diff options
Diffstat (limited to 'mm/memory.c')
-rw-r--r-- | mm/memory.c | 302 |
1 files changed, 224 insertions, 78 deletions
diff --git a/mm/memory.c b/mm/memory.c index b1ca51a079f2..45442d9a4f52 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -72,6 +72,8 @@ #include <linux/oom.h> #include <linux/numa.h> +#include <trace/events/kmem.h> + #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> @@ -118,6 +120,18 @@ int randomize_va_space __read_mostly = 2; #endif +#ifndef arch_faults_on_old_pte +static inline bool arch_faults_on_old_pte(void) +{ + /* + * Those arches which don't have hw access flag feature need to + * implement their own helper. By default, "true" means pagefault + * will be hit on old pte. + */ + return true; +} +#endif + static int __init disable_randmaps(char *s) { randomize_va_space = 0; @@ -140,6 +154,10 @@ static int __init init_zero_pfn(void) } core_initcall(init_zero_pfn); +void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) +{ + trace_rss_stat(mm, member, count); +} #if defined(SPLIT_RSS_COUNTING) @@ -654,7 +672,7 @@ struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, if (pmd_devmap(pmd)) return NULL; - if (is_zero_pfn(pfn)) + if (is_huge_zero_pmd(pmd)) return NULL; if (unlikely(pfn > highest_memmap_pfn)) return NULL; @@ -2003,26 +2021,34 @@ EXPORT_SYMBOL(vm_iomap_memory); static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, - pte_fn_t fn, void *data) + pte_fn_t fn, void *data, bool create) { pte_t *pte; - int err; + int err = 0; spinlock_t *uninitialized_var(ptl); - pte = (mm == &init_mm) ? - pte_alloc_kernel(pmd, addr) : - pte_alloc_map_lock(mm, pmd, addr, &ptl); - if (!pte) - return -ENOMEM; + if (create) { + pte = (mm == &init_mm) ? + pte_alloc_kernel(pmd, addr) : + pte_alloc_map_lock(mm, pmd, addr, &ptl); + if (!pte) + return -ENOMEM; + } else { + pte = (mm == &init_mm) ? + pte_offset_kernel(pmd, addr) : + pte_offset_map_lock(mm, pmd, addr, &ptl); + } BUG_ON(pmd_huge(*pmd)); arch_enter_lazy_mmu_mode(); do { - err = fn(pte++, addr, data); - if (err) - break; + if (create || !pte_none(*pte)) { + err = fn(pte++, addr, data); + if (err) + break; + } } while (addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); @@ -2034,77 +2060,95 @@ static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, - pte_fn_t fn, void *data) + pte_fn_t fn, void *data, bool create) { pmd_t *pmd; unsigned long next; - int err; + int err = 0; BUG_ON(pud_huge(*pud)); - pmd = pmd_alloc(mm, pud, addr); - if (!pmd) - return -ENOMEM; + if (create) { + pmd = pmd_alloc(mm, pud, addr); + if (!pmd) + return -ENOMEM; + } else { + pmd = pmd_offset(pud, addr); + } do { next = pmd_addr_end(addr, end); - err = apply_to_pte_range(mm, pmd, addr, next, fn, data); - if (err) - break; + if (create || !pmd_none_or_clear_bad(pmd)) { + err = apply_to_pte_range(mm, pmd, addr, next, fn, data, + create); + if (err) + break; + } } while (pmd++, addr = next, addr != end); return err; } static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, - pte_fn_t fn, void *data) + pte_fn_t fn, void *data, bool create) { pud_t *pud; unsigned long next; - int err; + int err = 0; - pud = pud_alloc(mm, p4d, addr); - if (!pud) - return -ENOMEM; + if (create) { + pud = pud_alloc(mm, p4d, addr); + if (!pud) + return -ENOMEM; + } else { + pud = pud_offset(p4d, addr); + } do { next = pud_addr_end(addr, end); - err = apply_to_pmd_range(mm, pud, addr, next, fn, data); - if (err) - break; + if (create || !pud_none_or_clear_bad(pud)) { + err = apply_to_pmd_range(mm, pud, addr, next, fn, data, + create); + if (err) + break; + } } while (pud++, addr = next, addr != end); return err; } static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, - pte_fn_t fn, void *data) + pte_fn_t fn, void *data, bool create) { p4d_t *p4d; unsigned long next; - int err; + int err = 0; - p4d = p4d_alloc(mm, pgd, addr); - if (!p4d) - return -ENOMEM; + if (create) { + p4d = p4d_alloc(mm, pgd, addr); + if (!p4d) + return -ENOMEM; + } else { + p4d = p4d_offset(pgd, addr); + } do { next = p4d_addr_end(addr, end); - err = apply_to_pud_range(mm, p4d, addr, next, fn, data); - if (err) - break; + if (create || !p4d_none_or_clear_bad(p4d)) { + err = apply_to_pud_range(mm, p4d, addr, next, fn, data, + create); + if (err) + break; + } } while (p4d++, addr = next, addr != end); return err; } -/* - * Scan a region of virtual memory, filling in page tables as necessary - * and calling a provided function on each leaf page table. - */ -int apply_to_page_range(struct mm_struct *mm, unsigned long addr, - unsigned long size, pte_fn_t fn, void *data) +static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, + unsigned long size, pte_fn_t fn, + void *data, bool create) { pgd_t *pgd; unsigned long next; unsigned long end = addr + size; - int err; + int err = 0; if (WARN_ON(addr >= end)) return -EINVAL; @@ -2112,16 +2156,42 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, pgd = pgd_offset(mm, addr); do { next = pgd_addr_end(addr, end); - err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); + if (!create && pgd_none_or_clear_bad(pgd)) + continue; + err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create); if (err) break; } while (pgd++, addr = next, addr != end); return err; } + +/* + * Scan a region of virtual memory, filling in page tables as necessary + * and calling a provided function on each leaf page table. + */ +int apply_to_page_range(struct mm_struct *mm, unsigned long addr, + unsigned long size, pte_fn_t fn, void *data) +{ + return __apply_to_page_range(mm, addr, size, fn, data, true); +} EXPORT_SYMBOL_GPL(apply_to_page_range); /* + * Scan a region of virtual memory, calling a provided function on + * each leaf page table where it exists. + * + * Unlike apply_to_page_range, this does _not_ fill in page tables + * where they are absent. + */ +int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, + unsigned long size, pte_fn_t fn, void *data) +{ + return __apply_to_page_range(mm, addr, size, fn, data, false); +} +EXPORT_SYMBOL_GPL(apply_to_existing_page_range); + +/* * handle_pte_fault chooses page fault handler according to an entry which was * read non-atomically. Before making any commitment, on those architectures * or configurations (e.g. i386 with PAE) which might give a mix of unmatched @@ -2145,32 +2215,82 @@ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, return same; } -static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) +static inline bool cow_user_page(struct page *dst, struct page *src, + struct vm_fault *vmf) { + bool ret; + void *kaddr; + void __user *uaddr; + bool force_mkyoung; + struct vm_area_struct *vma = vmf->vma; + struct mm_struct *mm = vma->vm_mm; + unsigned long addr = vmf->address; + debug_dma_assert_idle(src); + if (likely(src)) { + copy_user_highpage(dst, src, addr, vma); + return true; + } + /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by * just copying from the original user address. If that * fails, we just zero-fill it. Live with it. */ - if (unlikely(!src)) { - void *kaddr = kmap_atomic(dst); - void __user *uaddr = (void __user *)(va & PAGE_MASK); + kaddr = kmap_atomic(dst); + uaddr = (void __user *)(addr & PAGE_MASK); + /* + * On architectures with software "accessed" bits, we would + * take a double page fault, so mark it accessed here. + */ + force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte); + if (force_mkyoung) { + pte_t entry; + + vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); + if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { + /* + * Other thread has already handled the fault + * and we don't need to do anything. If it's + * not the case, the fault will be triggered + * again on the same address. + */ + ret = false; + goto pte_unlock; + } + + entry = pte_mkyoung(vmf->orig_pte); + if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) + update_mmu_cache(vma, addr, vmf->pte); + } + + /* + * This really shouldn't fail, because the page is there + * in the page tables. But it might just be unreadable, + * in which case we just give up and fill the result with + * zeroes. + */ + if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { /* - * This really shouldn't fail, because the page is there - * in the page tables. But it might just be unreadable, - * in which case we just give up and fill the result with - * zeroes. + * Give a warn in case there can be some obscure + * use-case */ - if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) - clear_page(kaddr); - kunmap_atomic(kaddr); - flush_dcache_page(dst); - } else - copy_user_highpage(dst, src, va, vma); + WARN_ON_ONCE(1); + clear_page(kaddr); + } + + ret = true; + +pte_unlock: + if (force_mkyoung) + pte_unmap_unlock(vmf->pte, vmf->ptl); + kunmap_atomic(kaddr); + flush_dcache_page(dst); + + return ret; } static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) @@ -2227,10 +2347,11 @@ static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) * * The function expects the page to be locked and unlocks it. */ -static void fault_dirty_shared_page(struct vm_area_struct *vma, - struct page *page) +static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) { + struct vm_area_struct *vma = vmf->vma; struct address_space *mapping; + struct page *page = vmf->page; bool dirtied; bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; @@ -2245,16 +2366,30 @@ static void fault_dirty_shared_page(struct vm_area_struct *vma, mapping = page_rmapping(page); unlock_page(page); + if (!page_mkwrite) + file_update_time(vma->vm_file); + + /* + * Throttle page dirtying rate down to writeback speed. + * + * mapping may be NULL here because some device drivers do not + * set page.mapping but still dirty their pages + * + * Drop the mmap_sem before waiting on IO, if we can. The file + * is pinning the mapping, as per above. + */ if ((dirtied || page_mkwrite) && mapping) { - /* - * Some device drivers do not set page.mapping - * but still dirty their pages - */ + struct file *fpin; + + fpin = maybe_unlock_mmap_for_io(vmf, NULL); balance_dirty_pages_ratelimited(mapping); + if (fpin) { + fput(fpin); + return VM_FAULT_RETRY; + } } - if (!page_mkwrite) - file_update_time(vma->vm_file); + return 0; } /* @@ -2327,7 +2462,19 @@ static vm_fault_t wp_page_copy(struct vm_fault *vmf) vmf->address); if (!new_page) goto oom; - cow_user_page(new_page, old_page, vmf->address, vma); + + if (!cow_user_page(new_page, old_page, vmf)) { + /* + * COW failed, if the fault was solved by other, + * it's fine. If not, userspace would re-fault on + * the same address and we will handle the fault + * from the second attempt. + */ + put_page(new_page); + if (old_page) + put_page(old_page); + return 0; + } } if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) @@ -2497,6 +2644,7 @@ static vm_fault_t wp_page_shared(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; + vm_fault_t ret = VM_FAULT_WRITE; get_page(vmf->page); @@ -2520,10 +2668,10 @@ static vm_fault_t wp_page_shared(struct vm_fault *vmf) wp_page_reuse(vmf); lock_page(vmf->page); } - fault_dirty_shared_page(vma, vmf->page); + ret |= fault_dirty_shared_page(vmf); put_page(vmf->page); - return VM_FAULT_WRITE; + return ret; } /* @@ -3009,7 +3157,7 @@ static vm_fault_t do_anonymous_page(struct vm_fault *vmf) /* * The memory barrier inside __SetPageUptodate makes sure that - * preceeding stores to the page contents become visible before + * preceding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); @@ -3567,7 +3715,7 @@ static vm_fault_t do_shared_fault(struct vm_fault *vmf) return ret; } - fault_dirty_shared_page(vma, vmf->page); + ret |= fault_dirty_shared_page(vmf); return ret; } @@ -3914,6 +4062,7 @@ static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, vmf.pud = pud_alloc(mm, p4d, address); if (!vmf.pud) return VM_FAULT_OOM; +retry_pud: if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pud(&vmf); if (!(ret & VM_FAULT_FALLBACK)) @@ -3940,6 +4089,11 @@ static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, vmf.pmd = pmd_alloc(mm, vmf.pud, address); if (!vmf.pmd) return VM_FAULT_OOM; + + /* Huge pud page fault raced with pmd_alloc? */ + if (pud_trans_unstable(vmf.pud)) + goto retry_pud; + if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pmd(&vmf); if (!(ret & VM_FAULT_FALLBACK)) @@ -4095,19 +4249,11 @@ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) smp_wmb(); /* See comment in __pte_alloc */ ptl = pud_lock(mm, pud); -#ifndef __ARCH_HAS_4LEVEL_HACK if (!pud_present(*pud)) { mm_inc_nr_pmds(mm); pud_populate(mm, pud, new); } else /* Another has populated it */ pmd_free(mm, new); -#else - if (!pgd_present(*pud)) { - mm_inc_nr_pmds(mm); - pgd_populate(mm, pud, new); - } else /* Another has populated it */ - pmd_free(mm, new); -#endif /* __ARCH_HAS_4LEVEL_HACK */ spin_unlock(ptl); return 0; } |