summaryrefslogtreecommitdiffstats
path: root/Documentation/filesystems
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/btrfs.txt261
-rw-r--r--Documentation/filesystems/nfs/pnfs-scsi-server.txt23
-rw-r--r--Documentation/filesystems/ocfs2-online-filecheck.txt94
-rw-r--r--Documentation/filesystems/orangefs.txt406
-rw-r--r--Documentation/filesystems/vfat.txt7
5 files changed, 538 insertions, 253 deletions
diff --git a/Documentation/filesystems/btrfs.txt b/Documentation/filesystems/btrfs.txt
index c772b47e7ef0..f9dad22d95ce 100644
--- a/Documentation/filesystems/btrfs.txt
+++ b/Documentation/filesystems/btrfs.txt
@@ -1,20 +1,10 @@
-
BTRFS
=====
-Btrfs is a copy on write filesystem for Linux aimed at
-implementing advanced features while focusing on fault tolerance,
-repair and easy administration. Initially developed by Oracle, Btrfs
-is licensed under the GPL and open for contribution from anyone.
-
-Linux has a wealth of filesystems to choose from, but we are facing a
-number of challenges with scaling to the large storage subsystems that
-are becoming common in today's data centers. Filesystems need to scale
-in their ability to address and manage large storage, and also in
-their ability to detect, repair and tolerate errors in the data stored
-on disk. Btrfs is under heavy development, and is not suitable for
-any uses other than benchmarking and review. The Btrfs disk format is
-not yet finalized.
+Btrfs is a copy on write filesystem for Linux aimed at implementing advanced
+features while focusing on fault tolerance, repair and easy administration.
+Jointly developed by several companies, licensed under the GPL and open for
+contribution from anyone.
The main Btrfs features include:
@@ -28,243 +18,14 @@ The main Btrfs features include:
* Checksums on data and metadata (multiple algorithms available)
* Compression
* Integrated multiple device support, with several raid algorithms
- * Online filesystem check (not yet implemented)
- * Very fast offline filesystem check
- * Efficient incremental backup and FS mirroring (not yet implemented)
+ * Offline filesystem check
+ * Efficient incremental backup and FS mirroring
* Online filesystem defragmentation
+For more information please refer to the wiki
-Mount Options
-=============
-
-When mounting a btrfs filesystem, the following option are accepted.
-Options with (*) are default options and will not show in the mount options.
-
- alloc_start=<bytes>
- Debugging option to force all block allocations above a certain
- byte threshold on each block device. The value is specified in
- bytes, optionally with a K, M, or G suffix, case insensitive.
- Default is 1MB.
-
- noautodefrag(*)
- autodefrag
- Disable/enable auto defragmentation.
- Auto defragmentation detects small random writes into files and queue
- them up for the defrag process. Works best for small files;
- Not well suited for large database workloads.
-
- check_int
- check_int_data
- check_int_print_mask=<value>
- These debugging options control the behavior of the integrity checking
- module (the BTRFS_FS_CHECK_INTEGRITY config option required).
-
- check_int enables the integrity checker module, which examines all
- block write requests to ensure on-disk consistency, at a large
- memory and CPU cost.
-
- check_int_data includes extent data in the integrity checks, and
- implies the check_int option.
-
- check_int_print_mask takes a bitmask of BTRFSIC_PRINT_MASK_* values
- as defined in fs/btrfs/check-integrity.c, to control the integrity
- checker module behavior.
-
- See comments at the top of fs/btrfs/check-integrity.c for more info.
-
- commit=<seconds>
- Set the interval of periodic commit, 30 seconds by default. Higher
- values defer data being synced to permanent storage with obvious
- consequences when the system crashes. The upper bound is not forced,
- but a warning is printed if it's more than 300 seconds (5 minutes).
-
- compress
- compress=<type>
- compress-force
- compress-force=<type>
- Control BTRFS file data compression. Type may be specified as "zlib"
- "lzo" or "no" (for no compression, used for remounting). If no type
- is specified, zlib is used. If compress-force is specified,
- all files will be compressed, whether or not they compress well.
- If compression is enabled, nodatacow and nodatasum are disabled.
