summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/freescale/fec.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/freescale/fec.c')
-rw-r--r--drivers/net/ethernet/freescale/fec.c1663
1 files changed, 1663 insertions, 0 deletions
diff --git a/drivers/net/ethernet/freescale/fec.c b/drivers/net/ethernet/freescale/fec.c
new file mode 100644
index 000000000000..e8266ccf818a
--- /dev/null
+++ b/drivers/net/ethernet/freescale/fec.c
@@ -0,0 +1,1663 @@
+/*
+ * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
+ * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
+ *
+ * Right now, I am very wasteful with the buffers. I allocate memory
+ * pages and then divide them into 2K frame buffers. This way I know I
+ * have buffers large enough to hold one frame within one buffer descriptor.
+ * Once I get this working, I will use 64 or 128 byte CPM buffers, which
+ * will be much more memory efficient and will easily handle lots of
+ * small packets.
+ *
+ * Much better multiple PHY support by Magnus Damm.
+ * Copyright (c) 2000 Ericsson Radio Systems AB.
+ *
+ * Support for FEC controller of ColdFire processors.
+ * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
+ *
+ * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
+ * Copyright (c) 2004-2006 Macq Electronique SA.
+ *
+ * Copyright (C) 2010 Freescale Semiconductor, Inc.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ptrace.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/spinlock.h>
+#include <linux/workqueue.h>
+#include <linux/bitops.h>
+#include <linux/io.h>
+#include <linux/irq.h>
+#include <linux/clk.h>
+#include <linux/platform_device.h>
+#include <linux/phy.h>
+#include <linux/fec.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/of_gpio.h>
+#include <linux/of_net.h>
+
+#include <asm/cacheflush.h>
+
+#ifndef CONFIG_ARM
+#include <asm/coldfire.h>
+#include <asm/mcfsim.h>
+#endif
+
+#include "fec.h"
+
+#if defined(CONFIG_ARM)
+#define FEC_ALIGNMENT 0xf
+#else
+#define FEC_ALIGNMENT 0x3
+#endif
+
+#define DRIVER_NAME "fec"
+
+/* Controller is ENET-MAC */
+#define FEC_QUIRK_ENET_MAC (1 << 0)
+/* Controller needs driver to swap frame */
+#define FEC_QUIRK_SWAP_FRAME (1 << 1)
+/* Controller uses gasket */
+#define FEC_QUIRK_USE_GASKET (1 << 2)
+
+static struct platform_device_id fec_devtype[] = {
+ {
+ /* keep it for coldfire */
+ .name = DRIVER_NAME,
+ .driver_data = 0,
+ }, {
+ .name = "imx25-fec",
+ .driver_data = FEC_QUIRK_USE_GASKET,
+ }, {
+ .name = "imx27-fec",
+ .driver_data = 0,
+ }, {
+ .name = "imx28-fec",
+ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
+ }, {
+ /* sentinel */
+ }
+};
+MODULE_DEVICE_TABLE(platform, fec_devtype);
+
+enum imx_fec_type {
+ IMX25_FEC = 1, /* runs on i.mx25/50/53 */
+ IMX27_FEC, /* runs on i.mx27/35/51 */
+ IMX28_FEC,
+};
+
+static const struct of_device_id fec_dt_ids[] = {
+ { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
+ { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
+ { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, fec_dt_ids);
+
+static unsigned char macaddr[ETH_ALEN];
+module_param_array(macaddr, byte, NULL, 0);
+MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
+
+#if defined(CONFIG_M5272)
+/*
+ * Some hardware gets it MAC address out of local flash memory.
+ * if this is non-zero then assume it is the address to get MAC from.
+ */
+#if defined(CONFIG_NETtel)
+#define FEC_FLASHMAC 0xf0006006
+#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
+#define FEC_FLASHMAC 0xf0006000
+#elif defined(CONFIG_CANCam)
+#define FEC_FLASHMAC 0xf0020000
+#elif defined (CONFIG_M5272C3)
+#define FEC_FLASHMAC (0xffe04000 + 4)
+#elif defined(CONFIG_MOD5272)
+#define FEC_FLASHMAC 0xffc0406b
+#else
+#define FEC_FLASHMAC 0
+#endif
+#endif /* CONFIG_M5272 */
+
+/* The number of Tx and Rx buffers. These are allocated from the page
+ * pool. The code may assume these are power of two, so it it best
+ * to keep them that size.
+ * We don't need to allocate pages for the transmitter. We just use
+ * the skbuffer directly.
+ */
+#define FEC_ENET_RX_PAGES 8
+#define FEC_ENET_RX_FRSIZE 2048
+#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
+#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
+#define FEC_ENET_TX_FRSIZE 2048
+#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
+#define TX_RING_SIZE 16 /* Must be power of two */
+#define TX_RING_MOD_MASK 15 /* for this to work */
+
+#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
+#error "FEC: descriptor ring size constants too large"
+#endif
+
+/* Interrupt events/masks. */
+#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
+#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
+#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
+#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
+#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
+#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
+#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
+#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
+#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
+#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
+
+#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
+
+/* The FEC stores dest/src/type, data, and checksum for receive packets.
+ */
+#define PKT_MAXBUF_SIZE 1518
+#define PKT_MINBUF_SIZE 64
+#define PKT_MAXBLR_SIZE 1520
+
+
+/*
+ * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
+ * size bits. Other FEC hardware does not, so we need to take that into
+ * account when setting it.
+ */
+#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
+ defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
+#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
+#else
+#define OPT_FRAME_SIZE 0
+#endif
+
+/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
+ * tx_bd_base always point to the base of the buffer descriptors. The
+ * cur_rx and cur_tx point to the currently available buffer.
+ * The dirty_tx tracks the current buffer that is being sent by the
+ * controller. The cur_tx and dirty_tx are equal under both completely
+ * empty and completely full conditions. The empty/ready indicator in
+ * the buffer descriptor determines the actual condition.
