summaryrefslogtreecommitdiffstats
path: root/src/occ_405/proc/proc_data.c
blob: 8a33131e65b3c719e8dfbcdd9553eba54e8b54b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/occ_405/proc/proc_data.c $                                */
/*                                                                        */
/* OpenPOWER OnChipController Project                                     */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2011,2015                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

#include "proc_data.h"
#include "occhw_async.h"
#include "threadSch.h"
#include "pmc_register_addresses.h"
#include "proc_data_service_codes.h"
#include "occ_service_codes.h"
#include "errl.h"
#include "trac.h"
#include "rtls.h"
#include "apss.h"
#include "state.h"
#include "proc_data_control.h"
#include "core_data.h"
//Global array of core data buffers
GPE_BUFFER(CoreData G_core_data[MAX_NUM_FW_CORES+NUM_CORE_DATA_DOUBLE_BUF+NUM_CORE_DATA_EMPTY_BUF]) = {{{0}}};

// Pointers to the actual core data buffers
CoreData * G_core_data_ptrs[MAX_NUM_FW_CORES] = {0};

// TEMP / TODO -- Only needed until we get the HWP for getting CORE_STATUS
// Used to get GPE0 to do a getscom of the Core Config Status Reg
GPE_BUFFER(ipc_scom_op_t G_core_stat_scom_op);

//Global structures for gpe get core data parms
GPE_BUFFER(ipc_core_data_parms_t G_low_cores_data_parms);
GPE_BUFFER(ipc_core_data_parms_t G_high_cores_data_parms);

//We will have separate bulk core data structure for low and high cores.
//Global low and high cores structures used for task data pointers.
bulk_core_data_task_t G_low_cores = {
            0,                                  // Low core to start with (min)
            0,                                  // Low core to start with (current)
            CORE_MID_POINT - 1,                 // Low core to end with
            &G_core_data[MAX_NUM_FW_CORES]      // Pointer to holding area for low coredata
    };
bulk_core_data_task_t G_high_cores = {
            CORE_MID_POINT,                     // High core to start with (min)
            CORE_MID_POINT,                     // High core to start with (current)
            MAX_NUM_FW_CORES - 1,               // High core to end with
            &G_core_data[MAX_NUM_FW_CORES+1] }; // Pointer to holding area for high coredata

//AMEC needs to know when data for a core has been collected.
uint32_t G_updated_core_mask = 0;

// Mask to indicate when an empath error has been detected and empath data
// should be ignored.  Core bits are cleared when empath data is collected
// without error.
uint32_t G_empath_error_core_mask = 0;

//Global G_present_cores is bitmask of all cores
//(1 = present, 0 = not present. Core 0 has the most significant bit)
uint32_t G_present_cores = 0;

//Global G_present_hw_cores is bitmask of all hardware cores
//(1 = present, 0 = not present. Core 0 has the most significant bit)
uint32_t G_present_hw_cores = 0;

//OCC to HW core id mapping array
uint8_t G_occ2hw_core_id[MAX_NUM_HW_CORES] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };

//HW to OCC core id mapping array
uint8_t G_hw2occ_core_id[MAX_NUM_HW_CORES] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };

//Flag to keep track of one time trace for GPE running case
//for task core data.
bool    G_queue_not_idle_traced = FALSE;

// Global to track the maximum time elapsed between pore flex schedules of
// per core get_per_core_data tasks.  The array is indexed by core number.
uint32_t G_get_per_core_data_max_schedule_intervals[MAX_NUM_HW_CORES] = {0,};

// Declaration of debug functions
#ifdef PROC_DEBUG
void print_core_data_sensors(uint8_t core);
void print_core_status(uint8_t core);
#endif