-
- degraded
- Allow mounts to continue with missing devices. A read-write mount may
- fail with too many devices missing, for example if a stripe member
- is completely missing.
-
- device=<devicepath>
- Specify a device during mount so that ioctls on the control device
- can be avoided. Especially useful when trying to mount a multi-device
- setup as root. May be specified multiple times for multiple devices.
-
- nodiscard(*)
- discard
- Disable/enable discard mount option.
- Discard issues frequent commands to let the block device reclaim space
- freed by the filesystem.
- This is useful for SSD devices, thinly provisioned
- LUNs and virtual machine images, but may have a significant
- performance impact. (The fstrim command is also available to
- initiate batch trims from userspace).
-
- noenospc_debug(*)
- enospc_debug
- Disable/enable debugging option to be more verbose in some ENOSPC conditions.
-
- fatal_errors=<action>
- Action to take when encountering a fatal error:
- "bug" - BUG() on a fatal error. This is the default.
- "panic" - panic() on a fatal error.
-
- noflushoncommit(*)
- flushoncommit
- The 'flushoncommit' mount option forces any data dirtied by a write in a
- prior transaction to commit as part of the current commit. This makes
- the committed state a fully consistent view of the file system from the
- application's perspective (i.e., it includes all completed file system
- operations). This was previously the behavior only when a snapshot is
- created.
-
- inode_cache
- Enable free inode number caching. Defaults to off due to an overflow
- problem when the free space crcs don't fit inside a single page.
-
- max_inline=<bytes>
- Specify the maximum amount of space, in bytes, that can be inlined in
- a metadata B-tree leaf. The value is specified in bytes, optionally
- with a K, M, or G suffix, case insensitive. In practice, this value
- is limited by the root sector size, with some space unavailable due
- to leaf headers. For a 4k sector size, max inline data is ~3900 bytes.
-
- metadata_ratio=<value>
- Specify that 1 metadata chunk should be allocated after every <value>
- data chunks. Off by default.
-
- acl(*)
- noacl
- Enable/disable support for Posix Access Control Lists (ACLs). See the
- acl(5) manual page for more information about ACLs.
-
- barrier(*)
- nobarrier
- Enable/disable the use of block layer write barriers. Write barriers
- ensure that certain IOs make it through the device cache and are on
- persistent storage. If disabled on a device with a volatile
- (non-battery-backed) write-back cache, nobarrier option will lead to
- filesystem corruption on a system crash or power loss.
-
- datacow(*)
- nodatacow
- Enable/disable data copy-on-write for newly created files.
- Nodatacow implies nodatasum, and disables all compression.
-
- datasum(*)
- nodatasum
- Enable/disable data checksumming for newly created files.
- Datasum implies datacow.
-
- treelog(*)
- notreelog
- Enable/disable the tree logging used for fsync and O_SYNC writes.
-
- recovery
- Enable autorecovery attempts if a bad tree root is found at mount time.
- Currently this scans a list of several previous tree roots and tries to
- use the first readable.
-
- rescan_uuid_tree
- Force check and rebuild procedure of the UUID tree. This should not
- normally be needed.
-
- skip_balance
- Skip automatic resume of interrupted balance operation after mount.
- May be resumed with "btrfs balance resume."
-
- space_cache (*)
- Enable the on-disk freespace cache.
- nospace_cache
- Disable freespace cache loading without clearing the cache.
- clear_cache
- Force clearing and rebuilding of the disk space cache if something
- has gone wrong.
-
- ssd
- nossd
- ssd_spread
- Options to control ssd allocation schemes. By default, BTRFS will
- enable or disable ssd allocation heuristics depending on whether a
- rotational or non-rotational disk is in use. The ssd and nossd options
- can override this autodetection.
-
- The ssd_spread mount option attempts to allocate into big chunks
- of unused space, and may perform better on low-end ssds. ssd_spread
- implies ssd, enabling all other ssd heuristics as well.
-
- subvol=<path>
- Mount subvolume at <path> rather than the root subvolume. <path> is
- relative to the top level subvolume.
-
- subvolid=<ID>
- Mount subvolume specified by an ID number rather than the root subvolume.