+ */
+struct fec_enet_private {
+ /* Hardware registers of the FEC device */
+ void __iomem *hwp;
+
+ struct net_device *netdev;
+
+ struct clk *clk;
+
+ /* The saved address of a sent-in-place packet/buffer, for skfree(). */
+ unsigned char *tx_bounce[TX_RING_SIZE];
+ struct sk_buff* tx_skbuff[TX_RING_SIZE];
+ struct sk_buff* rx_skbuff[RX_RING_SIZE];
+ ushort skb_cur;
+ ushort skb_dirty;
+
+ /* CPM dual port RAM relative addresses */
+ dma_addr_t bd_dma;
+ /* Address of Rx and Tx buffers */
+ struct bufdesc *rx_bd_base;
+ struct bufdesc *tx_bd_base;
+ /* The next free ring entry */
+ struct bufdesc *cur_rx, *cur_tx;
+ /* The ring entries to be free()ed */
+ struct bufdesc *dirty_tx;
+
+ uint tx_full;
+ /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
+ spinlock_t hw_lock;
+
+ struct platform_device *pdev;
+
+ int opened;
+
+ /* Phylib and MDIO interface */
+ struct mii_bus *mii_bus;
+ struct phy_device *phy_dev;
+ int mii_timeout;
+ uint phy_speed;
+ phy_interface_t phy_interface;
+ int link;
+ int full_duplex;
+ struct completion mdio_done;
+};
+
+/* FEC MII MMFR bits definition */
+#define FEC_MMFR_ST (1 << 30)
+#define FEC_MMFR_OP_READ (2 << 28)
+#define FEC_MMFR_OP_WRITE (1 << 28)
+#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
+#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
+#define FEC_MMFR_TA (2 << 16)
+#define FEC_MMFR_DATA(v) (v & 0xffff)
+
+#define FEC_MII_TIMEOUT 1000 /* us */
+
+/* Transmitter timeout */
+#define TX_TIMEOUT (2 * HZ)
+
+static void *swap_buffer(void *bufaddr, int len)
+{
+ int i;
+ unsigned int *buf = bufaddr;
+
+ for (i = 0; i < (len + 3) / 4; i++, buf++)
+ *buf = cpu_to_be32(*buf);
+
+ return bufaddr;
+}
+
+static netdev_tx_t
+fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ const struct platform_device_id *id_entry =
+ platform_get_device_id(fep->pdev);
+ struct bufdesc *bdp;
+ void *bufaddr;
+ unsigned short status;
+ unsigned long flags;
+
+ if (!fep->link) {
+ /* Link is down or autonegotiation is in progress. */
+ return NETDEV_TX_BUSY;
+ }
+
+ spin_lock_irqsave(&fep->hw_lock, flags);
+ /* Fill in a Tx ring entry */
+ bdp = fep->cur_tx;
+
+ status = bdp->cbd_sc;
+
+ if (status & BD_ENET_TX_READY) {
+ /* Ooops. All transmit buffers are full. Bail out.
+ * This should not happen, since ndev->tbusy should be set.
+ */
+ printk("%s: tx queue full!.\n", ndev->name);
+ spin_unlock_irqrestore(&fep->hw_lock, flags);
+ return NETDEV_TX_BUSY;
+ }
+
+ /* Clear all of the status flags */
+ status &= ~BD_ENET_TX_STATS;
+
+ /* Set buffer length and buffer pointer */
+ bufaddr = skb->data;
+ bdp->cbd_datlen = skb->len;
+
+ /*
+ * On some FEC implementations data must be aligned on
+ * 4-byte boundaries. Use bounce buffers to copy data
+ * and get it aligned. Ugh.
+ */
+ if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
+ unsigned int index;
+ index = bdp - fep->tx_bd_base;
+ memcpy(fep->tx_bounce[index], skb->data, skb->len);
+ bufaddr = fep->tx_bounce[index];
+ }
+
+ /*
+ * Some design made an incorrect assumption on endian mode of
+ * the system that it's running on. As the result, driver has to
+ * swap every frame going to and coming from the controller.
+ */
+ if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
+ swap_buffer(bufaddr, skb->len);
+
+ /* Save skb pointer */
+ fep->tx_skbuff[fep->skb_cur] = skb;
+
+ ndev->stats.tx_bytes += skb->len;
+ fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
+
+ /* Push the data cache so the CPM does not get stale memory
+ * data.
+ */
+ bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
+ FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
+
+ /* Send it on its way. Tell FEC it's ready, interrupt when done,
+ * it's the last BD of the frame, and to put the CRC on the end.
+ */
+ status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
+ | BD_ENET_TX_LAST | BD_ENET_TX_TC);
+ bdp->cbd_sc = status;
+
+ /* Trigger transmission start */
+ writel(0, fep->hwp + FEC_X_DES_ACTIVE);
+
+ /* If this was the last BD in the ring, start at the beginning again. */
+ if (status & BD_ENET_TX_WRAP)
+ bdp = fep->tx_bd_base;
+ else
+ bdp++;
+
+ if (bdp == fep->dirty_tx) {
+ fep->tx_full = 1;
+ netif_stop_queue(ndev);
+ }
+
+ fep->cur_tx = bdp;
+
+ skb_tx_timestamp(skb);
+
+ spin_unlock_irqrestore(&fep->hw_lock, flags);
+
+ return NETDEV_TX_OK;
+}
+
+/* This function is called to start or restart the FEC during a link
+ * change. This only happens when switching between half and full
+ * duplex.
+ */
+static void
+fec_restart(struct net_device *ndev, int duplex)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ const struct platform_device_id *id_entry =
+ platform_get_device_id(fep->pdev);
+ int i;
+ u32 temp_mac[2];
+ u32 rcntl = OPT_FRAME_SIZE | 0x04;
+
+ /* Whack a reset. We should wait for this. */
+ writel(1, fep->hwp + FEC_ECNTRL);
+ udelay(10);
+
+ /*
+ * enet-mac reset will reset mac address registers too,
+ * so need to reconfigure it.