// Function Specification
//
// Name: task_core_data
//
// Description: Collect bulk core data for all cores in specified range.
//              The task used for core data collection will be split into two
//              individual task instances. The task function is the same but it needs
//              to gather data for different sets of cores.
//
//
// End Function Specification

void task_core_data( task_t * i_task )
{

    errlHndl_t  l_err = NULL;  // Error handler
    int         l_rc = 0;      // Return code
    CoreData  * l_temp = NULL; // Used for pointer swapping
    const trace_descriptor_array_t *l_trace = NULL; // Temporary trace descriptor
    bulk_core_data_task_t * l_bulk_core_data_ptr = (bulk_core_data_task_t *)i_task->data_ptr;
    ipc_core_data_parms_t * l_parms = (ipc_core_data_parms_t*)(l_bulk_core_data_ptr->gpe_req.cmd_data);

    INTR_TRAC_INFO("task_core_data: core %d", l_bulk_core_data_ptr->current_core);

    do
    {
        //First, check to see if the previous GPE request still running
        //A request is considered idle if it is not attached to any of the
        //asynchronous request queues
        if( !(async_request_is_idle(&l_bulk_core_data_ptr->gpe_req.request)) )
        {
            //This should not happen unless there's a problem
            //Trace 1 time
            if( !G_queue_not_idle_traced )
            {
                TRAC_ERR("Core data GPE is still running \n");
                G_queue_not_idle_traced = TRUE;
            }
            break;
        }

        //Need to complete collecting data for all assigned cores from previous interval
        //and tick 0 is the current tick before collect data again.
        if( (l_bulk_core_data_ptr->current_core == l_bulk_core_data_ptr->end_core)
            &&
            ((CURRENT_TICK & (MAX_NUM_TICKS - 1)) != 0) )
        {
            PROC_DBG("Not collect data. Need to wait for tick.\n");
            break;
        }

        //Check to see if the previously GPE request has successfully completed
        //A request is not considered complete until both the engine job
        //has finished without error and any callback has run to completion.

        if( async_request_completed(&l_bulk_core_data_ptr->gpe_req.request)
            &&
            CORE_PRESENT(l_bulk_core_data_ptr->current_core) )
        {
            //If the previous GPE request succeeded then swap core_data_ptr
            //with the global one. The gpe routine will write new data into
            //a buffer that is not being accessed by the RTLoop code.

            PROC_DBG( "Swap core_data_ptr [%x] with the global one\n",
                     l_bulk_core_data_ptr->current_core );

            //debug only
#ifdef PROC_DEBUG
            print_core_status(l_bulk_core_data_ptr->current_core);
            print_core_data_sensors(l_bulk_core_data_ptr->current_core);
#endif

            l_temp = l_bulk_core_data_ptr->core_data_ptr;
            l_bulk_core_data_ptr->core_data_ptr =
                    G_core_data_ptrs[l_bulk_core_data_ptr->current_core];
            G_core_data_ptrs[l_bulk_core_data_ptr->current_core] = l_temp;

            //Core data has been collected so set the bit in global mask.
            //AMEC code will know which cores to update sensors for. AMEC is
            //responsible for clearing the bit later on.
            G_updated_core_mask |= CORE0_PRESENT_MASK >> (l_bulk_core_data_ptr->current_core);

            // Presumptively clear the empath error mask
            G_empath_error_core_mask &=
                    ~(CORE0_PRESENT_MASK >> (l_bulk_core_data_ptr->current_core));
        }

        // If the core is not present, then we need to point to the empty G_core_data
        // so that we don't use old/stale data from a leftover G_core_data
        if( !CORE_PRESENT(l_bulk_core_data_ptr->current_core))
        {
            G_core_data_ptrs[l_bulk_core_data_ptr->current_core] = &G_core_data[MAX_NUM_FW_CORES+NUM_CORE_DATA_DOUBLE_BUF+NUM_CORE_DATA_EMPTY_BUF-1];
        }