- This allows mounting of subvolumes which are not in the root of the mounted
- filesystem.
- You can use "btrfs subvolume list" to see subvolume ID numbers.
-
- subvolrootid=<objectid> (deprecated)
- Mount subvolume specified by <objectid> rather than the root subvolume.
- This allows mounting of subvolumes which are not in the root of the mounted
- filesystem.
- You can use "btrfs subvolume show " to see the object ID for a subvolume.
-
- thread_pool=<number>
- The number of worker threads to allocate. The default number is equal
- to the number of CPUs + 2, or 8, whichever is smaller.
-
- user_subvol_rm_allowed
- Allow subvolumes to be deleted by a non-root user. Use with caution.
-
-MAILING LIST
-============
-
-There is a Btrfs mailing list hosted on vger.kernel.org. You can
-find details on how to subscribe here:
-
-http://vger.kernel.org/vger-lists.html#linux-btrfs
-
-Mailing list archives are available from gmane:
-
-http://dir.gmane.org/gmane.comp.file-systems.btrfs
-
-
-
-IRC
-===
-
-Discussion of Btrfs also occurs on the #btrfs channel of the Freenode
-IRC network.
-
-
-
- UTILITIES
- =========
-
-Userspace tools for creating and manipulating Btrfs file systems are
-available from the git repository at the following location:
-
- http://git.kernel.org/?p=linux/kernel/git/mason/btrfs-progs.git
- git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-progs.git
-
-These include the following tools:
-
-* mkfs.btrfs: create a filesystem
-
-* btrfs: a single tool to manage the filesystems, refer to the manpage for more details
-
-* 'btrfsck' or 'btrfs check': do a consistency check of the filesystem
-
-Other tools for specific tasks:
-
-* btrfs-convert: in-place conversion from ext2/3/4 filesystems
+ https://btrfs.wiki.kernel.org
-* btrfs-image: dump filesystem metadata for debugging
+that maintains information about administration tasks, frequently asked
+questions, use cases, mount options, comprehensible changelogs, features,
+manual pages, source code repositories, contacts etc.
diff --git a/Documentation/filesystems/nfs/pnfs-scsi-server.txt b/Documentation/filesystems/nfs/pnfs-scsi-server.txt
new file mode 100644
index 000000000000..5bef7268bd9f
--- /dev/null
+++ b/Documentation/filesystems/nfs/pnfs-scsi-server.txt
@@ -0,0 +1,23 @@
+
+pNFS SCSI layout server user guide
+==================================
+
+This document describes support for pNFS SCSI layouts in the Linux NFS server.
+With pNFS SCSI layouts, the NFS server acts as Metadata Server (MDS) for pNFS,
+which in addition to handling all the metadata access to the NFS export,
+also hands out layouts to the clients so that they can directly access the
+underlying SCSI LUNs that are shared with the client.
+
+To use pNFS SCSI layouts with with the Linux NFS server, the exported file
+system needs to support the pNFS SCSI layouts (currently just XFS), and the
+file system must sit on a SCSI LUN that is accessible to the clients in
+addition to the MDS. As of now the file system needs to sit directly on the
+exported LUN, striping or concatenation of LUNs on the MDS and clients
+is not supported yet.
+
+On a server built with CONFIG_NFSD_SCSI, the pNFS SCSI volume support is
+automatically enabled if the file system is exported using the "pnfs"
+option and the underlying SCSI device support persistent reservations.
+On the client make sure the kernel has the CONFIG_PNFS_BLOCK option
+enabled, and the file system is mounted using the NFSv4.1 protocol
+version (mount -o vers=4.1).
diff --git a/Documentation/filesystems/ocfs2-online-filecheck.txt b/Documentation/filesystems/ocfs2-online-filecheck.txt
new file mode 100644
index 000000000000..1ab07860430d
--- /dev/null
+++ b/Documentation/filesystems/ocfs2-online-filecheck.txt
@@ -0,0 +1,94 @@
+ OCFS2 online file check
+ -----------------------
+
+This document will describe OCFS2 online file check feature.
+
+Introduction
+============
+OCFS2 is often used in high-availaibility systems. However, OCFS2 usually
+converts the filesystem to read-only when encounters an error. This may not be
+necessary, since turning the filesystem read-only would affect other running
+processes as well, decreasing availability.