+ */
+ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
+ memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
+ writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
+ writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
+ }
+
+ /* Clear any outstanding interrupt. */
+ writel(0xffc00000, fep->hwp + FEC_IEVENT);
+
+ /* Reset all multicast. */
+ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
+ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
+#ifndef CONFIG_M5272
+ writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
+ writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
+#endif
+
+ /* Set maximum receive buffer size. */
+ writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
+
+ /* Set receive and transmit descriptor base. */
+ writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
+ writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
+ fep->hwp + FEC_X_DES_START);
+
+ fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
+ fep->cur_rx = fep->rx_bd_base;
+
+ /* Reset SKB transmit buffers. */
+ fep->skb_cur = fep->skb_dirty = 0;
+ for (i = 0; i <= TX_RING_MOD_MASK; i++) {
+ if (fep->tx_skbuff[i]) {
+ dev_kfree_skb_any(fep->tx_skbuff[i]);
+ fep->tx_skbuff[i] = NULL;
+ }
+ }
+
+ /* Enable MII mode */
+ if (duplex) {
+ /* FD enable */
+ writel(0x04, fep->hwp + FEC_X_CNTRL);
+ } else {
+ /* No Rcv on Xmit */
+ rcntl |= 0x02;
+ writel(0x0, fep->hwp + FEC_X_CNTRL);
+ }
+
+ fep->full_duplex = duplex;
+
+ /* Set MII speed */
+ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
+
+ /*
+ * The phy interface and speed need to get configured
+ * differently on enet-mac.
+ */
+ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
+ /* Enable flow control and length check */
+ rcntl |= 0x40000000 | 0x00000020;
+
+ /* MII or RMII */
+ if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
+ rcntl |= (1 << 8);
+ else
+ rcntl &= ~(1 << 8);
+
+ /* 10M or 100M */
+ if (fep->phy_dev && fep->phy_dev->speed == SPEED_100)
+ rcntl &= ~(1 << 9);
+ else
+ rcntl |= (1 << 9);
+
+ } else {
+#ifdef FEC_MIIGSK_ENR
+ if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
+ /* disable the gasket and wait */
+ writel(0, fep->hwp + FEC_MIIGSK_ENR);
+ while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
+ udelay(1);
+
+ /*
+ * configure the gasket:
+ * RMII, 50 MHz, no loopback, no echo
+ * MII, 25 MHz, no loopback, no echo
+ */
+ writel((fep->phy_interface == PHY_INTERFACE_MODE_RMII) ?
+ 1 : 0, fep->hwp + FEC_MIIGSK_CFGR);
+
+
+ /* re-enable the gasket */
+ writel(2, fep->hwp + FEC_MIIGSK_ENR);
+ }
+#endif
+ }
+ writel(rcntl, fep->hwp + FEC_R_CNTRL);
+
+ /* And last, enable the transmit and receive processing */
+ writel(2, fep->hwp + FEC_ECNTRL);
+ writel(0, fep->hwp + FEC_R_DES_ACTIVE);
+
+ /* Enable interrupts we wish to service */
+ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
+}
+
+static void
+fec_stop(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+
+ /* We cannot expect a graceful transmit stop without link !!! */
+ if (fep->link) {
+ writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
+ udelay(10);
+ if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
+ printk("fec_stop : Graceful transmit stop did not complete !\n");
+ }
+
+ /* Whack a reset. We should wait for this. */
+ writel(1, fep->hwp + FEC_ECNTRL);
+ udelay(10);
+ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
+ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
+}
+
+
+static void
+fec_timeout(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+
+ ndev->stats.tx_errors++;
+
+ fec_restart(ndev, fep->full_duplex);
+ netif_wake_queue(ndev);
+}
+
+static void
+fec_enet_tx(struct net_device *ndev)
+{
+ struct fec_enet_private *fep;
+ struct bufdesc *bdp;
+ unsigned short status;
+ struct sk_buff *skb;
+
+ fep = netdev_priv(ndev);
+ spin_lock(&fep->hw_lock);
+ bdp = fep->dirty_tx;
+
+ while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
+ if (bdp == fep->cur_tx && fep->tx_full == 0)
+ break;
+
+ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
+ FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
+ bdp->cbd_bufaddr = 0;
+
+ skb = fep->tx_skbuff[fep->skb_dirty];
+ /* Check for errors. */
+ if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
+ BD_ENET_TX_RL | BD_ENET_TX_UN |
+ BD_ENET_TX_CSL)) {
+ ndev->stats.tx_errors++;
+ if (status & BD_ENET_TX_HB) /* No heartbeat */
+ ndev->stats.tx_heartbeat_errors++;
+ if (status & BD_ENET_TX_LC) /* Late collision */
+ ndev->stats.tx_window_errors++;
+ if (status & BD_ENET_TX_RL) /* Retrans limit */
+ ndev->stats.tx_aborted_errors++;
+ if (status & BD_ENET_TX_UN) /* Underrun */
+ ndev->stats.tx_fifo_errors++;
+ if (status & BD_ENET_TX_CSL) /* Carrier lost */
+ ndev->stats.tx_carrier_errors++;
+ } else {
+ ndev->stats.tx_packets++;
+ }
+
+ if (status & BD_ENET_TX_READY)
+ printk("HEY! Enet xmit interrupt and TX_READY.\n");
+
+ /* Deferred means some collisions occurred during transmit,
+ * but we eventually sent the packet OK.
+ */
+ if (status & BD_ENET_TX_DEF)
+ ndev->stats.collisions++;
+
+ /* Free the sk buffer associated with this last transmit */
+ dev_kfree_skb_any(skb);
+ fep->tx_skbuff[fep->skb_dirty] = NULL;
+ fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
+
+ /* Update pointer to next buffer descriptor to be transmitted */
+ if (status & BD_ENET_TX_WRAP)
+ bdp = fep->tx_bd_base;
+ else
+ bdp++;
+
+ /* Since we have freed up a buffer, the ring is no longer full
+ */
+ if (fep->tx_full) {
+ fep->tx_full = 0;
+ if (netif_queue_stopped(ndev))
+ netif_wake_queue(ndev);
+ }
+ }
+ fep->dirty_tx = bdp;
+ spin_unlock(&fep->hw_lock);
+}
+
+
+/* During a receive, the cur_rx points to the current incoming buffer.
