diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/jffs/jffs_fm.c | |
download | talos-op-linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz talos-op-linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/jffs/jffs_fm.c')
-rw-r--r-- | fs/jffs/jffs_fm.c | 795 |
1 files changed, 795 insertions, 0 deletions
diff --git a/fs/jffs/jffs_fm.c b/fs/jffs/jffs_fm.c new file mode 100644 index 000000000000..0cab8da49d3c --- /dev/null +++ b/fs/jffs/jffs_fm.c @@ -0,0 +1,795 @@ +/* + * JFFS -- Journaling Flash File System, Linux implementation. + * + * Copyright (C) 1999, 2000 Axis Communications AB. + * + * Created by Finn Hakansson <finn@axis.com>. + * + * This is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * $Id: jffs_fm.c,v 1.27 2001/09/20 12:29:47 dwmw2 Exp $ + * + * Ported to Linux 2.3.x and MTD: + * Copyright (C) 2000 Alexander Larsson (alex@cendio.se), Cendio Systems AB + * + */ +#include <linux/slab.h> +#include <linux/blkdev.h> +#include <linux/jffs.h> +#include "jffs_fm.h" + +#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE +static int jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset); +#endif + +static struct jffs_fm *jffs_alloc_fm(void); +static void jffs_free_fm(struct jffs_fm *n); + +extern kmem_cache_t *fm_cache; +extern kmem_cache_t *node_cache; + +/* This function creates a new shiny flash memory control structure. */ +struct jffs_fmcontrol * +jffs_build_begin(struct jffs_control *c, int unit) +{ + struct jffs_fmcontrol *fmc; + struct mtd_info *mtd; + + D3(printk("jffs_build_begin()\n")); + fmc = (struct jffs_fmcontrol *)kmalloc(sizeof(struct jffs_fmcontrol), + GFP_KERNEL); + if (!fmc) { + D(printk("jffs_build_begin(): Allocation of " + "struct jffs_fmcontrol failed!\n")); + return (struct jffs_fmcontrol *)0; + } + DJM(no_jffs_fmcontrol++); + + mtd = get_mtd_device(NULL, unit); + + if (!mtd) { + kfree(fmc); + DJM(no_jffs_fmcontrol--); + return NULL; + } + + /* Retrieve the size of the flash memory. */ + fmc->flash_size = mtd->size; + D3(printk(" fmc->flash_size = %d bytes\n", fmc->flash_size)); + + fmc->used_size = 0; + fmc->dirty_size = 0; + fmc->free_size = mtd->size; + fmc->sector_size = mtd->erasesize; + fmc->max_chunk_size = fmc->sector_size >> 1; + /* min_free_size: + 1 sector, obviously. + + 1 x max_chunk_size, for when a nodes overlaps the end of a sector + + 1 x max_chunk_size again, which ought to be enough to handle + the case where a rename causes a name to grow, and GC has + to write out larger nodes than the ones it's obsoleting. + We should fix it so it doesn't have to write the name + _every_ time. Later. + + another 2 sectors because people keep getting GC stuck and + we don't know why. This scares me - I want formal proof + of correctness of whatever number we put here. dwmw2. + */ + fmc->min_free_size = fmc->sector_size << 2; + fmc->mtd = mtd; + fmc->c = c; + fmc->head = NULL; + fmc->tail = NULL; + fmc->head_extra = NULL; + fmc->tail_extra = NULL; + init_MUTEX(&fmc->biglock); + return fmc; +} + + +/* When the flash memory scan has completed, this function should be called + before use of the control structure. */ +void +jffs_build_end(struct jffs_fmcontrol *fmc) +{ + D3(printk("jffs_build_end()\n")); + + if (!fmc->head) { + fmc->head = fmc->head_extra; + fmc->tail = fmc->tail_extra; + } + else if (fmc->head_extra) { + fmc->tail_extra->next = fmc->head; + fmc->head->prev = fmc->tail_extra; + fmc->head = fmc->head_extra; + } + fmc->head_extra = NULL; /* These two instructions should be omitted. */ + fmc->tail_extra = NULL; + D3(jffs_print_fmcontrol(fmc)); +} + + +/* Call this function when the file system is unmounted. This function + frees all memory used by this module. */ +void +jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc) +{ + if (fmc) { + struct jffs_fm *next = fmc->head; + while (next) { + struct jffs_fm *cur = next; + next = next->next; + jffs_free_fm(cur); + } + put_mtd_device(fmc->mtd); + kfree(fmc); + DJM(no_jffs_fmcontrol--); + } +} + + +/* This function returns the size of the first chunk of free space on the + flash memory. This function will return something nonzero if the flash + memory contains any free space. */ +__u32 +jffs_free_size1(struct jffs_fmcontrol *fmc) +{ + __u32 head; + __u32 tail; + __u32 end = fmc->flash_size; + + if (!fmc->head) { + /* There is nothing on the flash. */ + return fmc->flash_size; + } + + /* Compute the beginning and ending of the contents of the flash. */ + head = fmc->head->offset; + tail = fmc->tail->offset + fmc->tail->size; + if (tail == end) { + tail = 0; + } + ASSERT(else if (tail > end) { + printk(KERN_WARNING "jffs_free_size1(): tail > end\n"); + tail = 0; + }); + + if (head <= tail) { + return end - tail; + } + else { + return head - tail; + } +} + +/* This function will return something nonzero in case there are two free + areas on the flash. Like this: + + +----------------+------------------+----------------+ + | FREE 1 | USED / DIRTY | FREE 2 | + +----------------+------------------+----------------+ + fmc->head -----^ + fmc->tail ------------------------^ + + The value returned, will be the size of the first empty area on the + flash, in this case marked "FREE 1". */ +__u32 +jffs_free_size2(struct jffs_fmcontrol *fmc) +{ + if (fmc->head) { + __u32 head = fmc->head->offset; + __u32 tail = fmc->tail->offset + fmc->tail->size; + if (tail == fmc->flash_size) { + tail = 0; + } + + if (tail >= head) { + return head; + } + } + return 0; +} + + +/* Allocate a chunk of flash memory. If there is enough space on the + device, a reference to the associated node is stored in the jffs_fm + struct. */ +int +jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size, struct jffs_node *node, + struct jffs_fm **result) +{ + struct jffs_fm *fm; + __u32 free_chunk_size1; + __u32 free_chunk_size2; + + D2(printk("jffs_fmalloc(): fmc = 0x%p, size = %d, " + "node = 0x%p\n", fmc, size, node)); + + *result = NULL; + + if (!(fm = jffs_alloc_fm())) { + D(printk("jffs_fmalloc(): kmalloc() failed! (fm)\n")); + return -ENOMEM; + } + + free_chunk_size1 = jffs_free_size1(fmc); + free_chunk_size2 = jffs_free_size2(fmc); + if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) { + printk(KERN_WARNING "Free size accounting screwed\n"); + printk(KERN_WARNING "free_chunk_size1 == 0x%x, free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n", free_chunk_size1, free_chunk_size2, fmc->free_size); + } + + D3(printk("jffs_fmalloc(): free_chunk_size1 = %u, " + "free_chunk_size2 = %u\n", + free_chunk_size1, free_chunk_size2)); + + if (size <= free_chunk_size1) { + if (!