+Then, a mount option (errors=continue) is introduced, which would return the
+-EIO errno to the calling process and terminate furhter processing so that the
+filesystem is not corrupted further. The filesystem is not converted to
+read-only, and the problematic file's inode number is reported in the kernel
+log. The user can try to check/fix this file via online filecheck feature.
+
+Scope
+=====
+This effort is to check/fix small issues which may hinder day-to-day operations
+of a cluster filesystem by turning the filesystem read-only. The scope of
+checking/fixing is at the file level, initially for regular files and eventually
+to all files (including system files) of the filesystem.
+
+In case of directory to file links is incorrect, the directory inode is
+reported as erroneous.
+
+This feature is not suited for extravagant checks which involve dependency of
+other components of the filesystem, such as but not limited to, checking if the
+bits for file blocks in the allocation has been set. In case of such an error,
+the offline fsck should/would be recommended.
+
+Finally, such an operation/feature should not be automated lest the filesystem
+may end up with more damage than before the repair attempt. So, this has to
+be performed using user interaction and consent.
+
+User interface
+==============
+When there are errors in the OCFS2 filesystem, they are usually accompanied
+by the inode number which caused the error. This inode number would be the
+input to check/fix the file.
+
+There is a sysfs directory for each OCFS2 file system mounting:
+
+ /sys/fs/ocfs2/<devname>/filecheck
+
+Here, <devname> indicates the name of OCFS2 volumn device which has been already
+mounted. The file above would accept inode numbers. This could be used to
+communicate with kernel space, tell which file(inode number) will be checked or
+fixed. Currently, three operations are supported, which includes checking
+inode, fixing inode and setting the size of result record history.
+
+1. If you want to know what error exactly happened to <inode> before fixing, do
+
+ # echo "<inode>" > /sys/fs/ocfs2/<devname>/filecheck/check
+ # cat /sys/fs/ocfs2/<devname>/filecheck/check
+
+The output is like this:
+ INO DONE ERROR
+39502 1 GENERATION
+
+<INO> lists the inode numbers.
+<DONE> indicates whether the operation has been finished.
+<ERROR> says what kind of errors was found. For the detailed error numbers,
+please refer to the file linux/fs/ocfs2/filecheck.h.
+
+2. If you determine to fix this inode, do
+
+ # echo "<inode>" > /sys/fs/ocfs2/<devname>/filecheck/fix
+ # cat /sys/fs/ocfs2/<devname>/filecheck/fix
+
+The output is like this:
+ INO DONE ERROR
+39502 1 SUCCESS
+
+This time, the <ERROR> column indicates whether this fix is successful or not.
+
+3. The record cache is used to store the history of check/fix results. It's
+defalut size is 10, and can be adjust between the range of 10 ~ 100. You can
+adjust the size like this:
+
+ # echo "<size>" > /sys/fs/ocfs2/<devname>/filecheck/set
+
+Fixing stuff
+============
+On receivng the inode, the filesystem would read the inode and the
+file metadata. In case of errors, the filesystem would fix the errors
+and report the problems it fixed in the kernel log. As a precautionary measure,
+the inode must first be checked for errors before performing a final fix.
+
+The inode and the result history will be maintained temporarily in a
+small linked list buffer which would contain the last (N) inodes
+fixed/checked, the detailed errors which were fixed/checked are printed in the
+kernel log.
diff --git a/Documentation/filesystems/orangefs.txt b/Documentation/filesystems/orangefs.txt
new file mode 100644
index 000000000000..e1a0056a365f
--- /dev/null
+++ b/Documentation/filesystems/orangefs.txt
@@ -0,0 +1,406 @@
+ORANGEFS
+========
+
+OrangeFS is an LGPL userspace scale-out parallel storage system. It is ideal
+for large storage problems faced by HPC, BigData, Streaming Video,
+Genomics, Bioinformatics.
+
+Orangefs, originally called PVFS, was first developed in 1993 by
+Walt Ligon and Eric Blumer as a parallel file system for Parallel
+Virtual Machine (PVM) as part of a NASA grant to study the I/O patterns
+of parallel programs.