        //Update current core
        if ( l_bulk_core_data_ptr->current_core >= l_bulk_core_data_ptr->end_core )
        {
            l_bulk_core_data_ptr->current_core = l_bulk_core_data_ptr->start_core;
        }
        else
        {
            l_bulk_core_data_ptr->current_core++;
        }

        //If core is not present then skip it. This task assigned to this core will
        //be idle during this time it would have collected the data.
        if( CORE_PRESENT(l_bulk_core_data_ptr->current_core) )
        {
            PROC_DBG("Schedule GpeRequest for core %d\n", l_bulk_core_data_ptr->current_core);

            //1. Setup the get core data parms
            l_parms->core_num = l_bulk_core_data_ptr->current_core;
            l_parms->data = (CoreData*) l_bulk_core_data_ptr->core_data_ptr;

            // Static array to record the last timestamp a get_per_core_data task was
            // scheduled for a core.
            static SsxTimebase L_last_get_per_core_data_scheduled_time[MAX_NUM_HW_CORES] = {0,};
            uint8_t l_current_core = l_bulk_core_data_ptr->current_core;
            SsxTimebase l_now = ssx_timebase_get();
            // If the last scheduled timestamp is 0, record time and continue to schedule
            if (L_last_get_per_core_data_scheduled_time[l_current_core] == 0)
            {
                L_last_get_per_core_data_scheduled_time[l_current_core] = l_now;
            }
            else
            {
                // Calculate elapsed time in usecs since last get_per_core_data
                // task for the current core was scheduled.
                uint32_t l_elapsed_us =
                        (uint32_t)((l_now - L_last_get_per_core_data_scheduled_time[l_current_core])/
                           (SSX_TIMEBASE_FREQUENCY_HZ/1000000));
                // Save the last scheduled timestamp
                L_last_get_per_core_data_scheduled_time[l_current_core] = l_now;
                // If the new elapsed time is greater than what is currently saved,
                // save the larger time.
                if (G_get_per_core_data_max_schedule_intervals[l_current_core] < l_elapsed_us)
                {
                    G_get_per_core_data_max_schedule_intervals[l_current_core] = l_elapsed_us;
                    TRAC_INFO("New max get_per_core_data interval: core=%d, interval(us)=%d",
                              l_current_core, l_elapsed_us);
                }
                // Also sniff if the request has actually completed, it is checked above but
                // the schedule proceeds regardless which could be dangerous...
                if (!async_request_completed(&l_bulk_core_data_ptr->gpe_req.request))
                {
                    TRAC_ERR("Async get_per_core_data task for core=%d not complete!",
                             l_current_core);
                }
            }

            //2. Schedule the GPE Request to get the core data
            //   Check gpe_request_schedule return code for an error
            //   and if there is an error, request an OCC reset.

            l_rc = gpe_request_schedule( &l_bulk_core_data_ptr->gpe_req );
            if( l_rc != 0 )
            {
                // Error in schedule gpe get core data
                TRAC_ERR("Failed GpeRequest schedule core [RC:0x%08X] \n", l_rc);

                /*
                * @errortype
                * @moduleid    PROC_TASK_CORE_DATA_MOD
                * @reasoncode  SSX_GENERIC_FAILURE
                * @userdata1   pore_flex_schedule return code
                * @userdata4   OCC_NO_EXTENDED_RC
                * @devdesc     SSX PORE related failure
                */
                l_err = createErrl(
                        PROC_TASK_CORE_DATA_MOD,            //modId
                        SSX_GENERIC_FAILURE,                //reasoncode
                        OCC_NO_EXTENDED_RC,                 //Extended reason code
                        ERRL_SEV_PREDICTIVE,                //Severity
                        l_trace, //TODO: create l_trace     //Trace Buf
                        DEFAULT_TRACE_SIZE,                 //Trace Size
                        l_rc,                               //userdata1
                        0                                   //userdata2
                );

