summaryrefslogtreecommitdiffstats
path: root/Documentation/security
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/security')
-rw-r--r--Documentation/security/IMA-templates.rst7
-rw-r--r--Documentation/security/keys/core.rst217
-rw-r--r--Documentation/security/keys/request-key.rst57
3 files changed, 193 insertions, 88 deletions
diff --git a/Documentation/security/IMA-templates.rst b/Documentation/security/IMA-templates.rst
index 2cd0e273cc9a..3d1cca287aa4 100644
--- a/Documentation/security/IMA-templates.rst
+++ b/Documentation/security/IMA-templates.rst
@@ -69,15 +69,16 @@ descriptors by adding their identifier to the format string
algorithm (field format: [<hash algo>:]digest, where the digest
prefix is shown only if the hash algorithm is not SHA1 or MD5);
- 'n-ng': the name of the event, without size limitations;
- - 'sig': the file signature.
+ - 'sig': the file signature;
+ - 'buf': the buffer data that was used to generate the hash without size limitations;
Below, there is the list of defined template descriptors:
- "ima": its format is ``d|n``;
- "ima-ng" (default): its format is ``d-ng|n-ng``;
- - "ima-sig": its format is ``d-ng|n-ng|sig``.
-
+ - "ima-sig": its format is ``d-ng|n-ng|sig``;
+ - "ima-buf": its format is ``d-ng|n-ng|buf``;
Use
diff --git a/Documentation/security/keys/core.rst b/Documentation/security/keys/core.rst
index 9521c4207f01..1b3c907980ad 100644
--- a/Documentation/security/keys/core.rst
+++ b/Documentation/security/keys/core.rst
@@ -57,9 +57,9 @@ Each key has a number of attributes:
type provides an operation to perform a match between the description on a
key and a criterion string.
- * Each key has an owner user ID, a group ID and a permissions mask. These
- are used to control what a process may do to a key from userspace, and
- whether a kernel service will be able to find the key.
+ * Each key has an owner user ID, a group ID and an ACL. These are used to
+ control what a process may do to a key from userspace, and whether a
+ kernel service will be able to find the key.
* Each key can be set to expire at a specific time by the key type's
instantiation function. Keys can also be immortal.
@@ -198,43 +198,110 @@ The key service provides a number of features besides keys:
Key Access Permissions
======================
-Keys have an owner user ID, a group access ID, and a permissions mask. The mask
-has up to eight bits each for possessor, user, group and other access. Only
-six of each set of eight bits are defined. These permissions granted are:
+Keys have an owner user ID, a group ID and an ACL. The ACL is made up of a
+sequence of ACEs that each contain three elements:
- * View
+ * The type of subject.
+ * The subject.
- This permits a key or keyring's attributes to be viewed - including key
- type and description.
+ These two together indicate the subject to whom the permits are granted.
+ The type can be one of:
- * Read
+ * ``KEY_ACE_SUBJ_STANDARD``
- This permits a key's payload to be viewed or a keyring's list of linked
- keys.
+ The subject is a standard 'macro' type. The subject can be one of:
+
+ * ``KEY_ACE_EVERYONE``
+
+ The permits are granted to everyone. It replaces the old 'other'
+ type on the assumption that you wouldn't grant a permission to other
+ that you you wouldn't grant to everyone else.
+
+ * ``KEY_ACE_OWNER``
+
+ The permits are granted to the owner of the key (key->uid).
+
+ * ``KEY_ACE_GROUP``
+
+ The permits are granted to the key's group (key->gid).
+
+ * ``KEY_ACE_POSSESSOR``
+
+ The permits are granted to anyone who possesses the key.
+
+ * The set of permits granted to the subject. These include:
+
+ * ``KEY_ACE_VIEW``
+
+ This permits a key or keyring's attributes to be viewed - including the
+ key type and description.
+
+ * ``KEY_ACE_READ``
+
+ This permits a key's payload to be viewed or a keyring's list of linked
+ keys.