(fm->nodes = (struct jffs_node_ref *) + kmalloc(sizeof(struct jffs_node_ref), + GFP_KERNEL))) { + D(printk("jffs_fmalloc(): kmalloc() failed! " + "(node_ref)\n")); + jffs_free_fm(fm); + return -ENOMEM; + } + DJM(no_jffs_node_ref++); + fm->nodes->node = node; + fm->nodes->next = NULL; + if (fmc->tail) { + fm->offset = fmc->tail->offset + fmc->tail->size; + if (fm->offset == fmc->flash_size) { + fm->offset = 0; + } + ASSERT(else if (fm->offset > fmc->flash_size) { + printk(KERN_WARNING "jffs_fmalloc(): " + "offset > flash_end\n"); + fm->offset = 0; + }); + } + else { + /* There don't have to be files in the file + system yet. */ + fm->offset = 0; + } + fm->size = size; + fmc->free_size -= size; + fmc->used_size += size; + } + else if (size > free_chunk_size2) { + printk(KERN_WARNING "JFFS: Tried to allocate a too " + "large flash memory chunk. (size = %u)\n", size); + jffs_free_fm(fm); + return -ENOSPC; + } + else { + fm->offset = fmc->tail->offset + fmc->tail->size; + fm->size = free_chunk_size1; + fm->nodes = NULL; + fmc->free_size -= fm->size; + fmc->dirty_size += fm->size; /* Changed by simonk. This seemingly fixes a + bug that caused infinite garbage collection. + It previously set fmc->dirty_size to size (which is the + size of the requested chunk). + */ + } + + fm->next = NULL; + if (!fmc->head) { + fm->prev = NULL; + fmc->head = fm; + fmc->tail = fm; + } + else { + fm->prev = fmc->tail; + fmc->tail->next = fm; + fmc->tail = fm; + } + + D3(jffs_print_fmcontrol(fmc)); + D3(jffs_print_fm(fm)); + *result = fm; + return 0; +} + + +/* The on-flash space is not needed anymore by the passed node. Remove + the reference to the node from the node list. If the data chunk in + the flash memory isn't used by any more nodes anymore (fm->nodes == 0), + then mark that chunk as dirty. */ +int +jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, struct jffs_node *node) +{ + struct jffs_node_ref *ref; + struct jffs_node_ref *prev; + ASSERT(int del = 0); + + D2(printk("jffs_fmfree(): node->ino = %u, node->version = %u\n", + node->ino, node->version)); + + ASSERT(if (!fmc || !fm || !fm->nodes) { + printk(KERN_ERR "jffs_fmfree(): fmc: 0x%p, fm: 0x%p, " + "fm->nodes: 0x%p\n", + fmc, fm, (fm ? fm->nodes : NULL)); + return -1; + }); + + /* Find the reference to the node that is going to be removed + and remove it. */ + for (ref = fm->nodes, prev = NULL; ref; ref = ref->next) { + if (ref->node == node) { + if (prev) { + prev->next = ref->next; + } + else { + fm->nodes = ref->next; + } + kfree(ref); + DJM(no_jffs_node_ref--); + ASSERT(del = 1); + break; + } + prev = ref; + } + + /* If the data chunk in the flash memory isn't used anymore + just mark it as obsolete. */ + if (!fm->nodes) { + /* No node uses this chunk so let's remove it. */ + fmc->used_size -= fm->size; + fmc->dirty_size += fm->size; +#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE + if (jffs_mark_obsolete(fmc, fm->offset) < 0) { + D1(printk("jffs_fmfree(): Failed to mark an on-flash " + "node obsolete!\n")); + return -1; + } +#endif + } + + ASSERT(if (!del) { + printk(KERN_WARNING "***jffs_fmfree(): " + "Didn't delete any node reference!\n"); + }); + + return 0; +} + + +/* This allocation function is used during the initialization of + the file system. */ +struct jffs_fm * +jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset, __u32 size, + struct jffs_node *node) +{ + struct jffs_fm *fm; + + D3(printk("jffs_fmalloced()\n")); + + if (!(fm = jffs_alloc_fm())) { + D(printk("jffs_fmalloced(0x%p, %u, %u, 0x%p): failed!\n", + fmc, offset, size, node)); + return NULL; + } + fm->offset = offset; + fm->size = size; + fm->prev = NULL; + fm->next = NULL; + fm->nodes = NULL; + if (node) { + /* `node' exists and it should be associated with the + jffs_fm structure `fm'. */ + if (!