summaryrefslogtreecommitdiffstats
path: root/Documentation/virtual/kvm
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/virtual/kvm')
-rw-r--r--Documentation/virtual/kvm/00-INDEX2
-rw-r--r--Documentation/virtual/kvm/api.txt16
-rw-r--r--Documentation/virtual/kvm/halt-polling.txt127
-rw-r--r--Documentation/virtual/kvm/locking.txt12
-rw-r--r--Documentation/virtual/kvm/msr.txt9
-rw-r--r--Documentation/virtual/kvm/review-checklist.txt4
6 files changed, 165 insertions, 5 deletions
diff --git a/Documentation/virtual/kvm/00-INDEX b/Documentation/virtual/kvm/00-INDEX
index fee9f2bf9c64..69fe1a8b7ad1 100644
--- a/Documentation/virtual/kvm/00-INDEX
+++ b/Documentation/virtual/kvm/00-INDEX
@@ -6,6 +6,8 @@ cpuid.txt
- KVM-specific cpuid leaves (x86).
devices/
- KVM_CAP_DEVICE_CTRL userspace API.
+halt-polling.txt
+ - notes on halt-polling
hypercalls.txt
- KVM hypercalls.
locking.txt
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index 739db9ab16b2..03145b7cafaa 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -777,6 +777,17 @@ Gets the current timestamp of kvmclock as seen by the current guest. In
conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
such as migration.
+When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
+set of bits that KVM can return in struct kvm_clock_data's flag member.
+
+The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned
+value is the exact kvmclock value seen by all VCPUs at the instant
+when KVM_GET_CLOCK was called. If clear, the returned value is simply
+CLOCK_MONOTONIC plus a constant offset; the offset can be modified
+with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock,
+but the exact value read by each VCPU could differ, because the host
+TSC is not stable.
+
struct kvm_clock_data {
__u64 clock; /* kvmclock current value */
__u32 flags;
@@ -2023,6 +2034,8 @@ registers, find a list below:
PPC | KVM_REG_PPC_WORT | 64
PPC | KVM_REG_PPC_SPRG9 | 64
PPC | KVM_REG_PPC_DBSR | 32
+ PPC | KVM_REG_PPC_TIDR | 64
+ PPC | KVM_REG_PPC_PSSCR | 64
PPC | KVM_REG_PPC_TM_GPR0 | 64
...
PPC | KVM_REG_PPC_TM_GPR31 | 64
@@ -2039,6 +2052,7 @@ registers, find a list below:
PPC | KVM_REG_PPC_TM_VSCR | 32
PPC | KVM_REG_PPC_TM_DSCR | 64
PPC | KVM_REG_PPC_TM_TAR | 64
+ PPC | KVM_REG_PPC_TM_XER | 64
| |
MIPS | KVM_REG_MIPS_R0 | 64
...
@@ -2198,7 +2212,7 @@ after pausing the vcpu, but before it is resumed.
4.71 KVM_SIGNAL_MSI
Capability: KVM_CAP_SIGNAL_MSI
-Architectures: x86 arm64
+Architectures: x86 arm arm64
Type: vm ioctl
Parameters: struct kvm_msi (in)
Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
diff --git a/Documentation/virtual/kvm/halt-polling.txt b/Documentation/virtual/kvm/halt-polling.txt
new file mode 100644
index 000000000000..4a8418318769
--- /dev/null
+++ b/Documentation/virtual/kvm/halt-polling.txt
@@ -0,0 +1,127 @@
+The KVM halt polling system
+===========================
+
+The KVM halt polling system provides a feature within KVM whereby the latency
+of a guest can, under some circumstances, be reduced by polling in the host
+for some time period after the guest has elected to no longer run by cedeing.
+That is, when a guest vcpu has ceded, or in the case of powerpc when all of the
+vcpus of a single vcore have ceded, the host kernel polls for wakeup conditions
+before giving up the cpu to the scheduler in order to let something else run.