+
+ * ``KEY_ACE_WRITE``
+
+ This permits a key's payload to be instantiated or updated, or it allows
+ a link to be added to or removed from a keyring.
+
+ * ``KEY_ACE_SEARCH``
+
+ This permits keyrings to be searched and keys to be found. Searches can
+ only recurse into nested keyrings that have search permission set.
+
+ * ``KEY_ACE_LINK``
+
+ This permits a key or keyring to be linked to. To create a link from a
+ keyring to a key, a process must have Write permission on the keyring
+ and Link permission on the key.
+
+ * ``KEY_ACE_SET_SECURITY``
+
+ This permits a key's UID, GID and permissions mask to be changed.
- * Write
+ * ``KEY_ACE_INVAL``
- This permits a key's payload to be instantiated or updated, or it allows a
- link to be added to or removed from a keyring.
+ This permits a key to be invalidated with KEYCTL_INVALIDATE.
- * Search
+ * ``KEY_ACE_REVOKE``
- This permits keyrings to be searched and keys to be found. Searches can
- only recurse into nested keyrings that have search permission set.
+ This permits a key to be revoked with KEYCTL_REVOKE.
- * Link
+ * ``KEY_ACE_JOIN``
- This permits a key or keyring to be linked to. To create a link from a
- keyring to a key, a process must have Write permission on the keyring and
- Link permission on the key.
+ This permits a keyring to be joined as a session by
+ KEYCTL_JOIN_SESSION_KEYRING or KEYCTL_SESSION_TO_PARENT.
- * Set Attribute
+ * ``KEY_ACE_CLEAR``
- This permits a key's UID, GID and permissions mask to be changed.
+ This permits a keyring to be cleared.
For changing the ownership, group ID or permissions mask, being the owner of
the key or having the sysadmin capability is sufficient.
+The legacy KEYCTL_SETPERM and KEYCTL_DESCRIBE functions can only see/generate
+View, Read, Write, Search, Link and SetAttr permits, and do this for each of
+possessor, user, group and other permission sets as a 32-bit flag mask. These
+will be approximated/inferred:
+
+ SETPERM Permit Implied ACE Permit
+ =============== =======================
+ Search Inval, Join
+ Write Revoke, Clear
+ Setattr Set Security, Revoke
+
+ ACE Permit Described as
+ =============== =======================
+ Inval Search
+ Join Search
+ Revoke Write (unless Setattr)
+ Clear write
+ Set Security Setattr
+
+'Other' will be approximated as/inferred from the 'Everyone' subject.
+
SELinux Support
===============
@@ -433,6 +500,10 @@ The main syscalls are:
/sbin/request-key will be invoked in an attempt to obtain a key. The
callout_info string will be passed as an argument to the program.
+ To link a key into the destination keyring the key must grant link
+ permission on the key to the caller and the keyring must grant write
+ permission.
+
See also Documentation/security/keys/request-key.rst.
@@ -577,6 +648,27 @@ The keyctl syscall functions are:
added.
+ * Move a key from one keyring to another::
+
+ long keyctl(KEYCTL_MOVE,
+ key_serial_t id,
+ key_serial_t from_ring_id,
+ key_serial_t to_ring_id,
+ unsigned int flags);
+
+ Move the key specified by "id" from the keyring specified by
+ "from_ring_id" to the keyring specified by "to_ring_id". If the two
+ keyrings are the same, nothing is done.
+
+ "flags" can have KEYCTL_MOVE_EXCL set in it to cause the operation to fail
+ with EEXIST if a matching key exists in the destination keyring, otherwise
+ such a key will be replaced.
+
+ A process must have link permission on the key for this function to be
+ successful and write permission on both keyrings. Any errors that can
+ occur from KEYCTL_LINK also apply on the destination keyring here.