                // commit error log
                REQUEST_RESET(l_err);
                break;
            }
        }
    }
    while(0);

    return;
}


// Function Specification
//
// Name: proc_core_init
//
// Description: Initialize structure for collecting core data. It
//                needs to be run in occ main and before RTLoop started.
//
// End Function Specification

void proc_core_init( void )
{
    errlHndl_t l_err = NULL;    // Error handler
    int        l_rc = 0;        // Return code
    const trace_descriptor_array_t *l_trace = NULL;  // Temporary trace descriptor
    uint8_t i = 0;
    GpeRequest l_req;

    // Setup the array of CoreData pointers
    for( i = 0; i < MAX_NUM_FW_CORES; i++ )
    {
        G_core_data_ptrs[i] = &G_core_data[i];
    }

    do
    {
        // Before the real time loop begins collecting data, we need to determine which
        // cores are present and configured. The Core Configuration Status Register
        // has this information, but only the GPEs can read this via a scom.

        // TEMP/TODO: For now, we will use a generic IPC command to do this and other
        //            scoms until the HW team can give us the hardware procedures.
        G_core_stat_scom_op.addr = 0x6c090;
        G_core_stat_scom_op.size = 8;
        G_core_stat_scom_op.data = 0xFFFFFF00;
        G_core_stat_scom_op.read = TRUE;

        //Initializes the GpeRequest object for reading the configuration status register
        l_rc = gpe_request_create(&l_req,                          // GpeRequest for the task
                                  &G_async_gpe_queue0,             // Queue
                                  IPC_ST_SCOM_OPERATION,           // Function ID
                                  &G_core_stat_scom_op,            // Task parameters
                                  SSX_WAIT_FOREVER,                // Timeout (none)
                                  NULL,                            // Callback
                                  NULL,                            // Callback arguments
                                  0 );                             // Options
        // Schedule the request
        //l_rc = gpe_request_schedule(&l_req);

        MAIN_TRAC_INFO("proc_core_init: generic scom read back 0x%08X%08X", G_core_stat_scom_op.data>>32, G_core_stat_scom_op.data);

        // TODO: Store the present cores here
        G_present_hw_cores = G_core_stat_scom_op.data & HW_CORES_MASK;

        G_present_cores = G_present_hw_cores;

        PROC_DBG("G_present_hw_cores =[%x] and G_present_cores =[%x] \n",
                G_present_hw_cores, G_present_cores);

        //Initializes the GpeRequest object for low core data collection
        l_rc = gpe_request_create(&G_low_cores.gpe_req,            // GpeRequest for the task
                                  &G_async_gpe_queue0,             // Queue
                                  IPC_ST_GET_CORE_DATA_FUNCID,     // Function ID
                                  &G_low_cores_data_parms,         // Task parameters
                                  SSX_WAIT_FOREVER,                // Timeout (none)
                                  NULL,                            // Callback
                                  NULL,                            // Callback arguments
                                  0 );                             // Options

        if( l_rc )
        {
            // If we failed to create the GpeRequest then there is a serious problem.
            MAIN_TRAC_ERR("Failure creating the low core data GpeRequest. [RC=0x%08x]", l_rc );

            /*
             * @errortype
             * @moduleid    PROC_CORE_INIT_MOD
             * @reasoncode  SSX_GENERIC_FAILURE
             * @userdata1   gpe_request_create return code
             * @userdata4   ERC_LOW_CORE_GPE_REQUEST_CREATE_FAILURE
             * @devdesc     Failure to create low cores GpeRequest object
             */
            l_err = createErrl(
                    PROC_CORE_INIT_MOD,                      //ModId
                    SSX_GENERIC_FAILURE,                     //Reasoncode
                    ERC_LOW_CORE_GPE_REQUEST_CREATE_FAILURE, //Extended reason code
                    ERRL_SEV_PREDICTIVE,                     //Severity
                    l_trace,                                 //Trace Buf
                    DEFAULT_TRACE_SIZE,                      //Trace Size
                    l_rc,                                    //Userdata1
                    0                                        //Userdata2
            );

