453,17 +457,19 @@ struct kmem_cache {
#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
#define STATS_INC_GROWN(x) ((x)->grown++)
#define STATS_INC_REAPED(x) ((x)->reaped++)
-#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
- (x)->high_mark = (x)->num_active; \
- } while (0)
+#define STATS_SET_HIGH(x) \
+ do { \
+ if ((x)->num_active > (x)->high_mark) \
+ (x)->high_mark = (x)->num_active; \
+ } while (0)
#define STATS_INC_ERR(x) ((x)->errors++)
#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
-#define STATS_SET_FREEABLE(x, i) \
- do { if ((x)->max_freeable < i) \
- (x)->max_freeable = i; \
- } while (0)
-
+#define STATS_SET_FREEABLE(x, i) \
+ do { \
+ if ((x)->max_freeable < i) \
+ (x)->max_freeable = i; \
+ } while (0)
#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
@@ -478,9 +484,7 @@ struct kmem_cache {
#define STATS_INC_ERR(x) do { } while (0)
#define STATS_INC_NODEALLOCS(x) do { } while (0)
#define STATS_INC_NODEFREES(x) do { } while (0)
-#define STATS_SET_FREEABLE(x, i) \
- do { } while (0)
-
+#define STATS_SET_FREEABLE(x, i) do { } while (0)
#define STATS_INC_ALLOCHIT(x) do { } while (0)
#define STATS_INC_ALLOCMISS(x) do { } while (0)
#define STATS_INC_FREEHIT(x) do { } while (0)
@@ -488,7 +492,8 @@ struct kmem_cache {
#endif
#if DEBUG
-/* Magic nums for obj red zoning.
+/*
+ * Magic nums for obj red zoning.
* Placed in the first word before and the first word after an obj.
*/
#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
@@ -499,7 +504,8 @@ struct kmem_cache {
#define POISON_FREE 0x6b /* for use-after-free poisoning */
#define POISON_END 0xa5 /* end-byte of poisoning */
-/* memory layout of objects:
+/*
+ * memory layout of objects:
* 0 : objp
* 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
* the end of an object is aligned with the end of the real
@@ -508,7 +514,8 @@ struct kmem_cache {
* redzone word.
* cachep->obj_offset: The real object.
* cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
+ * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
+ * [BYTES_PER_WORD long]
*/
static int obj_offset(struct kmem_cache *cachep)
{
@@ -552,8 +559,8 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp)
#endif
/*
- * Maximum size of an obj (in 2^order pages)
- * and absolute limit for the gfp order.
+ * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
+ * order.
*/
#if defined(CONFIG_LARGE_ALLOCS)
#define MAX_OBJ_ORDER 13 /* up to 32Mb */
@@ -573,9 +580,10 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp)
#define BREAK_GFP_ORDER_LO 0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
-/* Functions for storing/retrieving the cachep and or slab from the
- * global 'mem_map'. These are used to find the slab an obj belongs to.
- * With kfree(), these are used to find the cache which an obj belongs to.
+/*
+ * Functions for storing/retrieving the cachep and or slab from the page
+ * allocator. These are used to find the slab an obj belongs to. With kfree(),
+ * these are used to find the cache which an obj belongs to.
*/
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
@@ -584,6 +592,8 @@ static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
static inline struct kmem_cache *page_get_cache(struct page *page)
{
+ if (unlikely(PageCompound(page)))
+ page = (struct page *)page_private(page);
return (struct kmem_cache *)page->lru.next;
}
@@ -594,6 +604,8 @@ static inline void page_set_slab(struct page *page, struct slab *slab)
static inline struct slab *page_get_slab(struct page *page)
{
+ if (unlikely(PageCompound(page)))
+ page = (struct page *)page_private(page);
return (struct slab *)page->lru.prev;
}
@@ -609,7 +621,21 @@ static inline struct slab *virt_to_slab(const void *obj)
return page_get_slab(page);
}
-/* These are the default caches for kmalloc. Custom caches can have other sizes. */
+static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
+ unsigned int idx)
+{
+ return slab->s_mem + cache->buffer_size * idx;
+}
+
+static inline unsigned int obj_to_index(struct kmem_cache *cache,
+ struct slab *slab, void *obj)
+{
+ return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
+}
+
+/*
+ * These are the default caches for kmalloc. Custom caches can have other sizes.
+ */
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
@@ -642,8 +668,6 @@ static struct kmem_cache cache_cache = {
.limit = BOOT_CPUCACHE_ENTRIES,
.shared = 1,
.buffer_size = sizeof(struct kmem_cache),
- .flags = SLAB_NO_REAP,
- .spinlock = SPIN_LOCK_UNLOCKED,
.name = "kmem_cache",
#if DEBUG
.obj_size = sizeof(struct kmem_cache),
@@ -655,8 +679,8 @@ static DEFINE_MUTEX(cache_chain_mutex);
static struct list_head cache_chain;
/*
- * vm_enough_memory() looks at this to determine how many
- * slab-allocated pages are possibly freeable under pressure
+ * vm_enough_memory() looks at this to determine how many slab-allocated pages
+ * are possibly freeable under pressure
*
* SLAB_RECLAIM_ACCOUNT turns this on per-slab
*/
@@ -675,7 +699,8 @@ static enum {
static DEFINE_PER_CPU(struct work_struct, reap_work);
-static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
+static void free_block(struct kmem_cache *cachep, void **objpp, int len,
+ int node);
static void enable_cpucache(struct kmem_cache *cachep);
static void cache_reap(void *unused);
static int __node_shrink(struct kmem_cache *cachep, int node);
@@ -685,7 +710,8 @@ static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
return cachep->array[smp_processor_id()];
}
-static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
+static inline struct kmem_cache *__find_general_cachep(size_t size,
+ gfp_t gfpflags)
{
struct cache_sizes *csizep = malloc_sizes;
@@ -720,8 +746,9 @@ static size_t slab_mgmt_size(size_t nr_objs, size_t align)
return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
-/* Calculate the number of objects and left-over bytes for a given
- buffer size. */
+/*
+ * Calculate the number of objects and left-over bytes for a given buffer size.
+ */
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
size_t align, int flags, size_t *left_over,
unsigned int *num)
@@ -782,7 +809,8 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
-static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
+static void __slab_error(const char *function, struct kmem_cache *cachep,
+ char *msg)
{
printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
function, cachep->name, msg);
@@ -804,7 +832,7 @@ static void init_reap_node(int cpu)
node = next_node(cpu_to_node(cpu), node_online_map);
if (node == MAX_NUMNODES)
- node = 0;
+ node = first_node(node_online_map);
__get_cpu_var(reap_node) = node;
}
@@ -870,8 +898,33 @@ static struct array_cache *alloc_arraycache(int node, int entries,
return nc;
}
+/*
+ * Transfer objects in one arraycache to another.
+ * Locking must be handled by the caller.
+ *
+ * Return the number of entries transferred.
+ */
+static int transfer_objects(struct array_cache *to,
+ struct array_cache *from, unsigned int max)
+{
+ /* Figure out how many entries to transfer */
+ int nr = min(min(from->avail, max), to->limit - to->avail);
+
+ if (!nr)
+ return 0;
+
+ memcpy(to->entry + to->avail, from->entry + from->avail -nr,
+ sizeof(void *) *nr);
+
+ from->avail -= nr;
+ to->avail += nr;
+ to->touched = 1;
+ return nr;
+}
+
#ifdef CONFIG_NUMA
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
+static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
static struct array_cache **alloc_alien_cache(int node, int limit)
{
@@ -906,10 +959,8 @@ static void free_alien_cache(struct array_cache **ac_ptr)
if (!ac_ptr)
return;
-
for_each_node(i)
kfree(ac_ptr[i]);
-
kfree(ac_ptr);
}
@@ -920,6 +971,13 @@ static void __drain_alien_cache(struct kmem_cache *cachep,
if (ac->avail) {
spin_lock(&rl3->list_lock);
+ /*
+ * Stuff objects into the remote nodes shared array first.
+ * That way we could avoid the overhead of putting the objects
+ * into the free lists and getting them back later.