+
+Orangefs features include:
+
+ * Distributes file data among multiple file servers
+ * Supports simultaneous access by multiple clients
+ * Stores file data and metadata on servers using local file system
+ and access methods
+ * Userspace implementation is easy to install and maintain
+ * Direct MPI support
+ * Stateless
+
+
+MAILING LIST
+============
+
+http://beowulf-underground.org/mailman/listinfo/pvfs2-users
+
+
+DOCUMENTATION
+=============
+
+http://www.orangefs.org/documentation/
+
+
+USERSPACE FILESYSTEM SOURCE
+===========================
+
+http://www.orangefs.org/download
+
+Orangefs versions prior to 2.9.3 would not be compatible with the
+upstream version of the kernel client.
+
+
+BUILDING THE USERSPACE FILESYSTEM ON A SINGLE SERVER
+====================================================
+
+When Orangefs is upstream, "--with-kernel" shouldn't be needed, but
+until then the path to where the kernel with the Orangefs kernel client
+patch was built is needed to ensure that pvfs2-client-core (the bridge
+between kernel space and user space) will build properly. You can omit
+--prefix if you don't care that things are sprinkled around in
+/usr/local.
+
+./configure --prefix=/opt/ofs --with-kernel=/path/to/orangefs/kernel
+
+make
+
+make install
+
+Create an orangefs config file:
+/opt/ofs/bin/pvfs2-genconfig /etc/pvfs2.conf
+
+ for "Enter hostnames", use the hostname, don't let it default to
+ localhost.
+
+create a pvfs2tab file in /etc:
+cat /etc/pvfs2tab
+tcp://myhostname:3334/orangefs /mymountpoint pvfs2 defaults,noauto 0 0
+
+create the mount point you specified in the tab file if needed:
+mkdir /mymountpoint
+
+bootstrap the server:
+/opt/ofs/sbin/pvfs2-server /etc/pvfs2.conf -f
+
+start the server:
+/opt/osf/sbin/pvfs2-server /etc/pvfs2.conf
+
+Now the server is running. At this point you might like to
+prove things are working with:
+
+/opt/osf/bin/pvfs2-ls /mymountpoint
+
+You might not want to enforce selinux, it doesn't seem to matter by
+linux 3.11...
+
+If stuff seems to be working, turn on the client core:
+/opt/osf/sbin/pvfs2-client -p /opt/osf/sbin/pvfs2-client-core
+
+Mount your filesystem.
+mount -t pvfs2 tcp://myhostname:3334/orangefs /mymountpoint
+
+
+OPTIONS
+=======
+
+The following mount options are accepted:
+
+ acl
+ Allow the use of Access Control Lists on files and directories.
+
+ intr
+ Some operations between the kernel client and the user space
+ filesystem can be interruptible, such as changes in debug levels
+ and the setting of tunable parameters.
+
+ local_lock
+ Enable posix locking from the perspective of "this" kernel. The
+ default file_operations lock action is to return ENOSYS. Posix
+ locking kicks in if the filesystem is mounted with -o local_lock.
+ Distributed locking is being worked on for the future.
+
+
+DEBUGGING
+=========
+
+If you want the debug (GOSSIP) statements in a particular
+source file (inode.c for example) go to syslog:
+
+ echo inode > /sys/kernel/debug/orangefs/kernel-debug
+
+No debugging (the default):
+
+ echo none > /sys/kernel/debug/orangefs/kernel-debug
+
+Debugging from several source files:
+
+ echo inode,dir > /sys/kernel/debug/orangefs/kernel-debug
+
+All debugging:
+
+ echo all > /sys/kernel/debug/orangefs/kernel-debug
+
+Get a list of all debugging keywords:
+
+ cat /sys/kernel/debug/orangefs/debug-help
+
+
+PROTOCOL BETWEEN KERNEL MODULE AND USERSPACE
+============================================
+
+Orangefs is a user space filesystem and an associated kernel module.
