summaryrefslogtreecommitdiffstats
path: root/Documentation/filesystems/ext4/ondisk/allocators.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/ext4/ondisk/allocators.rst')
-rw-r--r--Documentation/filesystems/ext4/ondisk/allocators.rst56
1 files changed, 0 insertions, 56 deletions
diff --git a/Documentation/filesystems/ext4/ondisk/allocators.rst b/Documentation/filesystems/ext4/ondisk/allocators.rst
deleted file mode 100644
index 7aa85152ace3..000000000000
--- a/Documentation/filesystems/ext4/ondisk/allocators.rst
+++ /dev/null
@@ -1,56 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-Block and Inode Allocation Policy
----------------------------------
-
-ext4 recognizes (better than ext3, anyway) that data locality is
-generally a desirably quality of a filesystem. On a spinning disk,
-keeping related blocks near each other reduces the amount of movement
-that the head actuator and disk must perform to access a data block,
-thus speeding up disk IO. On an SSD there of course are no moving parts,
-but locality can increase the size of each transfer request while
-reducing the total number of requests. This locality may also have the
-effect of concentrating writes on a single erase block, which can speed
-up file rewrites significantly. Therefore, it is useful to reduce
-fragmentation whenever possible.
-
-The first tool that ext4 uses to combat fragmentation is the multi-block
-allocator. When a file is first created, the block allocator
-speculatively allocates 8KiB of disk space to the file on the assumption
-that the space will get written soon. When the file is closed, the
-unused speculative allocations are of course freed, but if the
-speculation is correct (typically the case for full writes of small
-files) then the file data gets written out in a single multi-block
-extent. A second related trick that ext4 uses is delayed allocation.
-Under this scheme, when a file needs more blocks to absorb file writes,
-the filesystem defers deciding the exact placement on the disk until all
-the dirty buffers are being written out to disk. By not committing to a
-particular placement until it's absolutely necessary (the commit timeout
-is hit, or sync() is called, or the kernel runs out of memory), the hope
-is that the filesystem can make better location decisions.
-
-The third trick that ext4 (and ext3) uses is that it tries to keep a
-file's data blocks in the same block group as its inode. This cuts down
-on the seek penalty when the filesystem first has to read a file's inode
-to learn where the file's data blocks live and then seek over to the
-file's data blocks to begin I/O operations.
-
-The fourth trick is that all the inodes in a directory are placed in the
-same block group as the directory, when feasible. The working assumption
-here is that all the files in a directory might be related, therefore it
-is useful to try to keep them all together.
-
-The fifth trick is that the disk volume is cut up into 128MB block
-groups; these mini-containers are used as outlined above to try to
-maintain data locality. However, there is a deliberate quirk -- when a
-directory is created in the root directory, the inode allocator scans
-the block groups and puts that directory into the least heavily loaded
-block group that it can find. This encourages directories to spread out
-over a disk; as the top-level directory/file blobs fill up one block
-group, the allocators simply move on to the next block group. Allegedly
-this scheme evens out the loading on the block groups, though the author
-suspects that the directories which are so unlucky as to land towards
-the end of a spinning drive get a raw deal performance-wise.
-
-Of course if all of these mechanisms fail, one can always use e4defrag
-to defragment files.
OpenPOWER on IntegriCloud