diff options
Diffstat (limited to 'drivers/net/ethernet/intel/i40evf/i40e_txrx.h')
-rw-r--r-- | drivers/net/ethernet/intel/i40evf/i40e_txrx.h | 524 |
1 files changed, 0 insertions, 524 deletions
diff --git a/drivers/net/ethernet/intel/i40evf/i40e_txrx.h b/drivers/net/ethernet/intel/i40evf/i40e_txrx.h deleted file mode 100644 index 3b5a63b3236e..000000000000 --- a/drivers/net/ethernet/intel/i40evf/i40e_txrx.h +++ /dev/null @@ -1,524 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/* Copyright(c) 2013 - 2018 Intel Corporation. */ - -#ifndef _I40E_TXRX_H_ -#define _I40E_TXRX_H_ - -/* Interrupt Throttling and Rate Limiting Goodies */ -#define I40E_DEFAULT_IRQ_WORK 256 - -/* The datasheet for the X710 and XL710 indicate that the maximum value for - * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec - * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing - * the register value which is divided by 2 lets use the actual values and - * avoid an excessive amount of translation. - */ -#define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ -#define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */ -#define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */ -#define I40E_ITR_100K 10 /* all values below must be even */ -#define I40E_ITR_50K 20 -#define I40E_ITR_20K 50 -#define I40E_ITR_18K 60 -#define I40E_ITR_8K 122 -#define I40E_MAX_ITR 8160 /* maximum value as per datasheet */ -#define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC) -#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK) -#define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC)) - -#define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) -#define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) - -/* 0x40 is the enable bit for interrupt rate limiting, and must be set if - * the value of the rate limit is non-zero - */ -#define INTRL_ENA BIT(6) -#define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ -#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) -#define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) -#define I40E_INTRL_8K 125 /* 8000 ints/sec */ -#define I40E_INTRL_62K 16 /* 62500 ints/sec */ -#define I40E_INTRL_83K 12 /* 83333 ints/sec */ - -#define I40E_QUEUE_END_OF_LIST 0x7FF - -/* this enum matches hardware bits and is meant to be used by DYN_CTLN - * registers and QINT registers or more generally anywhere in the manual - * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any - * register but instead is a special value meaning "don't update" ITR0/1/2. - */ -enum i40e_dyn_idx_t { - I40E_IDX_ITR0 = 0, - I40E_IDX_ITR1 = 1, - I40E_IDX_ITR2 = 2, - I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ -}; - -/* these are indexes into ITRN registers */ -#define I40E_RX_ITR I40E_IDX_ITR0 -#define I40E_TX_ITR I40E_IDX_ITR1 -#define I40E_PE_ITR I40E_IDX_ITR2 - -/* Supported RSS offloads */ -#define I40E_DEFAULT_RSS_HENA ( \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ - BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ - BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \ - BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD)) - -#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ - BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) - -/* Supported Rx Buffer Sizes (a multiple of 128) */ -#define I40E_RXBUFFER_256 256 -#define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ -#define I40E_RXBUFFER_2048 2048 -#define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ -#define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ - -/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we - * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, - * this adds up to 512 bytes of extra data meaning the smallest allocation - * we could have is 1K. - * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) - * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) - */ -#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256 -#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) -#define i40e_rx_desc i40e_32byte_rx_desc - -#define I40E_RX_DMA_ATTR \ - (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) - -/* Attempt to maximize the headroom available for incoming frames. We - * use a 2K buffer for receives and need 1536/1534 to store the data for - * the frame. This leaves us with 