+We'll just refer to the user space part of Orangefs as "userspace"
+from here on out. Orangefs descends from PVFS, and userspace code
+still uses PVFS for function and variable names. Userspace typedefs
+many of the important structures. Function and variable names in
+the kernel module have been transitioned to "orangefs", and The Linux
+Coding Style avoids typedefs, so kernel module structures that
+correspond to userspace structures are not typedefed.
+
+The kernel module implements a pseudo device that userspace
+can read from and write to. Userspace can also manipulate the
+kernel module through the pseudo device with ioctl.
+
+THE BUFMAP:
+
+At startup userspace allocates two page-size-aligned (posix_memalign)
+mlocked memory buffers, one is used for IO and one is used for readdir
+operations. The IO buffer is 41943040 bytes and the readdir buffer is
+4194304 bytes. Each buffer contains logical chunks, or partitions, and
+a pointer to each buffer is added to its own PVFS_dev_map_desc structure
+which also describes its total size, as well as the size and number of
+the partitions.
+
+A pointer to the IO buffer's PVFS_dev_map_desc structure is sent to a
+mapping routine in the kernel module with an ioctl. The structure is
+copied from user space to kernel space with copy_from_user and is used
+to initialize the kernel module's "bufmap" (struct orangefs_bufmap), which
+then contains:
+
+ * refcnt - a reference counter
+ * desc_size - PVFS2_BUFMAP_DEFAULT_DESC_SIZE (4194304) - the IO buffer's
+ partition size, which represents the filesystem's block size and
+ is used for s_blocksize in super blocks.
+ * desc_count - PVFS2_BUFMAP_DEFAULT_DESC_COUNT (10) - the number of
+ partitions in the IO buffer.
+ * desc_shift - log2(desc_size), used for s_blocksize_bits in super blocks.
+ * total_size - the total size of the IO buffer.
+ * page_count - the number of 4096 byte pages in the IO buffer.
+ * page_array - a pointer to page_count * (sizeof(struct page*)) bytes
+ of kcalloced memory. This memory is used as an array of pointers
+ to each of the pages in the IO buffer through a call to get_user_pages.
+ * desc_array - a pointer to desc_count * (sizeof(struct orangefs_bufmap_desc))
+ bytes of kcalloced memory. This memory is further intialized:
+
+ user_desc is the kernel's copy of the IO buffer's ORANGEFS_dev_map_desc
+ structure. user_desc->ptr points to the IO buffer.
+
+ pages_per_desc = bufmap->desc_size / PAGE_SIZE
+ offset = 0
+
+ bufmap->desc_array[0].page_array = &bufmap->page_array[offset]
+ bufmap->desc_array[0].array_count = pages_per_desc = 1024
+ bufmap->desc_array[0].uaddr = (user_desc->ptr) + (0 * 1024 * 4096)
+ offset += 1024
+ .
+ .
+ .
+ bufmap->desc_array[9].page_array = &bufmap->page_array[offset]
+ bufmap->desc_array[9].array_count = pages_per_desc = 1024
+ bufmap->desc_array[9].uaddr = (user_desc->ptr) +
+ (9 * 1024 * 4096)
+ offset += 1024
+
+ * buffer_index_array - a desc_count sized array of ints, used to
+ indicate which of the IO buffer's partitions are available to use.
+ * buffer_index_lock - a spinlock to protect buffer_index_array during update.
+ * readdir_index_array - a five (ORANGEFS_READDIR_DEFAULT_DESC_COUNT) element
+ int array used to indicate which of the readdir buffer's partitions are
+ available to use.
+ * readdir_index_lock - a spinlock to protect readdir_index_array during
+ update.
+
+OPERATIONS:
+
+The kernel module builds an "op" (struct orangefs_kernel_op_s) when it
+needs to communicate with userspace. Part of the op contains the "upcall"
+which expresses the request to userspace. Part of the op eventually
+contains the "downcall" which expresses the results of the request.
+
+The slab allocator is used to keep a cache of op structures handy.
+
+At init time the kernel module defines and initializes a request list
+and an in_progress hash table to keep track of all the ops that are
+in flight at any given time.