+
+Polling provides a latency advantage in cases where the guest can be run again
+very quickly by at least saving us a trip through the scheduler, normally on
+the order of a few micro-seconds, although performance benefits are workload
+dependant. In the event that no wakeup source arrives during the polling
+interval or some other task on the runqueue is runnable the scheduler is
+invoked. Thus halt polling is especially useful on workloads with very short
+wakeup periods where the time spent halt polling is minimised and the time
+savings of not invoking the scheduler are distinguishable.
+
+The generic halt polling code is implemented in:
+
+ virt/kvm/kvm_main.c: kvm_vcpu_block()
+
+The powerpc kvm-hv specific case is implemented in:
+
+ arch/powerpc/kvm/book3s_hv.c: kvmppc_vcore_blocked()
+
+Halt Polling Interval
+=====================
+
+The maximum time for which to poll before invoking the scheduler, referred to
+as the halt polling interval, is increased and decreased based on the perceived
+effectiveness of the polling in an attempt to limit pointless polling.
+This value is stored in either the vcpu struct:
+
+ kvm_vcpu->halt_poll_ns
+
+or in the case of powerpc kvm-hv, in the vcore struct:
+
+ kvmppc_vcore->halt_poll_ns
+
+Thus this is a per vcpu (or vcore) value.
+
+During polling if a wakeup source is received within the halt polling interval,
+the interval is left unchanged. In the event that a wakeup source isn't
+received during the polling interval (and thus schedule is invoked) there are
+two options, either the polling interval and total block time[0] were less than
+the global max polling interval (see module params below), or the total block
+time was greater than the global max polling interval.
+
+In the event that both the polling interval and total block time were less than
+the global max polling interval then the polling interval can be increased in
+the hope that next time during the longer polling interval the wake up source
+will be received while the host is polling and the latency benefits will be
+received. The polling interval is grown in the function grow_halt_poll_ns() and
+is multiplied by the module parameter halt_poll_ns_grow.
+
+In the event that the total block time was greater than the global max polling
+interval then the host will never poll for long enough (limited by the global
+max) to wakeup during the polling interval so it may as well be shrunk in order
+to avoid pointless polling. The polling interval is shrunk in the function
+shrink_halt_poll_ns() and is divided by the module parameter
+halt_poll_ns_shrink, or set to 0 iff halt_poll_ns_shrink == 0.
+
+It is worth noting that this adjustment process attempts to hone in on some
+steady state polling interval but will only really do a good job for wakeups
+which come at an approximately constant rate, otherwise there will be constant
+adjustment of the polling interval.
+
+[0] total block time: the time between when the halt polling function is
+ invoked and a wakeup source received (irrespective of
+ whether the scheduler is invoked within that function).
+
+Module Parameters
+=================
+
+The kvm module has 3 tuneable module parameters to adjust the global max
+polling interval as well as the rate at which the polling interval is grown and
+shrunk. These variables are defined in include/linux/kvm_host.h and as module
+parameters in virt/kvm/kvm_main.c, or arch/powerpc/kvm/book3s_hv.c in the
+powerpc kvm-hv case.
+
+Module Parameter | Description | Default Value
+--------------------------------------------------------------------------------
+halt_poll_ns | The global max polling interval | KVM_HALT_POLL_NS_DEFAULT
+ | which defines the ceiling value |
+ | of the polling interval for | (per arch value)
+ | each vcpu. |
+--------------------------------------------------------------------------------
+halt_poll_ns_grow | The value by which the halt | 2
+ | polling interval is multiplied |
+ | in the grow_halt_poll_ns() |
+ | function. |
+--------------------------------------------------------------------------------
+halt_poll_ns_shrink | The value by which the halt | 0
+ | polling interval is divided in |
+ | the shrink_halt_poll_ns() |
+ | function. |
+--------------------------------------------------------------------------------
+
+These module parameters can be set from the debugfs files in:
+
+ /sys/module/kvm/parameters/
+
+Note: that these module parameters are system wide values and are not able to
+ be tuned on a per vm basis.