+ * When we update through the ring, if the next incoming buffer has
+ * not been given to the system, we just set the empty indicator,
+ * effectively tossing the packet.
+ */
+static void
+fec_enet_rx(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ const struct platform_device_id *id_entry =
+ platform_get_device_id(fep->pdev);
+ struct bufdesc *bdp;
+ unsigned short status;
+ struct sk_buff *skb;
+ ushort pkt_len;
+ __u8 *data;
+
+#ifdef CONFIG_M532x
+ flush_cache_all();
+#endif
+
+ spin_lock(&fep->hw_lock);
+
+ /* First, grab all of the stats for the incoming packet.
+ * These get messed up if we get called due to a busy condition.
+ */
+ bdp = fep->cur_rx;
+
+ while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
+
+ /* Since we have allocated space to hold a complete frame,
+ * the last indicator should be set.
+ */
+ if ((status & BD_ENET_RX_LAST) == 0)
+ printk("FEC ENET: rcv is not +last\n");
+
+ if (!fep->opened)
+ goto rx_processing_done;
+
+ /* Check for errors. */
+ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
+ BD_ENET_RX_CR | BD_ENET_RX_OV)) {
+ ndev->stats.rx_errors++;
+ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
+ /* Frame too long or too short. */
+ ndev->stats.rx_length_errors++;
+ }
+ if (status & BD_ENET_RX_NO) /* Frame alignment */
+ ndev->stats.rx_frame_errors++;
+ if (status & BD_ENET_RX_CR) /* CRC Error */
+ ndev->stats.rx_crc_errors++;
+ if (status & BD_ENET_RX_OV) /* FIFO overrun */
+ ndev->stats.rx_fifo_errors++;
+ }
+
+ /* Report late collisions as a frame error.
+ * On this error, the BD is closed, but we don't know what we
+ * have in the buffer. So, just drop this frame on the floor.
+ */
+ if (status & BD_ENET_RX_CL) {
+ ndev->stats.rx_errors++;
+ ndev->stats.rx_frame_errors++;
+ goto rx_processing_done;
+ }
+
+ /* Process the incoming frame. */
+ ndev->stats.rx_packets++;
+ pkt_len = bdp->cbd_datlen;
+ ndev->stats.rx_bytes += pkt_len;
+ data = (__u8*)__va(bdp->cbd_bufaddr);
+
+ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
+ FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
+
+ if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
+ swap_buffer(data, pkt_len);
+
+ /* This does 16 byte alignment, exactly what we need.
+ * The packet length includes FCS, but we don't want to
+ * include that when passing upstream as it messes up
+ * bridging applications.
+ */
+ skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
+
+ if (unlikely(!skb)) {
+ printk("%s: Memory squeeze, dropping packet.\n",
+ ndev->name);
+ ndev->stats.rx_dropped++;
+ } else {
+ skb_reserve(skb, NET_IP_ALIGN);
+ skb_put(skb, pkt_len - 4); /* Make room */
+ skb_copy_to_linear_data(skb, data, pkt_len - 4);
+ skb->protocol = eth_type_trans(skb, ndev);
+ if (!skb_defer_rx_timestamp(skb))
+ netif_rx(skb);
+ }
+
+ bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
+ FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
+rx_processing_done:
+ /* Clear the status flags for this buffer */
+ status &= ~BD_ENET_RX_STATS;
+
+ /* Mark the buffer empty */
+ status |= BD_ENET_RX_EMPTY;
+ bdp->cbd_sc = status;
+
+ /* Update BD pointer to next entry */
+ if (status & BD_ENET_RX_WRAP)
+ bdp = fep->rx_bd_base;
+ else
+ bdp++;
+ /* Doing this here will keep the FEC running while we process
+ * incoming frames. On a heavily loaded network, we should be
+ * able to keep up at the expense of system resources.
+ */
+ writel(0, fep->hwp + FEC_R_DES_ACTIVE);
+ }
+ fep->cur_rx = bdp;
+
+ spin_unlock(&fep->hw_lock);
+}
+
+static irqreturn_t
+fec_enet_interrupt(int irq, void *dev_id)
+{
+ struct net_device *ndev = dev_id;
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ uint int_events;
+ irqreturn_t ret = IRQ_NONE;
+
+ do {
+ int_events = readl(fep->hwp + FEC_IEVENT);
+ writel(int_events, fep->hwp + FEC_IEVENT);
+
+ if (int_events & FEC_ENET_RXF) {
+ ret = IRQ_HANDLED;
+ fec_enet_rx(ndev);
+ }
+
+ /* Transmit OK, or non-fatal error. Update the buffer
+ * descriptors. FEC handles all errors, we just discover
+ * them as part of the transmit process.