+
+Ops are stateful:
+
+ * unknown - op was just initialized
+ * waiting - op is on request_list (upward bound)
+ * inprogr - op is in progress (waiting for downcall)
+ * serviced - op has matching downcall; ok
+ * purged - op has to start a timer since client-core
+ exited uncleanly before servicing op
+ * given up - submitter has given up waiting for it
+
+When some arbitrary userspace program needs to perform a
+filesystem operation on Orangefs (readdir, I/O, create, whatever)
+an op structure is initialized and tagged with a distinguishing ID
+number. The upcall part of the op is filled out, and the op is
+passed to the "service_operation" function.
+
+Service_operation changes the op's state to "waiting", puts
+it on the request list, and signals the Orangefs file_operations.poll
+function through a wait queue. Userspace is polling the pseudo-device
+and thus becomes aware of the upcall request that needs to be read.
+
+When the Orangefs file_operations.read function is triggered, the
+request list is searched for an op that seems ready-to-process.
+The op is removed from the request list. The tag from the op and
+the filled-out upcall struct are copy_to_user'ed back to userspace.
+
+If any of these (and some additional protocol) copy_to_users fail,
+the op's state is set to "waiting" and the op is added back to
+the request list. Otherwise, the op's state is changed to "in progress",
+and the op is hashed on its tag and put onto the end of a list in the
+in_progress hash table at the index the tag hashed to.
+
+When userspace has assembled the response to the upcall, it
+writes the response, which includes the distinguishing tag, back to
+the pseudo device in a series of io_vecs. This triggers the Orangefs
+file_operations.write_iter function to find the op with the associated
+tag and remove it from the in_progress hash table. As long as the op's
+state is not "canceled" or "given up", its state is set to "serviced".
+The file_operations.write_iter function returns to the waiting vfs,
+and back to service_operation through wait_for_matching_downcall.
+
+Service operation returns to its caller with the op's downcall
+part (the response to the upcall) filled out.
+
+The "client-core" is the bridge between the kernel module and
+userspace. The client-core is a daemon. The client-core has an
+associated watchdog daemon. If the client-core is ever signaled
+to die, the watchdog daemon restarts the client-core. Even though
+the client-core is restarted "right away", there is a period of
+time during such an event that the client-core is dead. A dead client-core
+can't be triggered by the Orangefs file_operations.poll function.
+Ops that pass through service_operation during a "dead spell" can timeout
+on the wait queue and one attempt is made to recycle them. Obviously,
+if the client-core stays dead too long, the arbitrary userspace processes
+trying to use Orangefs will be negatively affected. Waiting ops
+that can't be serviced will be removed from the request list and
+have their states set to "given up". In-progress ops that can't
+be serviced will be removed from the in_progress hash table and
+have their states set to "given up".
+
+Readdir and I/O ops are atypical with respect to their payloads.
+
+ - readdir ops use the smaller of the two pre-allocated pre-partitioned
+ memory buffers. The readdir buffer is only available to userspace.
+ The kernel module obtains an index to a free partition before launching
+ a readdir op. Userspace deposits the results into the indexed partition
+ and then writes them to back to the pvfs device.
+
+ - io (read and write) ops use the larger of the two pre-allocated
+ pre-partitioned memory buffers. The IO buffer is accessible from
+ both userspace and the kernel module. The kernel module obtains an
+ index to a free partition before launching an io op. The kernel module
+ deposits write data into the indexed partition, to be consumed
+ directly by userspace. Userspace deposits the results of read
+ requests into the indexed partition, to be consumed directly
+ by the kernel module.
+
+Responses to kernel requests are all packaged in pvfs2_downcall_t
+structs. Besides a few other members, pvfs2_downcall_t contains a
+union of structs, each of which is associated with a particular
+response type.
+
+The several members outside of the union are:
+ - int32_t type - type of operation.
+ - int32_t status - return code for the operation.
+ - int64_t trailer_size - 0 unless readdir operation.
+ - char *trailer_buf - initialized to NULL, used during readdir operations.
+
+The appropriate member inside the union is filled out for any
+particular response.