(fm->nodes = (struct jffs_node_ref *) + kmalloc(sizeof(struct jffs_node_ref), + GFP_KERNEL))) { + D(printk("jffs_fmalloced(): !fm->nodes\n")); + jffs_free_fm(fm); + return NULL; + } + DJM(no_jffs_node_ref++); + fm->nodes->node = node; + fm->nodes->next = NULL; + fmc->used_size += size; + fmc->free_size -= size; + } + else { + /* If there is no node, then this is just a chunk of dirt. */ + fmc->dirty_size += size; + fmc->free_size -= size; + } + + if (fmc->head_extra) { + fm->prev = fmc->tail_extra; + fmc->tail_extra->next = fm; + fmc->tail_extra = fm; + } + else if (!fmc->head) { + fmc->head = fm; + fmc->tail = fm; + } + else if (fmc->tail->offset + fmc->tail->size < offset) { + fmc->head_extra = fm; + fmc->tail_extra = fm; + } + else { + fm->prev = fmc->tail; + fmc->tail->next = fm; + fmc->tail = fm; + } + D3(jffs_print_fmcontrol(fmc)); + D3(jffs_print_fm(fm)); + return fm; +} + + +/* Add a new node to an already existing jffs_fm struct. */ +int +jffs_add_node(struct jffs_node *node) +{ + struct jffs_node_ref *ref; + + D3(printk("jffs_add_node(): ino = %u\n", node->ino)); + + ref = (struct jffs_node_ref *)kmalloc(sizeof(struct jffs_node_ref), + GFP_KERNEL); + if (!ref) + return -ENOMEM; + + DJM(no_jffs_node_ref++); + ref->node = node; + ref->next = node->fm->nodes; + node->fm->nodes = ref; + return 0; +} + + +/* Free a part of some allocated space. */ +void +jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, __u32 size) +{ + D1(printk("***jffs_fmfree_partly(): fm = 0x%p, fm->nodes = 0x%p, " + "fm->nodes->node->ino = %u, size = %u\n", + fm, (fm ? fm->nodes : 0), + (!fm ? 0 : (!fm->nodes ? 0 : fm->nodes->node->ino)), size)); + + if (fm->nodes) { + kfree(fm->nodes); + DJM(no_jffs_node_ref--); + fm->nodes = NULL; + } + fmc->used_size -= fm->size; + if (fm == fmc->tail) { + fm->size -= size; + fmc->free_size += size; + } + fmc->dirty_size += fm->size; +} + + +/* Find the jffs_fm struct that contains the end of the data chunk that + begins at the logical beginning of the flash memory and spans `size' + bytes. If we want to erase a sector of the flash memory, we use this + function to find where the sector limit cuts a chunk of data. */ +struct jffs_fm * +jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size) +{ + struct jffs_fm *fm; + __u32 pos = 0; + + if (size == 0) { + return NULL; + } + + ASSERT(if (!fmc) { + printk(KERN_ERR "jffs_cut_node(): fmc == NULL\n"); + return NULL; + }); + + fm = fmc->head; + + while (fm) { + pos += fm->size; + if (pos < size) { + fm = fm->next; + } + else if (pos > size) { + break; + } + else { + fm = NULL; + break; + } + } + + return fm; +} + + +/* Move the head of the fmc structures and delete the obsolete parts. */ +void +jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size) +{ + struct jffs_fm *fm; + struct jffs_fm *del; + + ASSERT(if (!fmc) { + printk(KERN_ERR "jffs_sync_erase(): fmc == NULL\n"); + return; + }); + + fmc->dirty_size -= erased_size; + fmc->free_size += erased_size; + + for (fm = fmc->head; fm && (erased_size > 0);) { + if (erased_size >= fm->size) { + erased_size -= fm->size; + del = fm; + fm = fm->next; + fm->prev = NULL; + fmc->head = fm; + jffs_free_fm(del); + } + else { + fm->size -= erased_size; + fm->offset += erased_size; + break; + } + } +} + + +/* Return the oldest used node in the flash memory. */ +struct