+ */
+ if (int_events & FEC_ENET_TXF) {
+ ret = IRQ_HANDLED;
+ fec_enet_tx(ndev);
+ }
+
+ if (int_events & FEC_ENET_MII) {
+ ret = IRQ_HANDLED;
+ complete(&fep->mdio_done);
+ }
+ } while (int_events);
+
+ return ret;
+}
+
+
+
+/* ------------------------------------------------------------------------- */
+static void __inline__ fec_get_mac(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
+ unsigned char *iap, tmpaddr[ETH_ALEN];
+
+ /*
+ * try to get mac address in following order:
+ *
+ * 1) module parameter via kernel command line in form
+ * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
+ */
+ iap = macaddr;
+
+#ifdef CONFIG_OF
+ /*
+ * 2) from device tree data
+ */
+ if (!is_valid_ether_addr(iap)) {
+ struct device_node *np = fep->pdev->dev.of_node;
+ if (np) {
+ const char *mac = of_get_mac_address(np);
+ if (mac)
+ iap = (unsigned char *) mac;
+ }
+ }
+#endif
+
+ /*
+ * 3) from flash or fuse (via platform data)
+ */
+ if (!is_valid_ether_addr(iap)) {
+#ifdef CONFIG_M5272
+ if (FEC_FLASHMAC)
+ iap = (unsigned char *)FEC_FLASHMAC;
+#else
+ if (pdata)
+ memcpy(iap, pdata->mac, ETH_ALEN);
+#endif
+ }
+
+ /*
+ * 4) FEC mac registers set by bootloader
+ */
+ if (!is_valid_ether_addr(iap)) {
+ *((unsigned long *) &tmpaddr[0]) =
+ be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
+ *((unsigned short *) &tmpaddr[4]) =
+ be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
+ iap = &tmpaddr[0];
+ }
+
+ memcpy(ndev->dev_addr, iap, ETH_ALEN);
+
+ /* Adjust MAC if using macaddr */
+ if (iap == macaddr)
+ ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
+}
+
+/* ------------------------------------------------------------------------- */
+
+/*
+ * Phy section
+ */
+static void fec_enet_adjust_link(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ struct phy_device *phy_dev = fep->phy_dev;
+ unsigned long flags;
+
+ int status_change = 0;
+
+ spin_lock_irqsave(&fep->hw_lock, flags);
+
+ /* Prevent a state halted on mii error */
+ if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
+ phy_dev->state = PHY_RESUMING;
+ goto spin_unlock;
+ }
+
+ /* Duplex link change */
+ if (phy_dev->link) {
+ if (fep->full_duplex != phy_dev->duplex) {
+ fec_restart(ndev, phy_dev->duplex);
+ status_change = 1;
+ }
+ }
+
+ /* Link on or off change */
+ if (phy_dev->link != fep->link) {
+ fep->link = phy_dev->link;
+ if (phy_dev->link)
+ fec_restart(ndev, phy_dev->duplex);
+ else
+ fec_stop(ndev);
+ status_change = 1;
+ }
+
+spin_unlock:
+ spin_unlock_irqrestore(&fep->hw_lock, flags);
+
+ if (status_change)
+ phy_print_status(phy_dev);
+}
+
+static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
+{
+ struct fec_enet_private *fep = bus->priv;
+ unsigned long time_left;
+
+ fep->mii_timeout = 0;
+ init_completion(&fep->mdio_done);
+
+ /* start a read op */
+ writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
+ FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
+ FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
+
+ /* wait for end of transfer */
+ time_left = wait_for_completion_timeout(&fep->mdio_done,
+ usecs_to_jiffies(FEC_MII_TIMEOUT));
+ if (time_left == 0) {
+ fep->mii_timeout = 1;
+ printk(KERN_ERR "FEC: MDIO read timeout\n");
+ return -ETIMEDOUT;
+ }
+
+ /* return value */
+ return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
+}
+
+static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
+ u16 value)
+{
+ struct fec_enet_private *fep = bus->priv;
+ unsigned long time_left;
+
+ fep->mii_timeout = 0;
+ init_completion(&fep->mdio_done);
+
+ /* start a write op */
+ writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
+ FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
+ FEC_MMFR_TA | FEC_MMFR_DATA(value),
+ fep->hwp + FEC_MII_DATA);
+
+ /* wait for end of transfer */
+ time_left = wait_for_completion_timeout(&fep->mdio_done,
+ usecs_to_jiffies(FEC_MII_TIMEOUT));
+ if (time_left == 0) {
+ fep->mii_timeout = 1;
+ printk(KERN_ERR "FEC: MDIO write timeout\n");
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+static int fec_enet_mdio_reset(struct mii_bus *bus)
+{
+ return 0;
+}
+
+static int fec_enet_mii_probe(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ struct phy_device *phy_dev = NULL;
+ char mdio_bus_id[MII_BUS_ID_SIZE];
+ char phy_name[MII_BUS_ID_SIZE + 3];
+ int phy_id;
+ int dev_id = fep->pdev->id;
+
+ fep->phy_dev = NULL;
+
+ /* check for attached phy */
+ for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
+ if ((fep->mii_bus->phy_mask & (1 << phy_id)))
+ continue;
+ if (fep->mii_bus->phy_map[phy_id] == NULL)
+ continue;
+ if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
+ continue;
+ if (dev_id--)
+ continue;
+ strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
+ break;
+ }
+
+ if (phy_id >= PHY_MAX_ADDR) {
+ printk(KERN_INFO "%s: no PHY, assuming direct connection "
+ "to switch\n", ndev->name);
+ strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
+ phy_id = 0;
+ }
+
+ snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
+ phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
+ PHY_INTERFACE_MODE_MII);
+ if (IS_ERR(phy_dev)) {
+ printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
+ return PTR_ERR(phy_dev);
+ }
+
+ /* mask with MAC supported features */
+ phy_dev->supported &= PHY_BASIC_FEATURES;
+ phy_dev->advertising = phy_dev->supported;
+
+ fep->phy_dev = phy_dev;
+ fep->link = 0;
+ fep->full_duplex = 0;
+
+ printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
+ "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
+ fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
+ fep->phy_dev->irq);
+
+ return 0;
+}
+
+static int fec_enet_mii_init(struct platform_device *pdev)
+{
+ static struct mii_bus *fec0_mii_bus;
+ struct net_device *ndev = platform_get_drvdata(pdev);
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ const struct platform_device_id *id_entry =
+ platform_get_device_id(fep->pdev);
+ int err = -ENXIO, i;
+
+ /*
+ * The dual fec interfaces are not equivalent with enet-mac.
+ * Here are the differences:
+ *
+ * - fec0 supports MII & RMII modes while fec1 only supports RMII
+ * - fec0 acts as the 1588 time master while fec1 is slave
+ * - external phys can only be configured by fec0
+ *
+ * That is to say fec1 can not work independently. It only works
+ * when fec0 is working. The reason behind this design is that the
+ * second interface is added primarily for Switch mode.
+ *
+ * Because of the last point above, both phys are attached on fec0
+ * mdio interface in board design, and need to be configured by
+ * fec0 mii_bus.