+ */
+ transfer_objects(rl3->shared, ac, ac->limit);
+
free_block(cachep, ac->entry, ac->avail, node);
ac->avail = 0;
spin_unlock(&rl3->list_lock);
@@ -935,15 +993,16 @@ static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
if (l3->alien) {
struct array_cache *ac = l3->alien[node];
- if (ac && ac->avail) {
- spin_lock_irq(&ac->lock);
+
+ if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
__drain_alien_cache(cachep, ac, node);
spin_unlock_irq(&ac->lock);
}
}
}
-static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
+static void drain_alien_cache(struct kmem_cache *cachep,
+ struct array_cache **alien)
{
int i = 0;
struct array_cache *ac;
@@ -986,20 +1045,22 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
switch (action) {
case CPU_UP_PREPARE:
mutex_lock(&cache_chain_mutex);
- /* we need to do this right in the beginning since
+ /*
+ * We need to do this right in the beginning since
* alloc_arraycache's are going to use this list.
* kmalloc_node allows us to add the slab to the right
* kmem_list3 and not this cpu's kmem_list3
*/
list_for_each_entry(cachep, &cache_chain, next) {
- /* setup the size64 kmemlist for cpu before we can
+ /*
+ * Set up the size64 kmemlist for cpu before we can
* begin anything. Make sure some other cpu on this
* node has not already allocated this
*/
if (!cachep->nodelists[node]) {
- if (!(l3 = kmalloc_node(memsize,
- GFP_KERNEL, node)))
+ l3 = kmalloc_node(memsize, GFP_KERNEL, node);
+ if (!l3)
goto bad;
kmem_list3_init(l3);
l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
@@ -1015,13 +1076,15 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
spin_lock_irq(&cachep->nodelists[node]->list_lock);
cachep->nodelists[node]->free_limit =
- (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
+ (1 + nr_cpus_node(node)) *
+ cachep->batchcount + cachep->num;
spin_unlock_irq(&cachep->nodelists[node]->list_lock);
}
- /* Now we can go ahead with allocating the shared array's
- & array cache's */
+ /*
+ * Now we can go ahead with allocating the shared arrays and
+ * array caches
+ */
list_for_each_entry(cachep, &cache_chain, next) {
struct array_cache *nc;
struct array_cache *shared;
@@ -1041,7 +1104,6 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
if (!alien)
goto bad;
cachep->array[cpu] = nc;
-
l3 = cachep->nodelists[node];
BUG_ON(!l3);
@@ -1061,7 +1123,6 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
}
#endif
spin_unlock_irq(&l3->list_lock);
-
kfree(shared);
free_alien_cache(alien);
}
@@ -1083,7 +1144,6 @@ static int __devinit cpuup_callback(struct notifier_block *nfb,
/* fall thru */
case CPU_UP_CANCELED:
mutex_lock(&cache_chain_mutex);
-
list_for_each_entry(cachep, &cache_chain, next) {
struct array_cache *nc;
struct array_cache *shared;
@@ -1150,7 +1210,7 @@ free_array_cache:
#endif
}
return NOTIFY_OK;
- bad:
+bad:
mutex_unlock(&cache_chain_mutex);
return NOTIFY_BAD;
}
@@ -1160,7 +1220,8 @@ static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
/*
* swap the static kmem_list3 with kmalloced memory
*/
-static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
+static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
+ int nodeid)
{
struct kmem_list3 *ptr;
@@ -1175,8 +1236,9 @@ static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int no
local_irq_enable();
}
-/* Initialisation.
- * Called after the gfp() functions have been enabled, and before smp_init().
+/*
+ * Initialisation. Called after the page allocator have been initialised and
+ * before smp_init().
*/
void __init kmem_cache_init(void)
{
@@ -1201,9 +1263,9 @@ void __init kmem_cache_init(void)
/* Bootstrap is tricky, because several objects are allocated
* from caches that do not exist yet:
- * 1) initialize the cache_cache cache: it contains the struct kmem_cache
- * structures of all caches, except cache_cache itself: cache_cache
- * is statically allocated.
+ * 1) initialize the cache_cache cache: it contains the struct
+ * kmem_cache structures of all caches, except cache_cache itself:
+ * cache_cache is statically allocated.
* Initially an __init data area is used for the head array and the
* kmem_list3 structures, it's replaced with a kmalloc allocated
* array at the end of the bootstrap.
@@ -1226,7 +1288,8 @@ void __init kmem_cache_init(void)
cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
- cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
+ cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
+ cache_line_size());
for (order = 0; order < MAX_ORDER; order++) {
cache_estimate(order, cache_cache.buffer_size,
@@ -1245,24 +1308,26 @@ void __init kmem_cache_init(void)
sizes = malloc_sizes;
names = cache_names;
- /* Initialize the caches that provide memory for the array cache
- * and the kmem_list3 structures first.
- * Without this, further allocations will bug
+ /*
+ * Initialize the caches that provide memory for the array cache and the
+ * kmem_list3 structures first. Without this, further allocations will
+ * bug.
*/
sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
- sizes[INDEX_AC].cs_size,
- ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS |
- SLAB_PANIC), NULL, NULL);
+ sizes[INDEX_AC].cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+ NULL, NULL);
- if (INDEX_AC != INDEX_L3)
+ if (INDEX_AC != INDEX_L3) {
sizes[INDEX_L3].cs_cachep =
- kmem_cache_create(names[INDEX_L3].name,
- sizes[INDEX_L3].cs_size,
- ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
- NULL);
+ kmem_cache_create(names[INDEX_L3].name,
+ sizes[INDEX_L3].cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+ NULL, NULL);
+ }
while (sizes->cs_size != ULONG_MAX) {
/*
@@ -1272,13 +1337,13 @@ void __init kmem_cache_init(void)
* Note for systems short on memory removing the alignment will
* allow tighter packing of the smaller caches.
*/
- if (!sizes->cs_cachep)
+ if (!sizes->cs_cachep) {
sizes->cs_cachep = kmem_cache_create(names->name,
- sizes->cs_size,
- ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS
- | SLAB_PANIC),
- NULL, NULL);
+ sizes->cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ ARCH_KMALLOC_FLAGS|SLAB_PANIC,
+ NULL, NULL);
+ }
/* Inc off-slab bufctl limit until the ceiling is hit. */
if (!(OFF_SLAB(sizes->cs_cachep))) {
@@ -1287,13 +1352,11 @@ void __init kmem_cache_init(void)
}
sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
- sizes->cs_size,
- ARCH_KMALLOC_MINALIGN,
- (ARCH_KMALLOC_FLAGS |
- SLAB_CACHE_DMA |
- SLAB_PANIC), NULL,
- NULL);
-
+ sizes->cs_size,
+ ARCH_KMALLOC_MINALIGN,
+ ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
+ SLAB_PANIC,
+ NULL, NULL);
sizes++;
names++;
}
@@ -1345,20 +1408,22 @@ void __init kmem_cache_init(void)
struct kmem_cache *cachep;
mutex_lock(&cache_chain_mutex);
list_for_each_entry(cachep, &cache_chain, next)
- enable_cpucache(cachep);
+ enable_cpucache(cachep);
mutex_unlock(&cache_chain_mutex);
}
/* Done! */
g_cpucache_up = FULL;
- /* Register a cpu startup notifier callback
- * that initializes cpu_cache_get for all new cpus
+ /*
+ * Register a cpu startup notifier callback that initializes
+ * cpu_cache_get for all new cpus
*/
register_cpu_notifier(&cpucache_notifier);
- /* The reap timers are started later, with a module init call:
- * That part of the kernel is not yet operational.
+ /*
+ * The reap timers are started later, with a module init call: That part
+ * of the kernel is not yet operational.
*/
}
@@ -1366,16 +1431,13 @@ static int __init cpucache_init(void)
{
int cpu;
- /*
- * Register the timers that return unneeded
- * pages to gfp.