jffs_node * +jffs_get_oldest_node(struct jffs_fmcontrol *fmc) +{ + struct jffs_fm *fm; + struct jffs_node_ref *nref; + struct jffs_node *node = NULL; + + ASSERT(if (!fmc) { + printk(KERN_ERR "jffs_get_oldest_node(): fmc == NULL\n"); + return NULL; + }); + + for (fm = fmc->head; fm && !fm->nodes; fm = fm->next); + + if (!fm) { + return NULL; + } + + /* The oldest node is the last one in the reference list. This list + shouldn't be too long; just one or perhaps two elements. */ + for (nref = fm->nodes; nref; nref = nref->next) { + node = nref->node; + } + + D2(printk("jffs_get_oldest_node(): ino = %u, version = %u\n", + (node ? node->ino : 0), (node ? node->version : 0))); + + return node; +} + + +#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE + +/* Mark an on-flash node as obsolete. + + Note that this is just an optimization that isn't necessary for the + filesystem to work. */ + +static int +jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset) +{ + /* The `accurate_pos' holds the position of the accurate byte + in the jffs_raw_inode structure that we are going to mark + as obsolete. */ + __u32 accurate_pos = fm_offset + JFFS_RAW_INODE_ACCURATE_OFFSET; + unsigned char zero = 0x00; + size_t len; + + D3(printk("jffs_mark_obsolete(): accurate_pos = %u\n", accurate_pos)); + ASSERT(if (!fmc) { + printk(KERN_ERR "jffs_mark_obsolete(): fmc == NULL\n"); + return -1; + }); + + /* Write 0x00 to the raw inode's accurate member. Don't care + about the return value. */ + MTD_WRITE(fmc->mtd, accurate_pos, 1, &len, &zero); + return 0; +} + +#endif /* JFFS_MARK_OBSOLETE */ + +/* check if it's possible to erase the wanted range, and if not, return + * the range that IS erasable, or a negative error code. + */ +static long +jffs_flash_erasable_size(struct mtd_info *mtd, __u32 offset, __u32 size) +{ + u_long ssize; + + /* assume that sector size for a partition is constant even + * if it spans more than one chip (you usually put the same + * type of chips in a system) + */ + + ssize = mtd->erasesize; + + if (offset % ssize) { + printk(KERN_WARNING "jffs_flash_erasable_size() given non-aligned offset %x (erasesize %lx)\n", offset, ssize); + /* The offset is not sector size aligned. */ + return -1; + } + else if (offset > mtd->size) { + printk(KERN_WARNING "jffs_flash_erasable_size given offset off the end of device (%x > %x)\n", offset, mtd->size); + return -2; + } + else if (offset + size > mtd->size) { + printk(KERN_WARNING "jffs_flash_erasable_size() given length which runs off the end of device (ofs %x + len %x = %x, > %x)\n", offset,size, offset+size, mtd->size); + return -3; + } + + return (size / ssize) * ssize; +} + + +/* How much dirty flash memory is possible to erase at the moment? */ +long +jffs_erasable_size(struct jffs_fmcontrol *fmc) +{ + struct jffs_fm *fm; + __u32 size = 0; + long ret; + + ASSERT(if (!fmc) { + printk(KERN_ERR "jffs_erasable_size(): fmc = NULL\n"); + return -1; + }); + + if (!fmc->head) { + /* The flash memory is totally empty. No nodes. No dirt. + Just return. */ + return 0; + } + + /* Calculate how much space that is dirty. */ + for (fm = fmc->head; fm && !fm->nodes; fm = fm->next) { + if (size && fm->offset == 0) { + /* We have reached the beginning of the flash. */ + break; + } + size += fm->size; + } + + /* Someone's signature contained this: + There's a fine line between fishing and just standing on + the shore like an idiot... */ + ret = jffs_flash_erasable_size(fmc->mtd, fmc->head->offset, size); + + ASSERT(if (ret < 0) { + printk("jffs_erasable_size: flash_erasable_size() " + "returned something less than zero (%ld).