+
+
* Unlink a key or keyring from another keyring::
long keyctl(KEYCTL_UNLINK, key_serial_t keyring, key_serial_t key);
@@ -1059,7 +1151,8 @@ payload contents" for more information.
struct key *request_key(const struct key_type *type,
const char *description,
- const char *callout_info);
+ const char *callout_info,
+ struct key_acl *acl);
This is used to request a key or keyring with a description that matches
the description specified according to the key type's match_preparse()
@@ -1074,52 +1167,50 @@ payload contents" for more information.
If successful, the key will have been attached to the default keyring for
implicitly obtained request-key keys, as set by KEYCTL_SET_REQKEY_KEYRING.
+ If a key is created, it will be given the specified ACL.
+
See also Documentation/security/keys/request-key.rst.
+ * To search for a key in a specific domain, call:
+
+ struct key *request_key_tag(const struct key_type *type,
+ const char *description,
+ struct key_tag *domain_tag,
+ const char *callout_info,
+ struct key_acl *acl);
+
+ This is identical to request_key(), except that a domain tag may be
+ specifies that causes search algorithm to only match keys matching that
+ tag. The domain_tag may be NULL, specifying a global domain that is
+ separate from any nominated domain.
+
+
* To search for a key, passing auxiliary data to the upcaller, call::
struct key *request_key_with_auxdata(const struct key_type *type,
const char *description,
+ struct key_tag *domain_tag,
const void *callout_info,
size_t callout_len,
- void *aux);
-
- This is identical to request_key(), except that the auxiliary data is
- passed to the key_type->request_key() op if it exists, and the callout_info
- is a blob of length callout_len, if given (the length may be 0).
-
-
- * A key can be requested asynchronously by calling one of::
-
- struct key *request_key_async(const struct key_type *type,
- const char *description,
- const void *callout_info,
- size_t callout_len);
-
- or::
-
- struct key *request_key_async_with_auxdata(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len,
- void *aux);
+ void *aux,
+ struct key_acl *acl);
- which are asynchronous equivalents of request_key() and
- request_key_with_auxdata() respectively.
+ This is identical to request_key_tag(), except that the auxiliary data is
+ passed to the key_type->request_key() op if it exists, and the
+ callout_info is a blob of length callout_len, if given (the length may be
+ 0).
- These two functions return with the key potentially still under
- construction. To wait for construction completion, the following should be
- called::
- int wait_for_key_construction(struct key *key, bool intr);
+ * To search for a key under RCU conditions, call::
- The function will wait for the key to finish being constructed and then
- invokes key_validate() to return an appropriate value to indicate the state
- of the key (0 indicates the key is usable).
+ struct key *request_key_rcu(const struct key_type *type,
+ const char *description,
+ struct key_tag *domain_tag);
- If intr is true, then the wait can be interrupted by a signal, in which
- case error ERESTARTSYS will be returned.
+ which is similar to request_key_tag() except that it does not check for
+ keys that are under construction and it will not call out to userspace to
+ construct a key if it can't find a match.
* When it is no longer required, the key should be released using::
@@ -1159,11 +1250,13 @@ payload contents" for more information.
key_ref_t keyring_search(key_ref_t keyring_ref,
const struct key_type *type,
- const char *description)
+ const char *description,
+ bool recurse)
- This searches the keyring tree specified for a matching key. Error ENOKEY
- is returned upon failure (use IS_ERR/PTR_ERR to determine). If successful,
- the returned key will need to be released.
+ This searches the specified keyring only (recurse == false) or keyring tree
+ (recurse == true) specified for a matching key. Error ENOKEY is returned
+ upon failure (use IS_ERR/PTR_ERR to determine). If successful, the returned
+ key will need to be released.