+ /*
+ * Register the timers that return unneeded pages to the page allocator
*/
for_each_online_cpu(cpu)
- start_cpu_timer(cpu);
-
+ start_cpu_timer(cpu);
return 0;
}
-
__initcall(cpucache_init);
/*
@@ -1402,7 +1464,7 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
atomic_add(i, &slab_reclaim_pages);
add_page_state(nr_slab, i);
while (i--) {
- SetPageSlab(page);
+ __SetPageSlab(page);
page++;
}
return addr;
@@ -1418,8 +1480,8 @@ static void kmem_freepages(struct kmem_cache *cachep, void *addr)
const unsigned long nr_freed = i;
while (i--) {
- if (!TestClearPageSlab(page))
- BUG();
+ BUG_ON(!PageSlab(page));
+ __ClearPageSlab(page);
page++;
}
sub_page_state(nr_slab, nr_freed);
@@ -1489,9 +1551,8 @@ static void dump_line(char *data, int offset, int limit)
{
int i;
printk(KERN_ERR "%03x:", offset);
- for (i = 0; i < limit; i++) {
+ for (i = 0; i < limit; i++)
printk(" %02x", (unsigned char)data[offset + i]);
- }
printk("\n");
}
#endif
@@ -1505,15 +1566,15 @@ static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
if (cachep->flags & SLAB_RED_ZONE) {
printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
- *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
+ *dbg_redzone1(cachep, objp),
+ *dbg_redzone2(cachep, objp));
}
if (cachep->flags & SLAB_STORE_USER) {
printk(KERN_ERR "Last user: [<%p>]",
- *dbg_userword(cachep, objp));
+ *dbg_userword(cachep, objp));
print_symbol("(%s)",
- (unsigned long)*dbg_userword(cachep, objp));
+ (unsigned long)*dbg_userword(cachep, objp));
printk("\n");
}
realobj = (char *)objp + obj_offset(cachep);
@@ -1546,8 +1607,8 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
/* Print header */
if (lines == 0) {
printk(KERN_ERR
- "Slab corruption: start=%p, len=%d\n",
- realobj, size);
+ "Slab corruption: start=%p, len=%d\n",
+ realobj, size);
print_objinfo(cachep, objp, 0);
}
/* Hexdump the affected line */
@@ -1568,18 +1629,18 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
* exist:
*/
struct slab *slabp = virt_to_slab(objp);
- int objnr;
+ unsigned int objnr;
- objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
+ objnr = obj_to_index(cachep, slabp, objp);
if (objnr) {
- objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
+ objp = index_to_obj(cachep, slabp, objnr - 1);
realobj = (char *)objp + obj_offset(cachep);
printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
realobj, size);
print_objinfo(cachep, objp, 2);
}
if (objnr + 1 < cachep->num) {
- objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
+ objp = index_to_obj(cachep, slabp, objnr + 1);
realobj = (char *)objp + obj_offset(cachep);
printk(KERN_ERR "Next obj: start=%p, len=%d\n",
realobj, size);
@@ -1591,22 +1652,25 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
#if DEBUG
/**
- * slab_destroy_objs - call the registered destructor for each object in
- * a slab that is to be destroyed.
+ * slab_destroy_objs - destroy a slab and its objects
+ * @cachep: cache pointer being destroyed
+ * @slabp: slab pointer being destroyed
+ *
+ * Call the registered destructor for each object in a slab that is being
+ * destroyed.
*/
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
{
int i;
for (i = 0; i < cachep->num; i++) {
- void *objp = slabp->s_mem + cachep->buffer_size * i;
+ void *objp = index_to_obj(cachep, slabp, i);
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE) == 0
- && OFF_SLAB(cachep))
+ if (cachep->buffer_size % PAGE_SIZE == 0 &&
+ OFF_SLAB(cachep))
kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE,
- 1);
+ cachep->buffer_size / PAGE_SIZE, 1);
else
check_poison_obj(cachep, objp);
#else
@@ -1631,7 +1695,7 @@ static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
if (cachep->dtor) {
int i;
for (i = 0; i < cachep->num; i++) {
- void *objp = slabp->s_mem + cachep->buffer_size * i;
+ void *objp = index_to_obj(cachep, slabp, i);
(cachep->dtor) (objp, cachep, 0);
}
}
@@ -1639,9 +1703,13 @@ static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
#endif
/**
+ * slab_destroy - destroy and release all objects in a slab
+ * @cachep: cache pointer being destroyed
+ * @slabp: slab pointer being destroyed
+ *
* Destroy all the objs in a slab, and release the mem back to the system.
- * Before calling the slab must have been unlinked from the cache.
- * The cache-lock is not held/needed.
+ * Before calling the slab must have been unlinked from the cache. The
+ * cache-lock is not held/needed.
*/
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
{
@@ -1662,8 +1730,10 @@ static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
}
}
-/* For setting up all the kmem_list3s for cache whose buffer_size is same
- as size of kmem_list3. */
+/*
+ * For setting up all the kmem_list3s for cache whose buffer_size is same as
+ * size of kmem_list3.
+ */
static void set_up_list3s(struct kmem_cache *cachep, int index)
{
int node;
@@ -1689,13 +1759,13 @@ static void set_up_list3s(struct kmem_cache *cachep, int index)
* high order pages for slabs. When the gfp() functions are more friendly
* towards high-order requests, this should be changed.
*/
-static inline size_t calculate_slab_order(struct kmem_cache *cachep,
+static size_t calculate_slab_order(struct kmem_cache *cachep,
size_t size, size_t align, unsigned long flags)
{
size_t left_over = 0;
int gfporder;
- for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) {
+ for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
unsigned int num;
size_t remainder;
@@ -1730,12 +1800,66 @@ static inline size_t calculate_slab_order(struct kmem_cache *cachep,
/*
* Acceptable internal fragmentation?
*/
- if ((left_over * 8) <= (PAGE_SIZE << gfporder))
+ if (left_over * 8 <= (PAGE_SIZE << gfporder))
break;
}
return left_over;
}
+static void setup_cpu_cache(struct kmem_cache *cachep)
+{
+ if (g_cpucache_up == FULL) {
+ enable_cpucache(cachep);
+ return;
+ }
+ if (g_cpucache_up == NONE) {
+ /*
+ * Note: the first kmem_cache_create must create the cache
+ * that's used by kmalloc(24), otherwise the creation of
+ * further caches will BUG().
+ */
+ cachep->array[smp_processor_id()] = &initarray_generic.cache;
+
+ /*
+ * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
+ * the first cache, then we need to set up all its list3s,
+ * otherwise the creation of further caches will BUG().
+ */
+ set_up_list3s(cachep, SIZE_AC);
+ if (INDEX_AC == INDEX_L3)
+ g_cpucache_up = PARTIAL_L3;
+ else
+ g_cpucache_up = PARTIAL_AC;
+ } else {
+ cachep->array[smp_processor_id()] =
+ kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
+
+ if (g_cpucache_up == PARTIAL_AC) {
+ set_up_list3s(cachep, SIZE_L3);
+ g_cpucache_up = PARTIAL_L3;
+ } else {
+ int node;
+ for_each_online_node(node) {
+ cachep->nodelists[node] =
+ kmalloc_node(sizeof(struct kmem_list3),
+ GFP_KERNEL, node);
+ BUG_ON(!cachep->nodelists[node]);
+ kmem_list3_init(cachep->nodelists[node]);
+ }
+ }
+ }
+ cachep->nodelists[numa_node_id()]->next_reap =
+ jiffies + REAPTIMEOUT_LIST3 +
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+
+ cpu_cache_get(cachep)->avail = 0;
+ cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
+ cpu_cache_get(cachep)->batchcount = 1;
+ cpu_cache_get(cachep)->touched = 0;
+ cachep->batchcount = 1;
+ cachep->limit = BOOT_CPUCACHE_ENTRIES;
+}
+
/**
* kmem_cache_create - Create a cache.
* @name: A string which is used in /proc/slabinfo to identify this cache.
@@ -1751,9 +1875,8 @@ static inline size_t calculate_slab_order(struct kmem_cache *cachep,
* and the @dtor is run before the pages are handed back.
*
* @name must be valid until the cache is destroyed. This implies that
- * the module calling this has to destroy the cache before getting
- * unloaded.
- *
+ * the module calling this has to destroy the cache before getting unloaded.
+ *
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
@@ -1762,16 +1885,14 @@ static inline size_t calculate_slab_order(struct kmem_cache *cachep,
* %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
* for buffer overruns.
*
- * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
- * memory pressure.