+
+ PVFS2_VFS_OP_FILE_IO
+ fill a pvfs2_io_response_t
+
+ PVFS2_VFS_OP_LOOKUP
+ fill a PVFS_object_kref
+
+ PVFS2_VFS_OP_CREATE
+ fill a PVFS_object_kref
+
+ PVFS2_VFS_OP_SYMLINK
+ fill a PVFS_object_kref
+
+ PVFS2_VFS_OP_GETATTR
+ fill in a PVFS_sys_attr_s (tons of stuff the kernel doesn't need)
+ fill in a string with the link target when the object is a symlink.
+
+ PVFS2_VFS_OP_MKDIR
+ fill a PVFS_object_kref
+
+ PVFS2_VFS_OP_STATFS
+ fill a pvfs2_statfs_response_t with useless info <g>. It is hard for
+ us to know, in a timely fashion, these statistics about our
+ distributed network filesystem.
+
+ PVFS2_VFS_OP_FS_MOUNT
+ fill a pvfs2_fs_mount_response_t which is just like a PVFS_object_kref
+ except its members are in a different order and "__pad1" is replaced
+ with "id".
+
+ PVFS2_VFS_OP_GETXATTR
+ fill a pvfs2_getxattr_response_t
+
+ PVFS2_VFS_OP_LISTXATTR
+ fill a pvfs2_listxattr_response_t
+
+ PVFS2_VFS_OP_PARAM
+ fill a pvfs2_param_response_t
+
+ PVFS2_VFS_OP_PERF_COUNT
+ fill a pvfs2_perf_count_response_t
+
+ PVFS2_VFS_OP_FSKEY
+ file a pvfs2_fs_key_response_t
+
+ PVFS2_VFS_OP_READDIR
+ jamb everything needed to represent a pvfs2_readdir_response_t into
+ the readdir buffer descriptor specified in the upcall.
+
+Userspace uses writev() on /dev/pvfs2-req to pass responses to the requests
+made by the kernel side.
+
+A buffer_list containing:
+ - a pointer to the prepared response to the request from the
+ kernel (struct pvfs2_downcall_t).
+ - and also, in the case of a readdir request, a pointer to a
+ buffer containing descriptors for the objects in the target
+ directory.
+... is sent to the function (PINT_dev_write_list) which performs
+the writev.
+
+PINT_dev_write_list has a local iovec array: struct iovec io_array[10];
+
+The first four elements of io_array are initialized like this for all
+responses:
+
+ io_array[0].iov_base = address of local variable "proto_ver" (int32_t)
+ io_array[0].iov_len = sizeof(int32_t)
+
+ io_array[1].iov_base = address of global variable "pdev_magic" (int32_t)
+ io_array[1].iov_len = sizeof(int32_t)
+
+ io_array[2].iov_base = address of parameter "tag" (PVFS_id_gen_t)
+ io_array[2].iov_len = sizeof(int64_t)
+
+ io_array[3].iov_base = address of out_downcall member (pvfs2_downcall_t)
+ of global variable vfs_request (vfs_request_t)
+ io_array[3].iov_len = sizeof(pvfs2_downcall_t)
+
+Readdir responses initialize the fifth element io_array like this:
+
+ io_array[4].iov_base = contents of member trailer_buf (char *)
+ from out_downcall member of global variable
+ vfs_request
+ io_array[4].iov_len = contents of member trailer_size (PVFS_size)
+ from out_downcall member of global variable
+ vfs_request
+
+
diff --git a/Documentation/filesystems/vfat.txt b/Documentation/filesystems/vfat.txt
index 223c32171dcc..cf51360e3a9f 100644
--- a/Documentation/filesystems/vfat.txt
+++ b/Documentation/filesystems/vfat.txt
@@ -56,9 +56,10 @@ iocharset=<name> -- Character set to use for converting between the
you should consider the following option instead.
utf8=<bool> -- UTF-8 is the filesystem safe version of Unicode that
- is used by the console. It can be enabled for the
- filesystem with this option. If 'uni_xlate' gets set,
- UTF-8 gets disabled.
+ is used by the console. It can be enabled or disabled
+ for the filesystem with this option.
+ If 'uni_xlate' gets set, UTF-8 gets disabled.
+ By default, FAT_DEFAULT_UTF8 setting is used.
uni_xlate=<bool> -- Translate unhandled Unicode characters to special
escaped sequences. This would let you backup and
OpenPOWER on IntegriCloud