diff options
author | Yasunori Goto <y-goto@jp.fujitsu.com> | 2008-04-28 02:13:31 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2008-04-28 08:58:25 -0700 |
commit | 04753278769f3b6c3b79a080edb52f21d83bf6e2 (patch) | |
tree | 0dff4088b44016b6d04930b2fc09419412821aa2 /mm/sparse.c | |
parent | 7f2e9525ba55b1c42ad6c4a5a59d7eb7bdd9be72 (diff) | |
download | talos-op-linux-04753278769f3b6c3b79a080edb52f21d83bf6e2.tar.gz talos-op-linux-04753278769f3b6c3b79a080edb52f21d83bf6e2.zip |
memory hotplug: register section/node id to free
This patch set is to free pages which is allocated by bootmem for
memory-hotremove. Some structures of memory management are allocated by
bootmem. ex) memmap, etc.
To remove memory physically, some of them must be freed according to
circumstance. This patch set makes basis to free those pages, and free
memmaps.
Basic my idea is using remain members of struct page to remember information
of users of bootmem (section number or node id). When the section is
removing, kernel can confirm it. By this information, some issues can be
solved.
1) When the memmap of removing section is allocated on other
section by bootmem, it should/can be free.
2) When the memmap of removing section is allocated on the
same section, it shouldn't be freed. Because the section has to be
logical memory offlined already and all pages must be isolated against
page allocater. If it is freed, page allocator may use it which will
be removed physically soon.
3) When removing section has other section's memmap,
kernel will be able to show easily which section should be removed
before it for user. (Not implemented yet)
4) When the above case 2), the page isolation will be able to check and skip
memmap's page when logical memory offline (offline_pages()).
Current page isolation code fails in this case because this page is
just reserved page and it can't distinguish this pages can be
removed or not. But, it will be able to do by this patch.
(Not implemented yet.)
5) The node information like pgdat has similar issues. But, this
will be able to be solved too by this.
(Not implemented yet, but, remembering node id in the pages.)
Fortunately, current bootmem allocator just keeps PageReserved flags,
and doesn't use any other members of page struct. The users of
bootmem doesn't use them too.
This patch:
This is to register information which is node or section's id. Kernel can
distinguish which node/section uses the pages allcated by bootmem. This is
basis for hot-remove sections or nodes.
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/sparse.c')
-rw-r--r-- | mm/sparse.c | 3 |
1 files changed, 1 insertions, 2 deletions
diff --git a/mm/sparse.c b/mm/sparse.c index 186a85bf7912..8903c484389a 100644 --- a/mm/sparse.c +++ b/mm/sparse.c @@ -210,7 +210,6 @@ static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long p /* * Decode mem_map from the coded memmap */ -static struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) { /* mask off the extra low bits of information */ @@ -233,7 +232,7 @@ static int __meminit sparse_init_one_section(struct mem_section *ms, return 1; } -static unsigned long usemap_size(void) +unsigned long usemap_size(void) { unsigned long size_bytes; size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; |