- *
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*/
struct kmem_cache *
kmem_cache_create (const char *name, size_t size, size_t align,
- unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
+ unsigned long flags,
+ void (*ctor)(void*, struct kmem_cache *, unsigned long),
void (*dtor)(void*, struct kmem_cache *, unsigned long))
{
size_t left_over, slab_size, ralign;
@@ -1781,12 +1902,10 @@ kmem_cache_create (const char *name, size_t size, size_t align,
/*
* Sanity checks... these are all serious usage bugs.
*/
- if ((!name) ||
- in_interrupt() ||
- (size < BYTES_PER_WORD) ||
+ if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
(size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
- printk(KERN_ERR "%s: Early error in slab %s\n",
- __FUNCTION__, name);
+ printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
+ name);
BUG();
}
@@ -1840,8 +1959,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
* above the next power of two: caches with object sizes just above a
* power of two have a significant amount of internal fragmentation.
*/
- if ((size < 4096
- || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
+ if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
if (!(flags & SLAB_DESTROY_BY_RCU))
flags |= SLAB_POISON;
@@ -1853,13 +1971,14 @@ kmem_cache_create (const char *name, size_t size, size_t align,
BUG_ON(dtor);
/*
- * Always checks flags, a caller might be expecting debug
- * support which isn't available.
+ * Always checks flags, a caller might be expecting debug support which
+ * isn't available.
*/
if (flags & ~CREATE_MASK)
BUG();
- /* Check that size is in terms of words. This is needed to avoid
+ /*
+ * Check that size is in terms of words. This is needed to avoid
* unaligned accesses for some archs when redzoning is used, and makes
* sure any on-slab bufctl's are also correctly aligned.
*/
@@ -1868,12 +1987,14 @@ kmem_cache_create (const char *name, size_t size, size_t align,
size &= ~(BYTES_PER_WORD - 1);
}
- /* calculate out the final buffer alignment: */
+ /* calculate the final buffer alignment: */
+
/* 1) arch recommendation: can be overridden for debug */
if (flags & SLAB_HWCACHE_ALIGN) {
- /* Default alignment: as specified by the arch code.
- * Except if an object is really small, then squeeze multiple
- * objects into one cacheline.
+ /*
+ * Default alignment: as specified by the arch code. Except if
+ * an object is really small, then squeeze multiple objects into
+ * one cacheline.
*/
ralign = cache_line_size();
while (size <= ralign / 2)
@@ -1893,16 +2014,16 @@ kmem_cache_create (const char *name, size_t size, size_t align,
if (ralign > BYTES_PER_WORD)
flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
}
- /* 4) Store it. Note that the debug code below can reduce
+ /*
+ * 4) Store it. Note that the debug code below can reduce
* the alignment to BYTES_PER_WORD.
*/
align = ralign;
/* Get cache's description obj. */
- cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
+ cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
if (!cachep)
goto oops;
- memset(cachep, 0, sizeof(struct kmem_cache));
#if DEBUG
cachep->obj_size = size;
@@ -1978,7 +2099,6 @@ kmem_cache_create (const char *name, size_t size, size_t align,
cachep->gfpflags = 0;
if (flags & SLAB_CACHE_DMA)
cachep->gfpflags |= GFP_DMA;
- spin_lock_init(&cachep->spinlock);
cachep->buffer_size = size;
if (flags & CFLGS_OFF_SLAB)
@@ -1988,64 +2108,11 @@ kmem_cache_create (const char *name, size_t size, size_t align,
cachep->name = name;
- if (g_cpucache_up == FULL) {
- enable_cpucache(cachep);
- } else {
- if (g_cpucache_up == NONE) {
- /* Note: the first kmem_cache_create must create
- * the cache that's used by kmalloc(24), otherwise
- * the creation of further caches will BUG().
- */
- cachep->array[smp_processor_id()] =
- &initarray_generic.cache;
-
- /* If the cache that's used by
- * kmalloc(sizeof(kmem_list3)) is the first cache,
- * then we need to set up all its list3s, otherwise
- * the creation of further caches will BUG().
- */
- set_up_list3s(cachep, SIZE_AC);
- if (INDEX_AC == INDEX_L3)
- g_cpucache_up = PARTIAL_L3;
- else
- g_cpucache_up = PARTIAL_AC;
- } else {
- cachep->array[smp_processor_id()] =
- kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
-
- if (g_cpucache_up == PARTIAL_AC) {
- set_up_list3s(cachep, SIZE_L3);
- g_cpucache_up = PARTIAL_L3;
- } else {
- int node;
- for_each_online_node(node) {
-
- cachep->nodelists[node] =
- kmalloc_node(sizeof
- (struct kmem_list3),
- GFP_KERNEL, node);
- BUG_ON(!cachep->nodelists[node]);
- kmem_list3_init(cachep->
- nodelists[node]);
- }
- }
- }
- cachep->nodelists[numa_node_id()]->next_reap =
- jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-
- BUG_ON(!cpu_cache_get(cachep));
- cpu_cache_get(cachep)->avail = 0;
- cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
- cpu_cache_get(cachep)->batchcount = 1;
- cpu_cache_get(cachep)->touched = 0;
- cachep->batchcount = 1;
- cachep->limit = BOOT_CPUCACHE_ENTRIES;
- }
+ setup_cpu_cache(cachep);
/* cache setup completed, link it into the list */
list_add(&cachep->next, &cache_chain);
- oops:
+oops:
if (!cachep && (flags & SLAB_PANIC))
panic("kmem_cache_create(): failed to create slab `%s'\n",
name);
@@ -2089,30 +2156,13 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
#define check_spinlock_acquired_node(x, y) do { } while(0)
#endif
-/*
- * Waits for all CPUs to execute func().
- */
-static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
-{
- check_irq_on();
- preempt_disable();
-
- local_irq_disable();
- func(arg);
- local_irq_enable();
-
- if (smp_call_function(func, arg, 1, 1))
- BUG();
-
- preempt_enable();
-}
-
-static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
- int force, int node);
+static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
+ struct array_cache *ac,
+ int force, int node);
static void do_drain(void *arg)
{
- struct kmem_cache *cachep = (struct kmem_cache *) arg;
+ struct kmem_cache *cachep = arg;
struct array_cache *ac;
int node = numa_node_id();
@@ -2129,14 +2179,12 @@ static void drain_cpu_caches(struct kmem_cache *cachep)
struct kmem_list3 *l3;
int node;
- smp_call_function_all_cpus(do_drain, cachep);
+ on_each_cpu(do_drain, cachep, 1, 1);
check_irq_on();
for_each_online_node(node) {
l3 = cachep->nodelists[node];
if (l3) {
- spin_lock_irq(&l3->list_lock);
- drain_array_locked(cachep, l3->shared, 1, node);
- spin_unlock_irq(&l3->list_lock);
+ drain_array(cachep, l3, l3->shared, 1, node);
if (l3->alien)
drain_alien_cache(cachep, l3->alien);
}
@@ -2260,16 +2308,15 @@ int kmem_cache_destroy(struct kmem_cache *cachep)
/* NUMA: free the list3 structures */
for_each_online_node(i) {
- if ((l3 = cachep->nodelists[i])) {
+ l3 = cachep->nodelists[i];
+ if (l3) {
kfree(l3->shared);
free_alien_cache(l3->alien);
kfree(l3);
}
}
kmem_cache_free(&cache_cache, cachep);
-
unlock_cpu_hotplug();
-
return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);
@@ -2292,7 +2339,6 @@ static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
slabp->inuse = 0;
slabp->colouroff = colour_off;
slabp->s_mem = objp + colour_off;
-
return slabp;
}
@@ -2307,7 +2353,7 @@ static void cache_init_objs(struct kmem_cache *cachep,
int i;
for (i = 0; i < cachep->num; i++) {
- void *objp = slabp->s_mem + cachep->buffer_size * i;
+ void *objp = index_to_obj(cachep, slabp, i);
#if DEBUG
/* need to poison the objs? */
if (cachep->flags & SLAB_POISON)
@@ -2320,9 +2366,9 @@ static void cache_init_objs(struct kmem_cache *cachep,
*dbg_redzone2(cachep, objp) = RED_INACTIVE;
}
/*
- * Constructors are not allowed to allocate memory from
- * the same cache which they are a constructor for.
