summaryrefslogtreecommitdiffstats
path: root/Documentation/block/biodoc.txt
diff options
context:
space:
mode:
authorTejun Heo <htejun@gmail.com>2005-10-20 16:47:40 +0200
committerJens Axboe <axboe@nelson.home.kernel.dk>2005-10-28 08:45:47 +0200
commit4c9f7836406f41ef9da6ee68d7a0448fdb97b5ef (patch)
tree9ed099a117a24bee56a5e920ea95f9e2bb82add6 /Documentation/block/biodoc.txt
parent98b11471d72a374f346bec50a00d0887719b85b3 (diff)
downloadtalos-op-linux-4c9f7836406f41ef9da6ee68d7a0448fdb97b5ef.tar.gz
talos-op-linux-4c9f7836406f41ef9da6ee68d7a0448fdb97b5ef.zip
[PATCH] 05/05 update biodoc to match new generic dispatch api
Updates biodoc to reflect changes in elevator API Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Jens Axboe <axboe@suse.de>
Diffstat (limited to 'Documentation/block/biodoc.txt')
-rw-r--r--Documentation/block/biodoc.txt113
1 files changed, 52 insertions, 61 deletions
diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt
index 6dd274d7e1cf..2d65c2182161 100644
--- a/Documentation/block/biodoc.txt
+++ b/Documentation/block/biodoc.txt
@@ -906,9 +906,20 @@ Aside:
4. The I/O scheduler
-I/O schedulers are now per queue. They should be runtime switchable and modular
-but aren't yet. Jens has most bits to do this, but the sysfs implementation is
-missing.
+I/O scheduler, a.k.a. elevator, is implemented in two layers. Generic dispatch
+queue and specific I/O schedulers. Unless stated otherwise, elevator is used
+to refer to both parts and I/O scheduler to specific I/O schedulers.
+
+Block layer implements generic dispatch queue in ll_rw_blk.c and elevator.c.
+The generic dispatch queue is responsible for properly ordering barrier
+requests, requeueing, handling non-fs requests and all other subtleties.
+
+Specific I/O schedulers are responsible for ordering normal filesystem
+requests. They can also choose to delay certain requests to improve
+throughput or whatever purpose. As the plural form indicates, there are
+multiple I/O schedulers. They can be built as modules but at least one should
+be built inside the kernel. Each queue can choose different one and can also
+change to another one dynamically.
A block layer call to the i/o scheduler follows the convention elv_xxx(). This
calls elevator_xxx_fn in the elevator switch (drivers/block/elevator.c). Oh,
@@ -921,44 +932,36 @@ keeping work.
The functions an elevator may implement are: (* are mandatory)
elevator_merge_fn called to query requests for merge with a bio
-elevator_merge_req_fn " " " with another request
+elevator_merge_req_fn called when two requests get merged. the one
+ which gets merged into the other one will be
+ never seen by I/O scheduler again. IOW, after
+ being merged, the request is gone.
elevator_merged_fn called when a request in the scheduler has been
involved in a merge. It is used in the deadline
scheduler for example, to reposition the request
if its sorting order has changed.
-*elevator_next_req_fn returns the next scheduled request, or NULL
- if there are none (or none are ready).
+elevator_dispatch_fn fills the dispatch queue with ready requests.
+ I/O schedulers are free to postpone requests by
+ not filling the dispatch queue unless @force
+ is non-zero. Once dispatched, I/O schedulers
+ are not allowed to manipulate the requests -
+ they belong to generic dispatch queue.
-*elevator_add_req_fn called to add a new request into the scheduler
+elevator_add_req_fn called to add a new request into the scheduler
elevator_queue_empty_fn returns true if the merge queue is empty.
Drivers shouldn't use this, but rather check
if elv_next_request is NULL (without losing the
request if one exists!)
-elevator_remove_req_fn This is called when a driver claims ownership of
- the target request - it now belongs to the
- driver. It must not be modified or merged.
- Drivers must not lose the request! A subsequent
- call of elevator_next_req_fn must return the
- _next_ request.
-
-elevator_requeue_req_fn called to add a request to the scheduler. This
- is used when the request has alrnadebeen
- returned by elv_next_request, but hasn't
- completed. If this is not implemented then
- elevator_add_req_fn is called instead.
-
elevator_former_req_fn
elevator_latter_req_fn These return the request before or after the
one specified in disk sort order. Used by the
block layer to find merge possibilities.
-elevator_completed_req_fn called when a request is completed. This might
- come about due to being merged with another or
- when the device completes the request.