+ */
+ if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id) {
+ /* fec1 uses fec0 mii_bus */
+ fep->mii_bus = fec0_mii_bus;
+ return 0;
+ }
+
+ fep->mii_timeout = 0;
+
+ /*
+ * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
+ */
+ fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000) << 1;
+ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
+
+ fep->mii_bus = mdiobus_alloc();
+ if (fep->mii_bus == NULL) {
+ err = -ENOMEM;
+ goto err_out;
+ }
+
+ fep->mii_bus->name = "fec_enet_mii_bus";
+ fep->mii_bus->read = fec_enet_mdio_read;
+ fep->mii_bus->write = fec_enet_mdio_write;
+ fep->mii_bus->reset = fec_enet_mdio_reset;
+ snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
+ fep->mii_bus->priv = fep;
+ fep->mii_bus->parent = &pdev->dev;
+
+ fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
+ if (!fep->mii_bus->irq) {
+ err = -ENOMEM;
+ goto err_out_free_mdiobus;
+ }
+
+ for (i = 0; i < PHY_MAX_ADDR; i++)
+ fep->mii_bus->irq[i] = PHY_POLL;
+
+ if (mdiobus_register(fep->mii_bus))
+ goto err_out_free_mdio_irq;
+
+ /* save fec0 mii_bus */
+ if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
+ fec0_mii_bus = fep->mii_bus;
+
+ return 0;
+
+err_out_free_mdio_irq:
+ kfree(fep->mii_bus->irq);
+err_out_free_mdiobus:
+ mdiobus_free(fep->mii_bus);
+err_out:
+ return err;
+}
+
+static void fec_enet_mii_remove(struct fec_enet_private *fep)
+{
+ if (fep->phy_dev)
+ phy_disconnect(fep->phy_dev);
+ mdiobus_unregister(fep->mii_bus);
+ kfree(fep->mii_bus->irq);
+ mdiobus_free(fep->mii_bus);
+}
+
+static int fec_enet_get_settings(struct net_device *ndev,
+ struct ethtool_cmd *cmd)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ struct phy_device *phydev = fep->phy_dev;
+
+ if (!phydev)
+ return -ENODEV;
+
+ return phy_ethtool_gset(phydev, cmd);
+}
+
+static int fec_enet_set_settings(struct net_device *ndev,
+ struct ethtool_cmd *cmd)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ struct phy_device *phydev = fep->phy_dev;
+
+ if (!phydev)
+ return -ENODEV;
+
+ return phy_ethtool_sset(phydev, cmd);
+}
+
+static void fec_enet_get_drvinfo(struct net_device *ndev,
+ struct ethtool_drvinfo *info)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+
+ strcpy(info->driver, fep->pdev->dev.driver->name);
+ strcpy(info->version, "Revision: 1.0");
+ strcpy(info->bus_info, dev_name(&ndev->dev));
+}
+
+static struct ethtool_ops fec_enet_ethtool_ops = {
+ .get_settings = fec_enet_get_settings,
+ .set_settings = fec_enet_set_settings,
+ .get_drvinfo = fec_enet_get_drvinfo,
+ .get_link = ethtool_op_get_link,
+};
+
+static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ struct phy_device *phydev = fep->phy_dev;
+
+ if (!netif_running(ndev))
+ return -EINVAL;
+
+ if (!phydev)
+ return -ENODEV;
+
+ return phy_mii_ioctl(phydev, rq, cmd);
+}
+
+static void fec_enet_free_buffers(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ int i;
+ struct sk_buff *skb;
+ struct bufdesc *bdp;
+
+ bdp = fep->rx_bd_base;
+ for (i = 0; i < RX_RING_SIZE; i++) {
+ skb = fep->rx_skbuff[i];
+
+ if (bdp->cbd_bufaddr)
+ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
+ FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
+ if (skb)
+ dev_kfree_skb(skb);
+ bdp++;
+ }
+
+ bdp = fep->tx_bd_base;
+ for (i = 0; i < TX_RING_SIZE; i++)
+ kfree(fep->tx_bounce[i]);
+}
+
+static int fec_enet_alloc_buffers(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ int i;
+ struct sk_buff *skb;
+ struct bufdesc *bdp;
+
+ bdp = fep->rx_bd_base;
+ for (i = 0; i < RX_RING_SIZE; i++) {
+ skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
+ if (!skb) {
+ fec_enet_free_buffers(ndev);
+ return -ENOMEM;
+ }
+ fep->rx_skbuff[i] = skb;
+
+ bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
+ FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
+ bdp->cbd_sc = BD_ENET_RX_EMPTY;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap. */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ bdp = fep->tx_bd_base;
+ for (i = 0; i < TX_RING_SIZE; i++) {
+ fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
+
+ bdp->cbd_sc = 0;
+ bdp->cbd_bufaddr = 0;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap. */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ return 0;
+}
+
+static int
+fec_enet_open(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ int ret;
+
+ /* I should reset the ring buffers here, but I don't yet know
+ * a simple way to do that.
+ */
+
+ ret = fec_enet_alloc_buffers(ndev);
+ if (ret)
+ return ret;
+
+ /* Probe and connect to PHY when open the interface */
+ ret = fec_enet_mii_probe(ndev);
+ if (ret) {
+ fec_enet_free_buffers(ndev);
+ return ret;
+ }
+ phy_start(fep->phy_dev);
+ netif_start_queue(ndev);
+ fep->opened = 1;
+ return 0;
+}
+
+static int
+fec_enet_close(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+
+ /* Don't know what to do yet. */
+ fep->opened = 0;
+ netif_stop_queue(ndev);
+ fec_stop(ndev);
+
+ if (fep->phy_dev) {
+ phy_stop(fep->phy_dev);
+ phy_disconnect(fep->phy_dev);
+ }
+
+ fec_enet_free_buffers(ndev);
+
+ return 0;
+}
+
+/* Set or clear the multicast filter for this adaptor.
+ * Skeleton taken from sunlance driver.