- * Otherwise, deadlock. They must also be threaded.
+ * Constructors are not allowed to allocate memory from the same
+ * cache which they are a constructor for. Otherwise, deadlock.
+ * They must also be threaded.
*/
if (cachep->ctor && !(cachep->flags & SLAB_POISON))
cachep->ctor(objp + obj_offset(cachep), cachep,
@@ -2336,8 +2382,8 @@ static void cache_init_objs(struct kmem_cache *cachep,
slab_error(cachep, "constructor overwrote the"
" start of an object");
}
- if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
- && cachep->flags & SLAB_POISON)
+ if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
+ OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
kernel_map_pages(virt_to_page(objp),
cachep->buffer_size / PAGE_SIZE, 0);
#else
@@ -2352,18 +2398,16 @@ static void cache_init_objs(struct kmem_cache *cachep,
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
{
- if (flags & SLAB_DMA) {
- if (!(cachep->gfpflags & GFP_DMA))
- BUG();
- } else {
- if (cachep->gfpflags & GFP_DMA)
- BUG();
- }
+ if (flags & SLAB_DMA)
+ BUG_ON(!(cachep->gfpflags & GFP_DMA));
+ else
+ BUG_ON(cachep->gfpflags & GFP_DMA);
}
-static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
+static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
+ int nodeid)
{
- void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
+ void *objp = index_to_obj(cachep, slabp, slabp->free);
kmem_bufctl_t next;
slabp->inuse++;
@@ -2377,18 +2421,18 @@ static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nod
return objp;
}
-static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
- int nodeid)
+static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
+ void *objp, int nodeid)
{
- unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;
+ unsigned int objnr = obj_to_index(cachep, slabp, objp);
#if DEBUG
/* Verify that the slab belongs to the intended node */
WARN_ON(slabp->nodeid != nodeid);
- if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
+ if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
printk(KERN_ERR "slab: double free detected in cache "
- "'%s', objp %p\n", cachep->name, objp);
+ "'%s', objp %p\n", cachep->name, objp);
BUG();
}
#endif
@@ -2397,14 +2441,18 @@ static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *ob
slabp->inuse--;
}
-static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
+static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
+ void *objp)
{
int i;
struct page *page;
/* Nasty!!!!!! I hope this is OK. */
- i = 1 << cachep->gfporder;
page = virt_to_page(objp);
+
+ i = 1;
+ if (likely(!PageCompound(page)))
+ i <<= cachep->gfporder;
do {
page_set_cache(page, cachep);
page_set_slab(page, slabp);
@@ -2425,8 +2473,9 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
unsigned long ctor_flags;
struct kmem_list3 *l3;
- /* Be lazy and only check for valid flags here,
- * keeping it out of the critical path in kmem_cache_alloc().
+ /*
+ * Be lazy and only check for valid flags here, keeping it out of the
+ * critical path in kmem_cache_alloc().
*/
if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
BUG();
@@ -2467,14 +2516,17 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
*/
kmem_flagcheck(cachep, flags);
- /* Get mem for the objs.
- * Attempt to allocate a physical page from 'nodeid',
+ /*
+ * Get mem for the objs. Attempt to allocate a physical page from
+ * 'nodeid'.
*/
- if (!(objp = kmem_getpages(cachep, flags, nodeid)))
+ objp = kmem_getpages(cachep, flags, nodeid);
+ if (!objp)
goto failed;
/* Get slab management. */
- if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
+ slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
+ if (!slabp)
goto opps1;
slabp->nodeid = nodeid;
@@ -2493,9 +2545,9 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
l3->free_objects += cachep->num;
spin_unlock(&l3->list_lock);
return 1;
- opps1:
+opps1:
kmem_freepages(cachep, objp);
- failed:
+failed:
if (local_flags & __GFP_WAIT)
local_irq_disable();
return 0;
@@ -2538,8 +2590,8 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
page = virt_to_page(objp);
if (page_get_cache(page) != cachep) {
- printk(KERN_ERR
- "mismatch in kmem_cache_free: expected cache %p, got %p\n",
+ printk(KERN_ERR "mismatch in kmem_cache_free: expected "
+ "cache %p, got %p\n",
page_get_cache(page), cachep);
printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
@@ -2549,13 +2601,12 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
slabp = page_get_slab(page);
if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
- || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
- slab_error(cachep,
- "double free, or memory outside"
- " object was overwritten");
- printk(KERN_ERR
- "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
+ if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
+ *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
+ slab_error(cachep, "double free, or memory outside"
+ " object was overwritten");
+ printk(KERN_ERR "%p: redzone 1:0x%lx, "
+ "redzone 2:0x%lx.\n",
objp, *dbg_redzone1(cachep, objp),
*dbg_redzone2(cachep, objp));
}
@@ -2565,15 +2616,16 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
if (cachep->flags & SLAB_STORE_USER)
*dbg_userword(cachep, objp) = caller;
- objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
+ objnr = obj_to_index(cachep, slabp, objp);
BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
+ BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
if (cachep->flags & SLAB_DEBUG_INITIAL) {
- /* Need to call the slab's constructor so the
- * caller can perform a verify of its state (debugging).
- * Called without the cache-lock held.
+ /*
+ * Need to call the slab's constructor so the caller can
+ * perform a verify of its state (debugging). Called without
+ * the cache-lock held.
*/
cachep->ctor(objp + obj_offset(cachep),
cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
@@ -2584,9 +2636,12 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
*/
cachep->dtor(objp + obj_offset(cachep), cachep, 0);
}
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+ slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
+#endif
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
+ if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
store_stackinfo(cachep, objp, (unsigned long)caller);
kernel_map_pages(virt_to_page(objp),
cachep->buffer_size / PAGE_SIZE, 0);
@@ -2612,14 +2667,14 @@ static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
goto bad;
}
if (entries != cachep->num - slabp->inuse) {
- bad:
- printk(KERN_ERR
- "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
- cachep->name, cachep->num, slabp, slabp->inuse);
+bad:
+ printk(KERN_ERR "slab: Internal list corruption detected in "
+ "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
+ cachep->name, cachep->num, slabp, slabp->inuse);
for (i = 0;
i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
i++) {
- if ((i % 16) == 0)
+ if (i % 16 == 0)
printk("\n%03x:", i);
printk(" %02x", ((unsigned char *)slabp)[i]);
}
@@ -2641,12 +2696,13 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
check_irq_off();
ac = cpu_cache_get(cachep);
- retry:
+retry:
batchcount = ac->batchcount;
if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
- /* if there was little recent activity on this
- * cache, then perform only a partial refill.
- * Otherwise we could generate refill bouncing.
+ /*
+ * If there was little recent activity on this cache, then
+ * perform only a partial refill. Otherwise we could generate
+ * refill bouncing.
*/
batchcount = BATCHREFILL_LIMIT;
}
@@ -2655,20 +2711,10 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
BUG_ON(ac->avail > 0 || !l3);
spin_lock(&l3->list_lock);
- if (l3->shared) {
- struct array_cache *shared_array = l3->shared;
- if (shared_array->avail) {
- if (batchcount > shared_array->avail)
- batchcount = shared_array->avail;
- shared_array->avail -= batchcount;
- ac->avail = batchcount;
- memcpy(ac->entry,
- &(shared_array->entry[shared_array->avail]),
- sizeof(void *) * batchcount);
- shared_array->touched = 1;
- goto alloc_done;
- }
- }
+ /* See if we can refill from the shared array */
+ if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
+ goto alloc_done;
+
while (batchcount > 0) {
struct list_head *entry;
struct slab *slabp;
@@ -2702,29 +2748,29 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
list_add(&slabp->list, &l3->slabs_partial);
}
- must_grow:
+must_grow:
l3->free_objects -= ac->avail;
- alloc_done:
+alloc_done:
spin_unlock(&l3->list_lock);
if (unlikely(!ac->avail)) {
int x;
x = cache_grow(cachep, flags, numa_node_id());
- // cache_grow can reenable interrupts, then ac could change.
+ /* cache_grow can reenable interrupts, then ac could change. */
ac = cpu_cache_get(cachep);
- if (!x && ac->avail == 0) // no objects in sight? abort
+ if (!x && ac->avail == 0) /* no objects in sight? abort */
return NULL;
- if (!ac->avail) // objects refilled by interrupt?