+elevator_completed_req_fn called when a request is completed.
elevator_may_queue_fn returns true if the scheduler wants to allow the
current context to queue a new request even if
@@ -967,13 +970,33 @@ elevator_may_queue_fn returns true if the scheduler wants to allow the
elevator_set_req_fn
elevator_put_req_fn Must be used to allocate and free any elevator
- specific storate for a request.
+ specific storage for a request.
+
+elevator_activate_req_fn Called when device driver first sees a request.
+ I/O schedulers can use this callback to
+ determine when actual execution of a request
+ starts.
+elevator_deactivate_req_fn Called when device driver decides to delay
+ a request by requeueing it.
elevator_init_fn
elevator_exit_fn Allocate and free any elevator specific storage
for a queue.
-4.2 I/O scheduler implementation
+4.2 Request flows seen by I/O schedulers
+All requests seens by I/O schedulers strictly follow one of the following three
+flows.
+
+ set_req_fn ->
+
+ i. add_req_fn -> (merged_fn ->)* -> dispatch_fn -> activate_req_fn ->
+ (deactivate_req_fn -> activate_req_fn ->)* -> completed_req_fn
+ ii. add_req_fn -> (merged_fn ->)* -> merge_req_fn
+ iii. [none]
+
+ -> put_req_fn
+
+4.3 I/O scheduler implementation
The generic i/o scheduler algorithm attempts to sort/merge/batch requests for
optimal disk scan and request servicing performance (based on generic
principles and device capabilities), optimized for:
@@ -993,18 +1016,7 @@ request in sort order to prevent binary tree lookups.
This arrangement is not a generic block layer characteristic however, so
elevators may implement queues as they please.
-ii. Last merge hint
-The last merge hint is part of the generic queue layer. I/O schedulers must do
-some management on it. For the most part, the most important thing is to make
-sure q->last_merge is cleared (set to NULL) when the request on it is no longer
-a candidate for merging (for example if it has been sent to the driver).
-
-The last merge performed is cached as a hint for the subsequent request. If
-sequential data is being submitted, the hint is used to perform merges without
-any scanning. This is not sufficient when there are multiple processes doing
-I/O though, so a "merge hash" is used by some schedulers.
-
-iii. Merge hash
+ii. Merge hash
AS and deadline use a hash table indexed by the last sector of a request. This
enables merging code to quickly look up "back merge" candidates, even when
multiple I/O streams are being performed at once on one disk.
@@ -1013,29 +1025,8 @@ multiple I/O streams are being performed at once on one disk.
are far less common than "back merges" due to the nature of most I/O patterns.
Front merges are handled by the binary trees in AS and deadline schedulers.
-iv. Handling barrier cases
-A request with flags REQ_HARDBARRIER or REQ_SOFTBARRIER must not be ordered
-around. That is, they must be processed after all older requests, and before
-any newer ones. This includes merges!
-
-In AS and deadline schedulers, barriers have the effect of flushing the reorder
-queue. The performance cost of this will vary from nothing to a lot depending
-on i/o patterns and device characteristics. Obviously they won't improve
-performance, so their use should be kept to a minimum.
-
-v. Handling insertion position directives
-A request may be inserted with a position directive. The directives are one of
-ELEVATOR_INSERT_BACK, ELEVATOR_INSERT_FRONT, ELEVATOR_INSERT_SORT.
-
-ELEVATOR_INSERT_SORT is a general directive for non-barrier requests.
-ELEVATOR_INSERT_BACK is used to insert a barrier to the back of the queue.
-ELEVATOR_INSERT_FRONT is used to insert a barrier to the front of the queue, and
-overrides the ordering requested by any previous barriers. In practice this is
-harmless and required, because it is used for SCSI requeueing. This does not
-require flushing the reorder queue, so does not impose a performance penalty.
-
-vi. Plugging the queue to batch requests in anticipation of opportunities for
- merge/sort optimizations
+iii. Plugging the queue to batch requests in anticipation of opportunities for
+ merge/sort optimizations
This is just the same as in 2.4 so far, though per-device unplugging
support is anticipated for 2.5. Also with a priority-based i/o scheduler,
@@ -1069,7 +1060,7 @@ Aside:
blk_kick_queue() to unplug a specific queue (right away ?)
or optionally, all queues, is in the plan.
-4.3 I/O contexts
+4.4 I/O contexts
I/O contexts provide a dynamically allocated per process data area. They may
be used in I/O schedulers, and in the block layer (could be used for IO statis,
priorities for example). See *io_context in drivers/block/ll_rw_blk.c, and
OpenPOWER on IntegriCloud