diff options
author | Paul E. McKenney <paul.mckenney@linaro.org> | 2012-01-23 17:05:46 -0800 |
---|---|---|
committer | Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 2012-02-21 09:06:04 -0800 |
commit | 3d3b7db0a22085cfc05c3318b9874f7fb8266d18 (patch) | |
tree | 7f6a080ca64f8a07dd058c2771b983c602fd1a65 /kernel/rcutree_plugin.h | |
parent | c0d6d01bffdce19fa19baad6cb8cc3eed7bfd6f5 (diff) | |
download | talos-op-linux-3d3b7db0a22085cfc05c3318b9874f7fb8266d18.tar.gz talos-op-linux-3d3b7db0a22085cfc05c3318b9874f7fb8266d18.zip |
rcu: Move synchronize_sched_expedited() to rcutree.c
Now that TREE_RCU and TREE_PREEMPT_RCU no longer do anything different
for the single-CPU case, there is no need for multiple definitions of
synchronize_sched_expedited(). It is no longer in any sense a plug-in,
so move it from kernel/rcutree_plugin.h to kernel/rcutree.c.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Diffstat (limited to 'kernel/rcutree_plugin.h')
-rw-r--r-- | kernel/rcutree_plugin.h | 116 |
1 files changed, 0 insertions, 116 deletions
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h index cecea84f4f3f..98ce17cf1fb5 100644 --- a/kernel/rcutree_plugin.h +++ b/kernel/rcutree_plugin.h @@ -25,7 +25,6 @@ */ #include <linux/delay.h> -#include <linux/stop_machine.h> #define RCU_KTHREAD_PRIO 1 @@ -1888,121 +1887,6 @@ static void __cpuinit rcu_prepare_kthreads(int cpu) #endif /* #else #ifdef CONFIG_RCU_BOOST */ -static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0); -static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0); - -static int synchronize_sched_expedited_cpu_stop(void *data) -{ - /* - * There must be a full memory barrier on each affected CPU - * between the time that try_stop_cpus() is called and the - * time that it returns. - * - * In the current initial implementation of cpu_stop, the - * above condition is already met when the control reaches - * this point and the following smp_mb() is not strictly - * necessary. Do smp_mb() anyway for documentation and - * robustness against future implementation changes. - */ - smp_mb(); /* See above comment block. */ - return 0; -} - -/* - * Wait for an rcu-sched grace period to elapse, but use "big hammer" - * approach to force grace period to end quickly. This consumes - * significant time on all CPUs, and is thus not recommended for - * any sort of common-case code. - * - * Note that it is illegal to call this function while holding any - * lock that is acquired by a CPU-hotplug notifier. Failing to - * observe this restriction will result in deadlock. - * - * This implementation can be thought of as an application of ticket - * locking to RCU, with sync_sched_expedited_started and - * sync_sched_expedited_done taking on the roles of the halves - * of the ticket-lock word. Each task atomically increments - * sync_sched_expedited_started upon entry, snapshotting the old value, - * then attempts to stop all the CPUs. If this succeeds, then each - * CPU will have executed a context switch, resulting in an RCU-sched - * grace period. We are then done, so we use atomic_cmpxchg() to - * update sync_sched_expedited_done to match our snapshot -- but - * only if someone else has not already advanced past our snapshot. - * - * On the other hand, if try_stop_cpus() fails, we check the value - * of sync_sched_expedited_done. If it has advanced past our - * initial snapshot, then someone else must have forced a grace period - * some time after we took our snapshot. In this case, our work is - * done for us, and we can simply return. Otherwise, we try again, - * but keep our initial snapshot for purposes of checking for someone - * doing our work for us. - * - * If we fail too many times in a row, we fall back to synchronize_sched(). - */ -void synchronize_sched_expedited(void) -{ - int firstsnap, s, snap, trycount = 0; - - /* Note that atomic_inc_return() implies full memory barrier. */ - firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started); - get_online_cpus(); - WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); - - /* - * Each pass through the following loop attempts to force a - * context switch on each CPU. - */ - while (try_stop_cpus(cpu_online_mask, - synchronize_sched_expedited_cpu_stop, - NULL) == -EAGAIN) { - put_online_cpus(); - - /* No joy, try again later. Or just synchronize_sched(). */ - if (trycount++ < 10) - udelay(trycount * num_online_cpus()); - else { - synchronize_sched(); - return; - } - - /* Check to see if someone else did our work for us. */ - s = atomic_read(&sync_sched_expedited_done); - if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) { - smp_mb(); /* ensure test happens before caller kfree */ - return; - } - - /* - * Refetching sync_sched_expedited_started allows later - * callers to piggyback on our grace period. We subtract - * 1 to get the same token that the last incrementer got. - * We retry after they started, so our grace period works - * for them, and they started after our first try, so their - * grace period works for us. - */ - get_online_cpus(); - snap = atomic_read(&sync_sched_expedited_started); - smp_mb(); /* ensure read is before try_stop_cpus(). */ - } - - /* - * Everyone up to our most recent fetch is covered by our grace - * period. Update the counter, but only if our work is still - * relevant -- which it won't be if someone who started later - * than we did beat us to the punch. - */ - do { - s = atomic_read(&sync_sched_expedited_done); - if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) { - smp_mb(); /* ensure test happens before caller kfree */ - break; - } - } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s); - - put_online_cpus(); -} -EXPORT_SYMBOL_GPL(synchronize_sched_expedited); - #if !defined(CONFIG_RCU_FAST_NO_HZ) /* |