summaryrefslogtreecommitdiffstats
path: root/Documentation/power/devices.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/power/devices.txt')
-rw-r--r--Documentation/power/devices.txt34
1 files changed, 30 insertions, 4 deletions
diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt
index 47d46dff70f7..d172bce0fd49 100644
--- a/Documentation/power/devices.txt
+++ b/Documentation/power/devices.txt
@@ -2,6 +2,7 @@ Device Power Management
Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu>
+Copyright (c) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Most of the code in Linux is device drivers, so most of the Linux power
@@ -326,6 +327,20 @@ the phases are:
driver in some way for the upcoming system power transition, but it
should not put the device into a low-power state.
+ For devices supporting runtime power management, the return value of the
+ prepare callback can be used to indicate to the PM core that it may
+ safely leave the device in runtime suspend (if runtime-suspended
+ already), provided that all of the device's descendants are also left in
+ runtime suspend. Namely, if the prepare callback returns a positive
+ number and that happens for all of the descendants of the device too,
+ and all of them (including the device itself) are runtime-suspended, the
+ PM core will skip the suspend, suspend_late and suspend_noirq suspend
+ phases as well as the resume_noirq, resume_early and resume phases of
+ the following system resume for all of these devices. In that case,
+ the complete callback will be called directly after the prepare callback
+ and is entirely responsible for bringing the device back to the
+ functional state as appropriate.
+
2. The suspend methods should quiesce the device to stop it from performing
I/O. They also may save the device registers and put it into the
appropriate low-power state, depending on the bus type the device is on,
@@ -400,12 +415,23 @@ When resuming from freeze, standby or memory sleep, the phases are:
the resume callbacks occur; it's not necessary to wait until the
complete phase.
+ Moreover, if the preceding prepare callback returned a positive number,
+ the device may have been left in runtime suspend throughout the whole
+ system suspend and resume (the suspend, suspend_late, suspend_noirq
+ phases of system suspend and the resume_noirq, resume_early, resume
+ phases of system resume may have been skipped for it). In that case,
+ the complete callback is entirely responsible for bringing the device
+ back to the functional state after system suspend if necessary. [For
+ example, it may need to queue up a runtime resume request for the device
+ for this purpose.] To check if that is the case, the complete callback
+ can consult the device's power.direct_complete flag. Namely, if that
+ flag is set when the complete callback is being run, it has been called
+ directly after the preceding prepare and special action may be required
+ to make the device work correctly afterward.
+
At the end of these phases, drivers should be as functional as they were before
suspending: I/O can be performed using DMA and IRQs, and the relevant clocks are
-gated on. Even if the device was in a low-power state before the system sleep
-because of runtime power management, afterwards it should be back in its
-full-power state. There are multiple reasons why it's best to do this; they are
-discussed in more detail in Documentation/power/runtime_pm.txt.
+gated on.
However, the details here may again be platform-specific. For example,
some systems support multiple "run" states, and the mode in effect at
OpenPOWER on IntegriCloud