+ * The CPM Ethernet implementation allows Multicast as well as individual
+ * MAC address filtering. Some of the drivers check to make sure it is
+ * a group multicast address, and discard those that are not. I guess I
+ * will do the same for now, but just remove the test if you want
+ * individual filtering as well (do the upper net layers want or support
+ * this kind of feature?).
+ */
+
+#define HASH_BITS 6 /* #bits in hash */
+#define CRC32_POLY 0xEDB88320
+
+static void set_multicast_list(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ struct netdev_hw_addr *ha;
+ unsigned int i, bit, data, crc, tmp;
+ unsigned char hash;
+
+ if (ndev->flags & IFF_PROMISC) {
+ tmp = readl(fep->hwp + FEC_R_CNTRL);
+ tmp |= 0x8;
+ writel(tmp, fep->hwp + FEC_R_CNTRL);
+ return;
+ }
+
+ tmp = readl(fep->hwp + FEC_R_CNTRL);
+ tmp &= ~0x8;
+ writel(tmp, fep->hwp + FEC_R_CNTRL);
+
+ if (ndev->flags & IFF_ALLMULTI) {
+ /* Catch all multicast addresses, so set the
+ * filter to all 1's
+ */
+ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
+ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
+
+ return;
+ }
+
+ /* Clear filter and add the addresses in hash register
+ */
+ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
+ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
+
+ netdev_for_each_mc_addr(ha, ndev) {
+ /* calculate crc32 value of mac address */
+ crc = 0xffffffff;
+
+ for (i = 0; i < ndev->addr_len; i++) {
+ data = ha->addr[i];
+ for (bit = 0; bit < 8; bit++, data >>= 1) {
+ crc = (crc >> 1) ^
+ (((crc ^ data) & 1) ? CRC32_POLY : 0);
+ }
+ }
+
+ /* only upper 6 bits (HASH_BITS) are used
+ * which point to specific bit in he hash registers
+ */
+ hash = (crc >> (32 - HASH_BITS)) & 0x3f;
+
+ if (hash > 31) {
+ tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
+ tmp |= 1 << (hash - 32);
+ writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
+ } else {
+ tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
+ tmp |= 1 << hash;
+ writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
+ }
+ }
+}
+
+/* Set a MAC change in hardware. */
+static int
+fec_set_mac_address(struct net_device *ndev, void *p)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ struct sockaddr *addr = p;
+
+ if (!is_valid_ether_addr(addr->sa_data))
+ return -EADDRNOTAVAIL;
+
+ memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
+
+ writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
+ (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
+ fep->hwp + FEC_ADDR_LOW);
+ writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
+ fep->hwp + FEC_ADDR_HIGH);
+ return 0;
+}
+
+static const struct net_device_ops fec_netdev_ops = {
+ .ndo_open = fec_enet_open,
+ .ndo_stop = fec_enet_close,
+ .ndo_start_xmit = fec_enet_start_xmit,
+ .ndo_set_multicast_list = set_multicast_list,
+ .ndo_change_mtu = eth_change_mtu,
+ .ndo_validate_addr = eth_validate_addr,
+ .ndo_tx_timeout = fec_timeout,
+ .ndo_set_mac_address = fec_set_mac_address,
+ .ndo_do_ioctl = fec_enet_ioctl,
+};
+
+ /*
+ * XXX: We need to clean up on failure exits here.
+ *
+ */
+static int fec_enet_init(struct net_device *ndev)
+{
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ struct bufdesc *cbd_base;
+ struct bufdesc *bdp;
+ int i;
+
+ /* Allocate memory for buffer descriptors. */
+ cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
+ GFP_KERNEL);
+ if (!cbd_base) {
+ printk("FEC: allocate descriptor memory failed?\n");
+ return -ENOMEM;
+ }
+
+ spin_lock_init(&fep->hw_lock);
+
+ fep->netdev = ndev;
+
+ /* Get the Ethernet address */
+ fec_get_mac(ndev);
+
+ /* Set receive and transmit descriptor base. */
+ fep->rx_bd_base = cbd_base;
+ fep->tx_bd_base = cbd_base + RX_RING_SIZE;
+
+ /* The FEC Ethernet specific entries in the device structure */
+ ndev->watchdog_timeo = TX_TIMEOUT;
+ ndev->netdev_ops = &fec_netdev_ops;
+ ndev->ethtool_ops = &fec_enet_ethtool_ops;
+
+ /* Initialize the receive buffer descriptors. */
+ bdp = fep->rx_bd_base;
+ for (i = 0; i < RX_RING_SIZE; i++) {
+
+ /* Initialize the BD for every fragment in the page. */
+ bdp->cbd_sc = 0;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ /* ...and the same for transmit */
+ bdp = fep->tx_bd_base;
+ for (i = 0; i < TX_RING_SIZE; i++) {
+
+ /* Initialize the BD for every fragment in the page. */
+ bdp->cbd_sc = 0;
+ bdp->cbd_bufaddr = 0;
+ bdp++;
+ }
+
+ /* Set the last buffer to wrap */
+ bdp--;
+ bdp->cbd_sc |= BD_SC_WRAP;
+
+ fec_restart(ndev, 0);
+
+ return 0;
+}
+
+#ifdef CONFIG_OF
+static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
+{
+ struct device_node *np = pdev->dev.of_node;
+
+ if (np)
+ return of_get_phy_mode(np);
+
+ return -ENODEV;
+}
+
+static int __devinit fec_reset_phy(struct platform_device *pdev)
+{
+ int err, phy_reset;
+ struct device_node *np = pdev->dev.of_node;
+
+ if (!np)
+ return -ENODEV;
+
+ phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
+ err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
+ if (err) {
+ pr_warn("FEC: failed to get gpio phy-reset: %d\n", err);
+ return err;
+ }
+ msleep(1);
+ gpio_set_value(phy_reset, 1);
+
+ return 0;
+}
+#else /* CONFIG_OF */
+static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
+{
+ return -ENODEV;
+}
+
+static inline int fec_reset_phy(struct platform_device *pdev)
+{
+ /*
+ * In case of platform probe, the reset has been done
+ * by machine code.