512 bytes of room. From that we need - * to deduct the space needed for the shared info and the padding needed - * to IP align the frame. - * - * Note: For cache line sizes 256 or larger this value is going to end - * up negative. In these cases we should fall back to the legacy - * receive path. - */ -#if (PAGE_SIZE < 8192) -#define I40E_2K_TOO_SMALL_WITH_PADDING \ -((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048)) - -static inline int i40e_compute_pad(int rx_buf_len) -{ - int page_size, pad_size; - - page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); - pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; - - return pad_size; -} - -static inline int i40e_skb_pad(void) -{ - int rx_buf_len; - - /* If a 2K buffer cannot handle a standard Ethernet frame then - * optimize padding for a 3K buffer instead of a 1.5K buffer. - * - * For a 3K buffer we need to add enough padding to allow for - * tailroom due to NET_IP_ALIGN possibly shifting us out of - * cache-line alignment. - */ - if (I40E_2K_TOO_SMALL_WITH_PADDING) - rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); - else - rx_buf_len = I40E_RXBUFFER_1536; - - /* if needed make room for NET_IP_ALIGN */ - rx_buf_len -= NET_IP_ALIGN; - - return i40e_compute_pad(rx_buf_len); -} - -#define I40E_SKB_PAD i40e_skb_pad() -#else -#define I40E_2K_TOO_SMALL_WITH_PADDING false -#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) -#endif - -/** - * i40e_test_staterr - tests bits in Rx descriptor status and error fields - * @rx_desc: pointer to receive descriptor (in le64 format) - * @stat_err_bits: value to mask - * - * This function does some fast chicanery in order to return the - * value of the mask which is really only used for boolean tests. - * The status_error_len doesn't need to be shifted because it begins - * at offset zero. - */ -static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc, - const u64 stat_err_bits) -{ - return !!(rx_desc->wb.qword1.status_error_len & - cpu_to_le64(stat_err_bits)); -} - -/* How many Rx Buffers do we bundle into one write to the hardware ? */ -#define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */ -#define I40E_RX_INCREMENT(r, i) \ - do { \ - (i)++; \ - if ((i) == (r)->count) \ - i = 0; \ - r->next_to_clean = i; \ - } while (0) - -#define I40E_RX_NEXT_DESC(r, i, n) \ - do { \ - (i)++; \ - if ((i) == (r)->count) \ - i = 0; \ - (n) = I40E_RX_DESC((r), (i)); \ - } while (0) - -#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \ - do { \ - I40E_RX_NEXT_DESC((r), (i), (n)); \ - prefetch((n)); \ - } while (0) - -#define I40E_MAX_BUFFER_TXD 8 -#define I40E_MIN_TX_LEN 17 - -/* The size limit for a transmit buffer in a descriptor is (16K - 1). - * In order to align with the read requests we will align the value to - * the nearest 4K which represents our maximum read request size. - */ -#define I40E_MAX_READ_REQ_SIZE 4096 -#define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1) -#define I40E_MAX_DATA_PER_TXD_ALIGNED \ - (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1)) - -/** - * i40e_txd_use_count - estimate the number of descriptors needed for Tx - * @size: transmit request size in bytes - * - * Due to hardware alignment restrictions (4K alignment), we need to - * assume that we can have no more than 12K of data per descriptor, even - * though each descriptor can take up to 16K - 1 bytes of aligned memory. - * Thus, we need to divide by 12K. But division is slow! Instead, - * we decompose the operation into shifts and one relatively cheap - * multiply operation. - * - * To divide by 12K, we first divide by 4K, then divide by 3: - * To divide by 4K, shift right by 12 bits - * To divide by 3, multiply by 85, then divide by 256 - * (Divide by 256 is done by shifting right by 8 bits) - * Finally, we add one to round up. Because 256 isn't an exact multiple of - * 3, we'll underestimate near each multiple of 12K. This is actually more - * accurate as we have 4K - 1 of wiggle room that we can fit into the last - * segment. For our purposes this is accurate out to 1M which is orders of - * magnitude greater than our largest possible GSO size. - * - * This would then be implemented as: - * return (((size >> 12) * 85) >> 8) + 1; - * - * Since multiplication and division are commutative, we can reorder - * operations into: - * return ((size * 85) >> 20) + 1; - */ -static inline unsigned int i40e_txd_use_count(unsigned int size) -{ - return ((size * 85) >> 20) + 1; -} - -/* Tx Descriptors needed, worst case */ -#define DESC_NEEDED (MAX_SKB_FRAGS + 6) -#define I40E_MIN_DESC_PENDING 4 - -#define I40E_TX_FLAGS_HW_VLAN BIT(1) -#define I40E_TX_FLAGS_SW_VLAN BIT(2) -#define I40E_TX_FLAGS_TSO BIT(3) -#define I40E_TX_FLAGS_IPV4 BIT(4) -#define I40E_TX_FLAGS_IPV6 BIT(5) -#define I40E_TX_FLAGS_FCCRC BIT(6) -#define I40E_TX_FLAGS_FSO BIT(7) -#define I40E_TX_FLAGS_FD_SB BIT(9) -#define I40E_TX_FLAGS_VXLAN_TUNNEL BIT(10) -#define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 -#define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 -#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 -#define I40E_TX_FLAGS_VLAN_SHIFT 16 - -struct i40e_tx_buffer { - struct i40e_tx_desc *next_to_watch; - union { - struct sk_buff *skb; - void *raw_buf; - }; - unsigned int bytecount; - unsigned short gso_segs; - - DEFINE_DMA_UNMAP_ADDR(dma); - DEFINE_DMA_UNMAP_LEN(len); - u32 tx_flags; -}; - -struct i40e_rx_buffer { - dma_addr_t dma; - struct page *page; -#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) - __u32 page_offset; -#else - __u16 page_offset; -#endif - __u16 pagecnt_bias; -}; - -struct i40e_queue_stats { - u64 packets; - u64 bytes; -}; - -struct i40e_tx_queue_stats { - u64 restart_queue; - u64 tx_busy; - u64 tx_done_old; - u64 tx_linearize; - u64 tx_force_wb; - int prev_pkt_ctr; - u64 tx_lost_interrupt; -}; - -struct i40e_rx_queue_stats { - u64 non_eop_descs; - u64 alloc_page_failed; - u64 alloc_buff_failed; - u64 page_reuse_count; - u64 realloc_count; -}; - -enum i40e_ring_state_t { - __I40E_TX_FDIR_INIT_DONE, - __I40E_TX_XPS_INIT_DONE, - __I40E_RING_STATE_NBITS /* must be last */ -}; - -/* some useful defines for virtchannel interface, which - * is the only remaining user of header split - */ -#define I40E_RX_DTYPE_NO_SPLIT 0 -#define I40E_RX_DTYPE_HEADER_SPLIT 1 -#define I40E_RX_DTYPE_SPLIT_ALWAYS 2 -#define I40E_RX_SPLIT_L2 0x1 -#define I40E_RX_SPLIT_IP 0x2 -#define I40E_RX_SPLIT_TCP_UDP 0x4 -#define I40E_RX_SPLIT_SCTP 0x8 - -/* struct that defines a descriptor ring, associated with a VSI */ -struct i40e_ring { - struct i40e_ring *next; /* pointer to next ring in q_vector */ - void *desc; /* Descriptor ring memory */ - struct device *dev; /* Used for DMA mapping */ - struct net_device *netdev; /* netdev ring maps to */ - union { - struct i40e_tx_buffer *tx_bi; - struct i40e_rx_buffer *rx_bi; - }; - DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS); - u16 queue_index; /* Queue number of ring */ - u8 dcb_tc; /* Traffic class of ring */ - u8 __iomem *tail; - - /* high bit set means dynamic, use accessors routines to read/write. - * hardware only supports 2us resolution for the ITR registers. - * these values always store the USER setting, and must be converted - * before programming to a register. - */ - u16 itr_setting; - - u16 count; /* Number of descriptors */ - u16 reg_idx; /* HW register index of the ring */ - u16 rx_buf_len; - - /* used in interrupt processing */ - u16 next_to_use; - u16 next_to_clean; - - u8 atr_sample_rate; - u8 atr_count; - - bool ring_active; /* is ring online or not */ - bool arm_wb; /* do something to arm write back */ - u8 packet_stride; - - u16 flags; -#define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) -#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) - - /* stats structs */ - struct i40e_queue_stats stats; - struct u64_stats_sync syncp; - union { - struct i40e_tx_queue_stats tx_stats; - struct i40e_rx_queue_stats rx_stats; - }; - - unsigned int size; /* length of descriptor ring in bytes */ - dma_addr_t dma; /* physical address of ring */ - - struct i40e_vsi *vsi; /* Backreference to associated VSI */ - struct i40e_q_vector *q_vector; /* Backreference to associated vector */ - - struct rcu_head rcu; /* to avoid race on free */ - u16 next_to_alloc; - struct sk_buff *skb; /* When i40evf_clean_rx_ring_irq() must - * return before it sees the EOP for - * the current packet, we save that skb - * here and resume receiving this - * packet the next time - * i40evf_clean_rx_ring_irq() is called - * for this ring. - */ -} ____cacheline_internodealigned_in_smp; - -static inline bool ring_uses_build_skb(struct i40e_ring *ring) -{ - return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED); -} - -static inline void set_ring_build_skb_enabled(struct i40e_ring *ring) -{ - ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED; -} - -static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring) -{ - ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED; -} - -#define I40E_ITR_ADAPTIVE_MIN_INC 0x0002 -#define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002 -#define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e -#define I40E_ITR_ADAPTIVE_LATENCY 0x8000 -#define I40E_ITR_ADAPTIVE_BULK 0x0000 -#define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY)) - -struct i40e_ring_container { - struct i40e_ring *ring; /* pointer to linked list of ring(s) */ - unsigned long next_update; /* jiffies value of next update */ - unsigned int total_bytes; /* total bytes processed this int */ - unsigned int total_packets; /* total packets processed this int */ - u16 count; - u16 target_itr; /* target ITR setting for ring(s) */ - u16 current_itr; /* current ITR setting for ring(s) */ -}; - -/* iterator for handling rings in ring container */ -#define i40e_for_each_ring(pos, head) \ - for (pos = (head).ring; pos != NULL; pos = pos->next) - -static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring) -{ -#if (PAGE_SIZE < 8192) - if (ring->rx_buf_len > (PAGE_SIZE / 2)) - return 1; -#endif - return 0; -} - -#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring)) - -bool i40evf_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count); -netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev); -void i40evf_clean_tx_ring(struct i40e_ring *tx_ring); -void i40evf_clean_rx_ring(struct i40e_ring *rx_ring); -int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring); -int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring); -void i40evf_free_tx_resources(struct i40e_ring *tx_ring); -void i40evf_free_rx_resources(struct i40e_ring *rx_ring); -int i40evf_napi_poll(struct napi_struct *napi, int budget); -void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); -u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw); -void i40evf_detect_recover_hung(struct i40e_vsi *vsi); -int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size); -bool __i40evf_chk_linearize(struct sk_buff *skb); - -/** - * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed - * @skb: send buffer - * @tx_ring: ring to send buffer on - * - * Returns number of data descriptors needed for this skb. Returns 0 to indicate - * there is not enough descriptors available in this ring since we need at least - * one descriptor. - **/ -static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) -{ - const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; - unsigned int nr_frags = skb_shinfo(skb)->nr_frags; - int count = 0, size = skb_headlen(skb); - - for (;;) { - count += i40e_txd_use_count(size); - - if (!nr_frags--) - break; - - size = skb_frag_size(frag++); - } - - return count; -} - -/** - * i40e_maybe_stop_tx - 1st level check for Tx stop conditions - * @tx_ring: the ring to be checked - * @size: the size buffer we want to assure is available - * - * Returns 0 if stop is not needed - **/ -static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) -{ - if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) - return 0; - return __i40evf_maybe_stop_tx(tx_ring, size); -} - -/** - * i40e_chk_linearize - Check if there are more than 8 fragments per packet - * @skb: send buffer - * @count: number of buffers used - * - * Note: Our HW can't scatter-gather more than 8 fragments to build - * a packet on the wire and so we need to figure out the cases where we - * need to linearize the skb. - **/ -static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) -{ - /* Both TSO and single send will work if count is less than 8 */ - if (likely(count < I40E_MAX_BUFFER_TXD)) - return false; - - if (skb_is_gso(skb)) - return __i40evf_chk_linearize(skb); - - /* we can support up to 8 data buffers for a single send */ - return count != I40E_MAX_BUFFER_TXD; -} -/** - * @ring: Tx ring to find the netdev equivalent of - **/ -static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring) -{ - return netdev_get_tx_queue(ring->netdev, ring->queue_index); -} -#endif /* _I40E_TXRX_H_ */ |