+ if (!ac->avail) /* objects refilled by interrupt? */
goto retry;
}
ac->touched = 1;
return ac->entry[--ac->avail];
}
-static inline void
-cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
+static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
+ gfp_t flags)
{
might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
@@ -2733,8 +2779,8 @@ cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
}
#if DEBUG
-static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
- void *objp, void *caller)
+static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
+ gfp_t flags, void *objp, void *caller)
{
if (!objp)
return objp;
@@ -2754,19 +2800,28 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags
*dbg_userword(cachep, objp) = caller;
if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
- || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
- slab_error(cachep,
- "double free, or memory outside"
- " object was overwritten");
+ if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
+ *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
+ slab_error(cachep, "double free, or memory outside"
+ " object was overwritten");
printk(KERN_ERR
- "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
- objp, *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
+ "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
+ objp, *dbg_redzone1(cachep, objp),
+ *dbg_redzone2(cachep, objp));
}
*dbg_redzone1(cachep, objp) = RED_ACTIVE;
*dbg_redzone2(cachep, objp) = RED_ACTIVE;
}
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+ {
+ struct slab *slabp;
+ unsigned objnr;
+
+ slabp = page_get_slab(virt_to_page(objp));
+ objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
+ slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
+ }
+#endif
objp += obj_offset(cachep);
if (cachep->ctor && cachep->flags & SLAB_POISON) {
unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
@@ -2788,11 +2843,10 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
struct array_cache *ac;
#ifdef CONFIG_NUMA
- if (unlikely(current->mempolicy && !in_interrupt())) {
- int nid = slab_node(current->mempolicy);
-
- if (nid != numa_node_id())
- return __cache_alloc_node(cachep, flags, nid);
+ if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
+ objp = alternate_node_alloc(cachep, flags);
+ if (objp != NULL)
+ return objp;
}
#endif
@@ -2809,8 +2863,8 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
return objp;
}
-static __always_inline void *
-__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
+static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
+ gfp_t flags, void *caller)
{
unsigned long save_flags;
void *objp;
@@ -2828,9 +2882,32 @@ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
#ifdef CONFIG_NUMA
/*
+ * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
+ *
+ * If we are in_interrupt, then process context, including cpusets and
+ * mempolicy, may not apply and should not be used for allocation policy.
+ */
+static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+ int nid_alloc, nid_here;
+
+ if (in_interrupt())
+ return NULL;
+ nid_alloc = nid_here = numa_node_id();
+ if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
+ nid_alloc = cpuset_mem_spread_node();
+ else if (current->mempolicy)
+ nid_alloc = slab_node(current->mempolicy);
+ if (nid_alloc != nid_here)
+ return __cache_alloc_node(cachep, flags, nid_alloc);
+ return NULL;
+}
+
+/*
* A interface to enable slab creation on nodeid
*/
-static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
+static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
+ int nodeid)
{
struct list_head *entry;
struct slab *slabp;
@@ -2841,7 +2918,7 @@ static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int node
l3 = cachep->nodelists[nodeid];
BUG_ON(!l3);
- retry:
+retry:
check_irq_off();
spin_lock(&l3->list_lock);
entry = l3->slabs_partial.next;
@@ -2868,16 +2945,15 @@ static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int node
/* move slabp to correct slabp list: */
list_del(&slabp->list);
- if (slabp->free == BUFCTL_END) {
+ if (slabp->free == BUFCTL_END)
list_add(&slabp->list, &l3->slabs_full);
- } else {
+ else
list_add(&slabp->list, &l3->slabs_partial);
- }
spin_unlock(&l3->list_lock);
goto done;
- must_grow:
+must_grow:
spin_unlock(&l3->list_lock);
x = cache_grow(cachep, flags, nodeid);
@@ -2885,7 +2961,7 @@ static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int node
return NULL;
goto retry;
- done:
+done:
return obj;
}
#endif
@@ -2958,7 +3034,7 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
}
free_block(cachep, ac->entry, batchcount, node);
- free_done:
+free_done:
#if STATS
{
int i = 0;
@@ -2979,16 +3055,12 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
#endif
spin_unlock(&l3->list_lock);
ac->avail -= batchcount;
- memmove(ac->entry, &(ac->entry[batchcount]),
- sizeof(void *) * ac->avail);
+ memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
}
/*
- * __cache_free
- * Release an obj back to its cache. If the obj has a constructed
- * state, it must be in this state _before_ it is released.
- *
- * Called with disabled ints.
+ * Release an obj back to its cache. If the obj has a constructed state, it must
+ * be in this state _before_ it is released. Called with disabled ints.
*/
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
{
@@ -3007,9 +3079,9 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp)
if (unlikely(slabp->nodeid != numa_node_id())) {
struct array_cache *alien = NULL;
int nodeid = slabp->nodeid;
- struct kmem_list3 *l3 =
- cachep->nodelists[numa_node_id()];
+ struct kmem_list3 *l3;
+ l3 = cachep->nodelists[numa_node_id()];
STATS_INC_NODEFREES(cachep);
if (l3->alien && l3->alien[nodeid]) {
alien = l3->alien[nodeid];
@@ -3056,6 +3128,23 @@ void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
EXPORT_SYMBOL(kmem_cache_alloc);
/**
+ * kmem_cache_alloc - Allocate an object. The memory is set to zero.
+ * @cache: The cache to allocate from.
+ * @flags: See kmalloc().
+ *
+ * Allocate an object from this cache and set the allocated memory to zero.
+ * The flags are only relevant if the cache has no available objects.
+ */
+void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
+{
+ void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
+ if (ret)
+ memset(ret, 0, obj_size(cache));
+ return ret;
+}
+EXPORT_SYMBOL(kmem_cache_zalloc);
+
+/**
* kmem_ptr_validate - check if an untrusted pointer might
* be a slab entry.
* @cachep: the cache we're checking against
@@ -3093,7 +3182,7 @@ int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
if (unlikely(page_get_cache(page) != cachep))
goto out;
return 1;
- out:
+out:
return 0;
}
@@ -3119,7 +3208,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
local_irq_save(save_flags);
if (nodeid == -1 || nodeid == numa_node_id() ||
- !cachep->nodelists[nodeid])
+ !cachep->nodelists[nodeid])
ptr = ____cache_alloc(cachep, flags);
else
ptr = __cache_alloc_node(cachep, flags, nodeid);
@@ -3148,6 +3237,7 @@ EXPORT_SYMBOL(kmalloc_node);
* kmalloc - allocate memory
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate.
+ * @caller: function caller for debug tracking of the caller
*
* kmalloc is the normal method of allocating memory
* in the kernel.
@@ -3181,22 +3271,23 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
return __cache_alloc(cachep, flags, caller);
}
-#ifndef CONFIG_DEBUG_SLAB
void *__kmalloc(size_t size, gfp_t flags)
{
+#ifndef CONFIG_DEBUG_SLAB
return __do_kmalloc(size, flags, NULL);
+#else
+ return __do_kmalloc(size, flags, __builtin_return_address(0));
+#endif
}
EXPORT_SYMBOL(__kmalloc);
-#else
-
+#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
-
#endif
#ifdef CONFIG_SMP
@@ -3220,7 +3311,7 @@ void *__alloc_percpu(size_t size)
* and we have no way of figuring out how to fix the array
* that we have allocated then....
*/
- for_each_cpu(i) {
+ for_each_possible_cpu(i) {
int node = cpu_to_node(i);
if (node_online(node))
@@ -3236,7 +3327,7 @@ void *__alloc_percpu(size_t size)
/* Catch derefs w/o wrappers */
return (void *)(~(unsigned long)pdata);
- unwind_oom:
+unwind_oom:
while (--i >= 0) {
if (!cpu_possible(i))
continue;
@@ -3307,7 +3398,7 @@ void free_percpu(const void *objp)
/*
* We allocate for all cpus so we cannot use for online cpu here.