+
+Further Notes
+=============
+
+- Care should be taken when setting the halt_poll_ns module parameter as a
+large value has the potential to drive the cpu usage to 100% on a machine which
+would be almost entirely idle otherwise. This is because even if a guest has
+wakeups during which very little work is done and which are quite far apart, if
+the period is shorter than the global max polling interval (halt_poll_ns) then
+the host will always poll for the entire block time and thus cpu utilisation
+will go to 100%.
+
+- Halt polling essentially presents a trade off between power usage and latency
+and the module parameters should be used to tune the affinity for this. Idle
+cpu time is essentially converted to host kernel time with the aim of decreasing
+latency when entering the guest.
+
+- Halt polling will only be conducted by the host when no other tasks are
+runnable on that cpu, otherwise the polling will cease immediately and
+schedule will be invoked to allow that other task to run. Thus this doesn't
+allow a guest to denial of service the cpu.
diff --git a/Documentation/virtual/kvm/locking.txt b/Documentation/virtual/kvm/locking.txt
index f2491a8c68b4..e5dd9f4d6100 100644
--- a/Documentation/virtual/kvm/locking.txt
+++ b/Documentation/virtual/kvm/locking.txt
@@ -4,7 +4,17 @@ KVM Lock Overview
1. Acquisition Orders
---------------------
-(to be written)
+The acquisition orders for mutexes are as follows:
+
+- kvm->lock is taken outside vcpu->mutex
+
+- kvm->lock is taken outside kvm->slots_lock and kvm->irq_lock
+
+- kvm->slots_lock is taken outside kvm->irq_lock, though acquiring
+ them together is quite rare.
+
+For spinlocks, kvm_lock is taken outside kvm->mmu_lock. Everything
+else is a leaf: no other lock is taken inside the critical sections.
2: Exception
------------
diff --git a/Documentation/virtual/kvm/msr.txt b/Documentation/virtual/kvm/msr.txt
index 2a71c8f29f68..0a9ea515512a 100644
--- a/Documentation/virtual/kvm/msr.txt
+++ b/Documentation/virtual/kvm/msr.txt
@@ -208,7 +208,9 @@ MSR_KVM_STEAL_TIME: 0x4b564d03
__u64 steal;
__u32 version;
__u32 flags;
- __u32 pad[12];
+ __u8 preempted;
+ __u8 u8_pad[3];
+ __u32 pad[11];
}
whose data will be filled in by the hypervisor periodically. Only one
@@ -232,6 +234,11 @@ MSR_KVM_STEAL_TIME: 0x4b564d03
nanoseconds. Time during which the vcpu is idle, will not be
reported as steal time.
+ preempted: indicate the vCPU who owns this struct is running or
+ not. Non-zero values mean the vCPU has been preempted. Zero
+ means the vCPU is not preempted. NOTE, it is always zero if the
+ the hypervisor doesn't support this field.
+
MSR_KVM_EOI_EN: 0x4b564d04
data: Bit 0 is 1 when PV end of interrupt is enabled on the vcpu; 0
when disabled. Bit 1 is reserved and must be zero. When PV end of
diff --git a/Documentation/virtual/kvm/review-checklist.txt b/Documentation/virtual/kvm/review-checklist.txt
index a850986ed684..a83b27635fdd 100644
--- a/Documentation/virtual/kvm/review-checklist.txt
+++ b/Documentation/virtual/kvm/review-checklist.txt
@@ -1,8 +1,8 @@
Review checklist for kvm patches
================================
-1. The patch must follow Documentation/CodingStyle and
- Documentation/SubmittingPatches.
+1. The patch must follow Documentation/process/coding-style.rst and
+ Documentation/process/submitting-patches.rst.
2. Patches should be against kvm.git master branch.
OpenPOWER on IntegriCloud