\n", ret); + printk("jffs_erasable_size: offset = 0x%08x\n", + fmc->head->offset); + }); + + /* If there is dirt on the flash (which is the reason to why + this function was called in the first place) but no space is + possible to erase right now, the initial part of the list of + jffs_fm structs, that hold place for dirty space, could perhaps + be shortened. The list's initial "dirty" elements are merged + into just one large dirty jffs_fm struct. This operation must + only be performed if nothing is possible to erase. Otherwise, + jffs_clear_end_of_node() won't work as expected. */ + if (ret == 0) { + struct jffs_fm *head = fmc->head; + struct jffs_fm *del; + /* While there are two dirty nodes beside each other.*/ + while (head->nodes == 0 + && head->next + && head->next->nodes == 0) { + del = head->next; + head->size += del->size; + head->next = del->next; + if (del->next) { + del->next->prev = head; + } + jffs_free_fm(del); + } + } + + return (ret >= 0 ? ret : 0); +} + +static struct jffs_fm *jffs_alloc_fm(void) +{ + struct jffs_fm *fm; + + fm = kmem_cache_alloc(fm_cache,GFP_KERNEL); + DJM(if (fm) no_jffs_fm++;); + + return fm; +} + +static void jffs_free_fm(struct jffs_fm *n) +{ + kmem_cache_free(fm_cache,n); + DJM(no_jffs_fm--); +} + + + +struct jffs_node *jffs_alloc_node(void) +{ + struct jffs_node *n; + + n = (struct jffs_node *)kmem_cache_alloc(node_cache,GFP_KERNEL); + if(n != NULL) + no_jffs_node++; + return n; +} + +void jffs_free_node(struct jffs_node *n) +{ + kmem_cache_free(node_cache,n); + no_jffs_node--; +} + + +int jffs_get_node_inuse(void) +{ + return no_jffs_node; +} + +void +jffs_print_fmcontrol(struct jffs_fmcontrol *fmc) +{ + D(printk("struct jffs_fmcontrol: 0x%p\n", fmc)); + D(printk("{\n")); + D(printk(" %u, /* flash_size */\n", fmc->flash_size)); + D(printk(" %u, /* used_size */\n", fmc->used_size)); + D(printk(" %u, /* dirty_size */\n", fmc->dirty_size)); + D(printk(" %u, /* free_size */\n", fmc->free_size)); + D(printk(" %u, /* sector_size */\n", fmc->sector_size)); + D(printk(" %u, /* min_free_size */\n", fmc->min_free_size)); + D(printk(" %u, /* max_chunk_size */\n", fmc->max_chunk_size)); + D(printk(" 0x%p, /* mtd */\n", fmc->mtd)); + D(printk(" 0x%p, /* head */ " + "(head->offset = 0x%08x)\n", + fmc->head, (fmc->head ? fmc->head->offset : 0))); + D(printk(" 0x%p, /* tail */ " + "(tail->offset + tail->size = 0x%08x)\n", + fmc->tail, + (fmc->tail ? fmc->tail->offset + fmc->tail->size : 0))); + D(printk(" 0x%p, /* head_extra */\n", fmc->head_extra)); + D(printk(" 0x%p, /* tail_extra */\n", fmc->tail_extra)); + D(printk("}\n")); +} + +void +jffs_print_fm(struct jffs_fm *fm) +{ + D(printk("struct jffs_fm: 0x%p\n", fm)); + D(printk("{\n")); + D(printk(" 0x%08x, /* offset */\n", fm->offset)); + D(printk(" %u, /* size */\n", fm->size)); + D(printk(" 0x%p, /* prev */\n", fm->prev)); + D(printk(" 0x%p, /* next */\n", fm->next)); + D(printk(" 0x%p, /* nodes */\n", fm->nodes)); + D(printk("}\n")); +} + +#if 0 +void +jffs_print_node_ref(struct jffs_node_ref *ref) +{ + D(printk("struct jffs_node_ref: 0x%p\n", ref)); + D(printk("{\n")); + D(printk(" 0x%p, /* node */\n", ref->node)); + D(printk(" 0x%p, /* next */\n", ref->next)); + D(printk("}\n")); +} +#endif /* 0 */ + |