summaryrefslogtreecommitdiffstats
path: root/include/asm-avr32/hardirq.h
diff options
context:
space:
mode:
authorHaavard Skinnemoen <hskinnemoen@atmel.com>2006-09-25 23:32:13 -0700
committerLinus Torvalds <torvalds@g5.osdl.org>2006-09-26 08:48:54 -0700
commit5f97f7f9400de47ae837170bb274e90ad3934386 (patch)
tree514451e6dc6b46253293a00035d375e77b1c65ed /include/asm-avr32/hardirq.h
parent53e62d3aaa60590d4a69b4e07c29f448b5151047 (diff)
downloadtalos-op-linux-5f97f7f9400de47ae837170bb274e90ad3934386.tar.gz
talos-op-linux-5f97f7f9400de47ae837170bb274e90ad3934386.zip
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'include/asm-avr32/hardirq.h')
-rw-r--r--include/asm-avr32/hardirq.h34
1 files changed, 34 insertions, 0 deletions
diff --git a/include/asm-avr32/hardirq.h b/include/asm-avr32/hardirq.h
new file mode 100644
index 000000000000..267354356f60
--- /dev/null
+++ b/include/asm-avr32/hardirq.h
@@ -0,0 +1,34 @@
+#ifndef __ASM_AVR32_HARDIRQ_H
+#define __ASM_AVR32_HARDIRQ_H
+
+#include <linux/threads.h>
+#include <asm/irq.h>
+
+#ifndef __ASSEMBLY__
+
+#include <linux/cache.h>
+
+/* entry.S is sensitive to the offsets of these fields */
+typedef struct {
+ unsigned int __softirq_pending;
+} ____cacheline_aligned irq_cpustat_t;
+
+void ack_bad_irq(unsigned int irq);
+
+/* Standard mappings for irq_cpustat_t above */
+#include <linux/irq_cpustat.h>
+
+#endif /* __ASSEMBLY__ */
+
+#define HARDIRQ_BITS 12
+
+/*
+ * The hardirq mask has to be large enough to have
+ * space for potentially all IRQ sources in the system
+ * nesting on a single CPU:
+ */
+#if (1 << HARDIRQ_BITS) < NR_IRQS
+# error HARDIRQ_BITS is too low!
+#endif
+
+#endif /* __ASM_AVR32_HARDIRQ_H */
OpenPOWER on IntegriCloud