*/
- for_each_cpu(i)
+ for_each_possible_cpu(i)
kfree(p->ptrs[i]);
kfree(p);
}
@@ -3327,61 +3418,86 @@ const char *kmem_cache_name(struct kmem_cache *cachep)
EXPORT_SYMBOL_GPL(kmem_cache_name);
/*
- * This initializes kmem_list3 for all nodes.
+ * This initializes kmem_list3 or resizes varioius caches for all nodes.
*/
static int alloc_kmemlist(struct kmem_cache *cachep)
{
int node;
struct kmem_list3 *l3;
- int err = 0;
+ struct array_cache *new_shared;
+ struct array_cache **new_alien;
for_each_online_node(node) {
- struct array_cache *nc = NULL, *new;
- struct array_cache **new_alien = NULL;
-#ifdef CONFIG_NUMA
- if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
+
+ new_alien = alloc_alien_cache(node, cachep->limit);
+ if (!new_alien)
goto fail;
-#endif
- if (!(new = alloc_arraycache(node, (cachep->shared *
- cachep->batchcount),
- 0xbaadf00d)))
+
+ new_shared = alloc_arraycache(node,
+ cachep->shared*cachep->batchcount,
+ 0xbaadf00d);
+ if (!new_shared) {
+ free_alien_cache(new_alien);
goto fail;
- if ((l3 = cachep->nodelists[node])) {
+ }
+
+ l3 = cachep->nodelists[node];
+ if (l3) {
+ struct array_cache *shared = l3->shared;
spin_lock_irq(&l3->list_lock);
- if ((nc = cachep->nodelists[node]->shared))
- free_block(cachep, nc->entry, nc->avail, node);
+ if (shared)
+ free_block(cachep, shared->entry,
+ shared->avail, node);
- l3->shared = new;
- if (!cachep->nodelists[node]->alien) {
+ l3->shared = new_shared;
+ if (!l3->alien) {
l3->alien = new_alien;
new_alien = NULL;
}
l3->free_limit = (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
+ cachep->batchcount + cachep->num;
spin_unlock_irq(&l3->list_lock);
- kfree(nc);
+ kfree(shared);
free_alien_cache(new_alien);
continue;
}
- if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
- GFP_KERNEL, node)))
+ l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
+ if (!l3) {
+ free_alien_cache(new_alien);
+ kfree(new_shared);
goto fail;
+ }
kmem_list3_init(l3);
l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- l3->shared = new;
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
+ l3->shared = new_shared;
l3->alien = new_alien;
l3->free_limit = (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
+ cachep->batchcount + cachep->num;
cachep->nodelists[node] = l3;
}
- return err;
- fail:
- err = -ENOMEM;
- return err;
+ return 0;
+
+fail:
+ if (!cachep->next.next) {
+ /* Cache is not active yet. Roll back what we did */
+ node--;
+ while (node >= 0) {
+ if (cachep->nodelists[node]) {
+ l3 = cachep->nodelists[node];
+
+ kfree(l3->shared);
+ free_alien_cache(l3->alien);
+ kfree(l3);
+ cachep->nodelists[node] = NULL;
+ }
+ node--;
+ }
+ }
+ return -ENOMEM;
}
struct ccupdate_struct {
@@ -3391,7 +3507,7 @@ struct ccupdate_struct {
static void do_ccupdate_local(void *info)
{
- struct ccupdate_struct *new = (struct ccupdate_struct *)info;
+ struct ccupdate_struct *new = info;
struct array_cache *old;
check_irq_off();
@@ -3401,16 +3517,17 @@ static void do_ccupdate_local(void *info)
new->new[smp_processor_id()] = old;
}
-static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
- int shared)
+/* Always called with the cache_chain_mutex held */
+static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
+ int batchcount, int shared)
{
struct ccupdate_struct new;
int i, err;
memset(&new.new, 0, sizeof(new.new));
for_each_online_cpu(i) {
- new.new[i] =
- alloc_arraycache(cpu_to_node(i), limit, batchcount);
+ new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
+ batchcount);
if (!new.new[i]) {
for (i--; i >= 0; i--)
kfree(new.new[i]);
@@ -3419,14 +3536,12 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount
}
new.cachep = cachep;
- smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
+ on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
check_irq_on();
- spin_lock(&cachep->spinlock);
cachep->batchcount = batchcount;
cachep->limit = limit;
cachep->shared = shared;
- spin_unlock(&cachep->spinlock);
for_each_online_cpu(i) {
struct array_cache *ccold = new.new[i];
@@ -3447,15 +3562,17 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount
return 0;
}
+/* Called with cache_chain_mutex held always */
static void enable_cpucache(struct kmem_cache *cachep)
{
int err;
int limit, shared;
- /* The head array serves three purposes:
+ /*
+ * The head array serves three purposes:
* - create a LIFO ordering, i.e. return objects that are cache-warm
* - reduce the number of spinlock operations.
- * - reduce the number of linked list operations on the slab and
+ * - reduce the number of linked list operations on the slab and
* bufctl chains: array operations are cheaper.
* The numbers are guessed, we should auto-tune as described by
* Bonwick.
@@ -3471,7 +3588,8 @@ static void enable_cpucache(struct kmem_cache *cachep)
else
limit = 120;
- /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
+ /*
+ * CPU bound tasks (e.g. network routing) can exhibit cpu bound
* allocation behaviour: Most allocs on one cpu, most free operations
* on another cpu. For these cases, an efficient object passing between
* cpus is necessary. This is provided by a shared array. The array
@@ -3486,9 +3604,9 @@ static void enable_cpucache(struct kmem_cache *cachep)
#endif
#if DEBUG
- /* With debugging enabled, large batchcount lead to excessively
- * long periods with disabled local interrupts. Limit the
- * batchcount
+ /*
+ * With debugging enabled, large batchcount lead to excessively long
+ * periods with disabled local interrupts. Limit the batchcount
*/
if (limit > 32)
limit = 32;
@@ -3499,23 +3617,32 @@ static void enable_cpucache(struct kmem_cache *cachep)
cachep->name, -err);
}
-static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
- int force, int node)
+/*
+ * Drain an array if it contains any elements taking the l3 lock only if
+ * necessary. Note that the l3 listlock also protects the array_cache
+ * if drain_array() is used on the shared array.
+ */
+void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
+ struct array_cache *ac, int force, int node)
{
int tofree;
- check_spinlock_acquired_node(cachep, node);
+ if (!ac || !ac->avail)
+ return;
if (ac->touched && !force) {
ac->touched = 0;
- } else if (ac->avail) {
- tofree = force ? ac->avail : (ac->limit + 4) / 5;
- if (tofree > ac->avail) {
- tofree = (ac->avail + 1) / 2;
+ } else {
+ spin_lock_irq(&l3->list_lock);
+ if (ac->avail) {
+ tofree = force ? ac->avail : (ac->limit + 4) / 5;
+ if (tofree > ac->avail)
+ tofree = (ac->avail + 1) / 2;
+ free_block(cachep, ac->entry, tofree, node);
+ ac->avail -= tofree;
+ memmove(ac->entry, &(ac->entry[tofree]),
+ sizeof(void *) * ac->avail);
}
- free_block(cachep, ac->entry, tofree, node);
- ac->avail -= tofree;
- memmove(ac->entry, &(ac->entry[tofree]),
- sizeof(void *) * ac->avail);
+ spin_unlock_irq(&l3->list_lock);
}
}
@@ -3528,13 +3655,14 @@ static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac
* - clear the per-cpu caches for this CPU.
* - return freeable pages to the main free memory pool.
*
- * If we cannot acquire the cache chain mutex then just give up - we'll
- * try again on the next iteration.
+ * If we cannot acquire the cache chain mutex then just give up - we'll try
+ * again on the next iteration.
*/
static void cache_reap(void *unused)
{
struct list_head *walk;
struct kmem_list3 *l3;
+ int node = numa_node_id();
if (!mutex_trylock(&cache_chain_mutex)) {
/* Give up. Setup the next iteration. */
@@ -3550,65 +3678,72 @@ static void cache_reap(void *unused)
struct slab *slabp;
searchp = list_entry(walk, struct kmem_cache, next);
-
- if (searchp->flags & SLAB_NO_REAP)
- goto next;
-
check_irq_on();
- l3 = searchp->nodelists[numa_node_id()];
+ /*
+ * We only take the l3 lock if absolutely necessary and we
+ * have established with reasonable certainty that
+ * we can do some work if the lock was obtained.