The possession attribute from the keyring reference is used to control
access through the permissions mask and is propagated to the returned key
@@ -1174,7 +1267,7 @@ payload contents" for more information.
struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid,
const struct cred *cred,
- key_perm_t perm,
+ struct key_acl *acl,
struct key_restriction *restrict_link,
unsigned long flags,
struct key *dest);
diff --git a/Documentation/security/keys/request-key.rst b/Documentation/security/keys/request-key.rst
index 600ad67d1707..f356fd06c8d5 100644
--- a/Documentation/security/keys/request-key.rst
+++ b/Documentation/security/keys/request-key.rst
@@ -11,30 +11,32 @@ The process starts by either the kernel requesting a service by calling
struct key *request_key(const struct key_type *type,
const char *description,
- const char *callout_info);
+ const char *callout_info,
+ struct key_acl *acl);
+
+or::
+
+ struct key *request_key_tag(const struct key_type *type,
+ const char *description,
+ const struct key_tag *domain_tag,
+ const char *callout_info,
+ struct key_acl *acl);
or::
struct key *request_key_with_auxdata(const struct key_type *type,
const char *description,
+ const struct key_tag *domain_tag,
const char *callout_info,
size_t callout_len,
- void *aux);
+ void *aux,
+ struct key_acl *acl);
or::
- struct key *request_key_async(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len);
-
-or::
-
- struct key *request_key_async_with_auxdata(const struct key_type *type,
- const char *description,
- const char *callout_info,
- size_t callout_len,
- void *aux);
+ struct key *request_key_rcu(const struct key_type *type,
+ const char *description,
+ const struct key_tag *domain_tag);
Or by userspace invoking the request_key system call::
@@ -48,14 +50,18 @@ does not need to link the key to a keyring to prevent it from being immediately
destroyed. The kernel interface returns a pointer directly to the key, and
it's up to the caller to destroy the key.
-The request_key*_with_auxdata() calls are like the in-kernel request_key*()
-calls, except that they permit auxiliary data to be passed to the upcaller (the
-default is NULL). This is only useful for those key types that define their
-own upcall mechanism rather than using /sbin/request-key.
+The request_key_tag() call is like the in-kernel request_key(), except that it
+also takes a domain tag that allows keys to be separated by namespace and
+killed off as a group.
+
+The request_key_with_auxdata() calls is like the request_key_tag() call, except
+that they permit auxiliary data to be passed to the upcaller (the default is
+NULL). This is only useful for those key types that define their own upcall
+mechanism rather than using /sbin/request-key.
-The two async in-kernel calls may return keys that are still in the process of
-being constructed. The two non-async ones will wait for construction to
-complete first.
+The request_key_rcu() call is like the request_key_tag() call, except that it
+doesn't check for keys that are under construction and doesn't attempt to
+construct missing keys.
The userspace interface links the key to a keyring associated with the process
to prevent the key from going away, and returns the serial number of the key to
@@ -148,7 +154,7 @@ The Search Algorithm
A search of any particular keyring proceeds in the following fashion:
- 1) When the key management code searches for a key (keyring_search_aux) it
+ 1) When the key management code searches for a key (keyring_search_rcu) it
firstly calls key_permission(SEARCH) on the keyring it's starting with,
if this denies permission, it doesn't search further.
@@ -167,6 +173,9 @@ The process stops immediately a valid key is found with permission granted to
use it. Any error from a previous match attempt is discarded and the key is
returned.
+When request_key() is invoked, if CONFIG_KEYS_REQUEST_CACHE=y, a per-task
+one-key cache is first checked for a match.
+
When search_process_keyrings() is invoked, it performs the following searches
until one succeeds:
@@ -186,7 +195,9 @@ until one succeeds:
c) The calling process's session keyring is searched.
The moment one succeeds, all pending errors are discarded and the found key is
-returned.
+returned. If CONFIG_KEYS_REQUEST_CACHE=y, then that key is placed in the
+per-task cache, displacing the previous key. The cache is cleared on exit or
+just prior to resumption of userspace.
Only if all these fail does the whole thing fail with the highest priority
error. Note that several errors may have come from LSM.
OpenPOWER on IntegriCloud