diff options
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r-- | Documentation/admin-guide/kernel-parameters.txt | 13 | ||||
-rw-r--r-- | Documentation/admin-guide/thunderbolt.rst | 24 |
2 files changed, 29 insertions, 8 deletions
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index b74e13312fdc..62436bd5f34a 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -857,7 +857,7 @@ The filter can be disabled or changed to another driver later using sysfs. - drm_kms_helper.edid_firmware=[<connector>:]<file>[,[<connector>:]<file>] + drm.edid_firmware=[<connector>:]<file>[,[<connector>:]<file>] Broken monitors, graphic adapters, KVMs and EDIDless panels may send no or incorrect EDID data sets. This parameter allows to specify an EDID data sets @@ -1864,13 +1864,6 @@ Built with CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF=y, the default is off. - kmemcheck= [X86] Boot-time kmemcheck enable/disable/one-shot mode - Valid arguments: 0, 1, 2 - kmemcheck=0 (disabled) - kmemcheck=1 (enabled) - kmemcheck=2 (one-shot mode) - Default: 2 (one-shot mode) - kvm.ignore_msrs=[KVM] Ignore guest accesses to unhandled MSRs. Default is 0 (don't ignore, but inject #GP) @@ -3211,6 +3204,10 @@ allowed (eg kernel_enable_fpu()/kernel_disable_fpu()). There is some performance impact when enabling this. + ppc_tm= [PPC] + Format: {"off"} + Disable Hardware Transactional Memory + print-fatal-signals= [KNL] debug: print fatal signals diff --git a/Documentation/admin-guide/thunderbolt.rst b/Documentation/admin-guide/thunderbolt.rst index 6a4cd1f159ca..5c62d11d77e8 100644 --- a/Documentation/admin-guide/thunderbolt.rst +++ b/Documentation/admin-guide/thunderbolt.rst @@ -197,3 +197,27 @@ information is missing. To recover from this mode, one needs to flash a valid NVM image to the host host controller in the same way it is done in the previous chapter. + +Networking over Thunderbolt cable +--------------------------------- +Thunderbolt technology allows software communication across two hosts +connected by a Thunderbolt cable. + +It is possible to tunnel any kind of traffic over Thunderbolt link but +currently we only support Apple ThunderboltIP protocol. + +If the other host is running Windows or macOS only thing you need to +do is to connect Thunderbolt cable between the two hosts, the +``thunderbolt-net`` is loaded automatically. If the other host is also +Linux you should load ``thunderbolt-net`` manually on one host (it does +not matter which one):: + + # modprobe thunderbolt-net + +This triggers module load on the other host automatically. If the driver +is built-in to the kernel image, there is no need to do anything. + +The driver will create one virtual ethernet interface per Thunderbolt +port which are named like ``thunderbolt0`` and so on. From this point +you can either use standard userspace tools like ``ifconfig`` to +configure the interface or let your GUI to handle it automatically. |