+ */
+ l3 = searchp->nodelists[node];
+
reap_alien(searchp, l3);
- spin_lock_irq(&l3->list_lock);
- drain_array_locked(searchp, cpu_cache_get(searchp), 0,
- numa_node_id());
+ drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
+ /*
+ * These are racy checks but it does not matter
+ * if we skip one check or scan twice.
+ */
if (time_after(l3->next_reap, jiffies))
- goto next_unlock;
+ goto next;
l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
- if (l3->shared)
- drain_array_locked(searchp, l3->shared, 0,
- numa_node_id());
+ drain_array(searchp, l3, l3->shared, 0, node);
if (l3->free_touched) {
l3->free_touched = 0;
- goto next_unlock;
+ goto next;
}
- tofree =
- (l3->free_limit + 5 * searchp->num -
- 1) / (5 * searchp->num);
+ tofree = (l3->free_limit + 5 * searchp->num - 1) /
+ (5 * searchp->num);
do {
+ /*
+ * Do not lock if there are no free blocks.
+ */
+ if (list_empty(&l3->slabs_free))
+ break;
+
+ spin_lock_irq(&l3->list_lock);
p = l3->slabs_free.next;
- if (p == &(l3->slabs_free))
+ if (p == &(l3->slabs_free)) {
+ spin_unlock_irq(&l3->list_lock);
break;
+ }
slabp = list_entry(p, struct slab, list);
BUG_ON(slabp->inuse);
list_del(&slabp->list);
STATS_INC_REAPED(searchp);
- /* Safe to drop the lock. The slab is no longer
- * linked to the cache.
- * searchp cannot disappear, we hold
+ /*
+ * Safe to drop the lock. The slab is no longer linked
+ * to the cache. searchp cannot disappear, we hold
* cache_chain_lock
*/
l3->free_objects -= searchp->num;
spin_unlock_irq(&l3->list_lock);
slab_destroy(searchp, slabp);
- spin_lock_irq(&l3->list_lock);
} while (--tofree > 0);
- next_unlock:
- spin_unlock_irq(&l3->list_lock);
- next:
+next:
cond_resched();
}
check_irq_on();
mutex_unlock(&cache_chain_mutex);
next_reap_node();
- /* Setup the next iteration */
+ /* Set up the next iteration */
schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
}
@@ -3658,8 +3793,8 @@ static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
struct kmem_cache *cachep = p;
++*pos;
- return cachep->next.next == &cache_chain ? NULL
- : list_entry(cachep->next.next, struct kmem_cache, next);
+ return cachep->next.next == &cache_chain ?
+ NULL : list_entry(cachep->next.next, struct kmem_cache, next);
}
static void s_stop(struct seq_file *m, void *p)
@@ -3681,7 +3816,6 @@ static int s_show(struct seq_file *m, void *p)
int node;
struct kmem_list3 *l3;
- spin_lock(&cachep->spinlock);
active_objs = 0;
num_slabs = 0;
for_each_online_node(node) {
@@ -3748,7 +3882,9 @@ static int s_show(struct seq_file *m, void *p)
unsigned long node_frees = cachep->node_frees;
seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
- %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
+ %4lu %4lu %4lu %4lu", allocs, high, grown,
+ reaped, errors, max_freeable, node_allocs,
+ node_frees);
}
/* cpu stats */
{
@@ -3762,7 +3898,6 @@ static int s_show(struct seq_file *m, void *p)
}
#endif
seq_putc(m, '\n');
- spin_unlock(&cachep->spinlock);
return 0;
}
@@ -3820,13 +3955,12 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
mutex_lock(&cache_chain_mutex);
res = -EINVAL;
list_for_each(p, &cache_chain) {
- struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
- next);
+ struct kmem_cache *cachep;
+ cachep = list_entry(p, struct kmem_cache, next);
if (!strcmp(cachep->name, kbuf)) {
- if (limit < 1 ||
- batchcount < 1 ||
- batchcount > limit || shared < 0) {
+ if (limit < 1 || batchcount < 1 ||
+ batchcount > limit || shared < 0) {
res = 0;
} else {
res = do_tune_cpucache(cachep, limit,
@@ -3840,6 +3974,159 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
res = count;
return res;
}
+
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+
+static void *leaks_start(struct seq_file *m, loff_t *pos)
+{
+ loff_t n = *pos;
+ struct list_head *p;
+
+ mutex_lock(&cache_chain_mutex);
+ p = cache_chain.next;
+ while (n--) {
+ p = p->next;
+ if (p == &cache_chain)
+ return NULL;
+ }
+ return list_entry(p, struct kmem_cache, next);
+}
+
+static inline int add_caller(unsigned long *n, unsigned long v)
+{
+ unsigned long *p;
+ int l;
+ if (!v)
+ return 1;
+ l = n[1];
+ p = n + 2;
+ while (l) {
+ int i = l/2;
+ unsigned long *q = p + 2 * i;
+ if (*q == v) {
+ q[1]++;
+ return 1;
+ }
+ if (*q > v) {
+ l = i;
+ } else {
+ p = q + 2;
+ l -= i + 1;
+ }
+ }
+ if (++n[1] == n[0])
+ return 0;
+ memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
+ p[0] = v;
+ p[1] = 1;
+ return 1;
+}
+
+static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
+{
+ void *p;
+ int i;
+ if (n[0] == n[1])
+ return;
+ for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
+ if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
+ continue;
+ if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
+ return;
+ }
+}
+
+static void show_symbol(struct seq_file *m, unsigned long address)
+{
+#ifdef CONFIG_KALLSYMS
+ char *modname;
+ const char *name;
+ unsigned long offset, size;
+ char namebuf[KSYM_NAME_LEN+1];
+
+ name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
+
+ if (name) {
+ seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
+ if (modname)
+ seq_printf(m, " [%s]", modname);
+ return;
+ }
+#endif
+ seq_printf(m, "%p", (void *)address);
+}
+
+static int leaks_show(struct seq_file *m, void *p)
+{
+ struct kmem_cache *cachep = p;
+ struct list_head *q;
+ struct slab *slabp;
+ struct kmem_list3 *l3;
+ const char *name;
+ unsigned long *n = m->private;
+ int node;
+ int i;
+
+ if (!(cachep->flags & SLAB_STORE_USER))
+ return 0;
+ if (!(cachep->flags & SLAB_RED_ZONE))
+ return 0;
+
+ /* OK, we can do it */
+
+ n[1] = 0;
+
+ for_each_online_node(node) {
+ l3 = cachep->nodelists[node];
+ if (!l3)
+ continue;
+
+ check_irq_on();
+ spin_lock_irq(&l3->list_lock);
+
+ list_for_each(q, &l3->slabs_full) {
+ slabp = list_entry(q, struct slab, list);
+ handle_slab(n, cachep, slabp);
+ }
+ list_for_each(q, &l3->slabs_partial) {
+ slabp = list_entry(q, struct slab, list);
+ handle_slab(n, cachep, slabp);
+ }
+ spin_unlock_irq(&l3->list_lock);
+ }
+ name = cachep->name;
+ if (n[0] == n[1]) {
+ /* Increase the buffer size */
+ mutex_unlock(&cache_chain_mutex);
+ m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
+ if (!m->private) {
+ /* Too bad, we are really out */
+ m->private = n;
+ mutex_lock(&cache_chain_mutex);
+ return -ENOMEM;
+ }
+ *(unsigned long *)m->private = n[0] * 2;
+ kfree(n);
+ mutex_lock(&cache_chain_mutex);
+ /* Now make sure this entry will be retried */
+ m->count = m->size;
+ return 0;
+ }
+ for (i = 0; i < n[1]; i++) {
+ seq_printf(m, "%s: %lu ", name, n[2*i+3]);
+ show_symbol(m, n[2*i+2]);
+ seq_putc(m, '\n');
+ }
+ return 0;
+}
+
+struct seq_operations slabstats_op = {
+ .start = leaks_start,
+ .next = s_next,
+ .stop = s_stop,
+ .show = leaks_show,
+};
+#endif
#endif
/**
OpenPOWER on IntegriCloud