+ */
+ return 0;
+}
+#endif /* CONFIG_OF */
+
+static int __devinit
+fec_probe(struct platform_device *pdev)
+{
+ struct fec_enet_private *fep;
+ struct fec_platform_data *pdata;
+ struct net_device *ndev;
+ int i, irq, ret = 0;
+ struct resource *r;
+ const struct of_device_id *of_id;
+
+ of_id = of_match_device(fec_dt_ids, &pdev->dev);
+ if (of_id)
+ pdev->id_entry = of_id->data;
+
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!r)
+ return -ENXIO;
+
+ r = request_mem_region(r->start, resource_size(r), pdev->name);
+ if (!r)
+ return -EBUSY;
+
+ /* Init network device */
+ ndev = alloc_etherdev(sizeof(struct fec_enet_private));
+ if (!ndev) {
+ ret = -ENOMEM;
+ goto failed_alloc_etherdev;
+ }
+
+ SET_NETDEV_DEV(ndev, &pdev->dev);
+
+ /* setup board info structure */
+ fep = netdev_priv(ndev);
+
+ fep->hwp = ioremap(r->start, resource_size(r));
+ fep->pdev = pdev;
+
+ if (!fep->hwp) {
+ ret = -ENOMEM;
+ goto failed_ioremap;
+ }
+
+ platform_set_drvdata(pdev, ndev);
+
+ ret = fec_get_phy_mode_dt(pdev);
+ if (ret < 0) {
+ pdata = pdev->dev.platform_data;
+ if (pdata)
+ fep->phy_interface = pdata->phy;
+ else
+ fep->phy_interface = PHY_INTERFACE_MODE_MII;
+ } else {
+ fep->phy_interface = ret;
+ }
+
+ fec_reset_phy(pdev);
+
+ /* This device has up to three irqs on some platforms */
+ for (i = 0; i < 3; i++) {
+ irq = platform_get_irq(pdev, i);
+ if (i && irq < 0)
+ break;
+ ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
+ if (ret) {
+ while (--i >= 0) {
+ irq = platform_get_irq(pdev, i);
+ free_irq(irq, ndev);
+ }
+ goto failed_irq;
+ }
+ }
+
+ fep->clk = clk_get(&pdev->dev, "fec_clk");
+ if (IS_ERR(fep->clk)) {
+ ret = PTR_ERR(fep->clk);
+ goto failed_clk;
+ }
+ clk_enable(fep->clk);
+
+ ret = fec_enet_init(ndev);
+ if (ret)
+ goto failed_init;
+
+ ret = fec_enet_mii_init(pdev);
+ if (ret)
+ goto failed_mii_init;
+
+ /* Carrier starts down, phylib will bring it up */
+ netif_carrier_off(ndev);
+
+ ret = register_netdev(ndev);
+ if (ret)
+ goto failed_register;
+
+ return 0;
+
+failed_register:
+ fec_enet_mii_remove(fep);
+failed_mii_init:
+failed_init:
+ clk_disable(fep->clk);
+ clk_put(fep->clk);
+failed_clk:
+ for (i = 0; i < 3; i++) {
+ irq = platform_get_irq(pdev, i);
+ if (irq > 0)
+ free_irq(irq, ndev);
+ }
+failed_irq:
+ iounmap(fep->hwp);
+failed_ioremap:
+ free_netdev(ndev);
+failed_alloc_etherdev:
+ release_mem_region(r->start, resource_size(r));
+
+ return ret;
+}
+
+static int __devexit
+fec_drv_remove(struct platform_device *pdev)
+{
+ struct net_device *ndev = platform_get_drvdata(pdev);
+ struct fec_enet_private *fep = netdev_priv(ndev);
+ struct resource *r;
+
+ fec_stop(ndev);
+ fec_enet_mii_remove(fep);
+ clk_disable(fep->clk);
+ clk_put(fep->clk);
+ iounmap(fep->hwp);
+ unregister_netdev(ndev);
+ free_netdev(ndev);
+
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ BUG_ON(!r);
+ release_mem_region(r->start, resource_size(r));
+
+ platform_set_drvdata(pdev, NULL);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int
+fec_suspend(struct device *dev)
+{
+ struct net_device *ndev = dev_get_drvdata(dev);
+ struct fec_enet_private *fep = netdev_priv(ndev);
+
+ if (netif_running(ndev)) {
+ fec_stop(ndev);
+ netif_device_detach(ndev);
+ }
+ clk_disable(fep->clk);
+
+ return 0;
+}
+
+static int
+fec_resume(struct device *dev)
+{
+ struct net_device *ndev = dev_get_drvdata(dev);
+ struct fec_enet_private *fep = netdev_priv(ndev);
+
+ clk_enable(fep->clk);
+ if (netif_running(ndev)) {
+ fec_restart(ndev, fep->full_duplex);
+ netif_device_attach(ndev);
+ }
+
+ return 0;
+}
+
+static const struct dev_pm_ops fec_pm_ops = {
+ .suspend = fec_suspend,
+ .resume = fec_resume,
+ .freeze = fec_suspend,
+ .thaw = fec_resume,
+ .poweroff = fec_suspend,
+ .restore = fec_resume,
+};
+#endif
+
+static struct platform_driver fec_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ .owner = THIS_MODULE,
+#ifdef CONFIG_PM
+ .pm = &fec_pm_ops,
+#endif
+ .of_match_table = fec_dt_ids,
+ },
+ .id_table = fec_devtype,
+ .probe = fec_probe,
+ .remove = __devexit_p(fec_drv_remove),
+};
+
+static int __init
+fec_enet_module_init(void)
+{
+ printk(KERN_INFO "FEC Ethernet Driver\n");
+
+ return platform_driver_register(&fec_driver);
+}
+
+static void __exit
+fec_enet_cleanup(void)
+{
+ platform_driver_unregister(&fec_driver);
+}
+
+module_exit(fec_enet_cleanup);
+module_init(fec_enet_module_init);
+
+MODULE_LICENSE("GPL");
OpenPOWER on IntegriCloud