            // commit error log
            REQUEST_RESET(l_err);
            break;
        }

        //Initializes high cores data GpeRequest object
        l_rc = gpe_request_create(&G_high_cores.gpe_req,           // GpeRequest for the task
                                  &G_async_gpe_queue0,             // Queue
                                  IPC_ST_GET_CORE_DATA_FUNCID,     // Function ID
                                  &G_high_cores_data_parms,        // Task parameters
                                  SSX_WAIT_FOREVER,                // Timeout (none)
                                  NULL,                            // Callback
                                  NULL,                            // Callback arguments
                                  0 );                             // Options

        if( l_rc )
        {
            // If we failed to create the GpeRequest then there is a serious problem.
            MAIN_TRAC_ERR("Failure creating the high core data GpeRequest. [RC=0x%08x]", l_rc );

            /*
             * @errortype
             * @moduleid    PROC_CORE_INIT_MOD
             * @reasoncode  SSX_GENERIC_FAILURE
             * @userdata1   gpe_request_create return code
             * @userdata4   ERC_HIGH_CORE_GPE_REQUEST_CREATE_FAILURE
             * @devdesc     Failure to create high core GpeRequest object
             */
            l_err = createErrl(
                                PROC_CORE_INIT_MOD,                       //ModId
                                SSX_GENERIC_FAILURE,                      //Reasoncode
                                ERC_HIGH_CORE_GPE_REQUEST_CREATE_FAILURE, //Extended reason code
                                ERRL_SEV_PREDICTIVE,                      //Severity
                                l_trace,                                  //Trace Buf
                                DEFAULT_TRACE_SIZE,                       //Trace Size
                                l_rc,                                       //Userdata1
                                0                                         //Userdata2
            );

            // commit error log
            REQUEST_RESET(l_err);
            break;
        }

    } while(0);

    // Initialize the core data control structures at the same time
// TEMP/TODO: Needs to be re-enabled when the data control task is enabled
//    proc_core_data_control_init();

    return;
}

// Function Specification
//
// Name: proc_get_bulk_core_data_ptr
//
// Description: Returns a pointer to the most up-to-date bulk core data for
//              the core associated with the specified OCC core id. Returns
//              NULL for core ID outside the range of 0 to 11.
//
// End Function Specification
CoreData * proc_get_bulk_core_data_ptr( const uint8_t i_occ_core_id )
{
    //The caller needs to send in a valid OCC core id. Since type is uchar
    //so there is no need to check for case less than 0.
    //If core id is invalid then returns NULL.

    if( i_occ_core_id <= 11 )
    {
        //Returns a pointer to the most up-to-date bulk core data.
        return G_core_data_ptrs[i_occ_core_id];
    }
    else
    {
        //Core id outside the range
        TRAC_ERR("Invalid OCC core id [0x%x]", i_occ_core_id);
        return( NULL );
    }
}

#ifdef PROC_DEBUG
// Function Specification
//
// Name: print_core_data_sensors
//
// Description: Print out sensors data of a specified core in the chip
//
// End Function Specification

void print_core_data_sensors(uint8_t core)
{
    CoreData * l_core_data = proc_get_bulk_core_data_ptr(core);

    if( l_core_data != NULL )
    {
        PROC_DBG("\n-------------------------------\n");
        PROC_DBG("Core [%x] Sensors Data \n", core);
        // TODO: Commented these out b/c they take too long to run in task.
        //dumpHexString(&l_core_data->sensors_tod, sizeof(l_core_data->sensors_tod), "Sensor TOD");
        //dumpHexString(&l_core_data->sensors_v0, sizeof(l_core_data->sensors_v0), "Sensor VO");
        //dumpHexString(&l_core_data->sensors_v1, sizeof(l_core_data->sensors_v1), "Sensor V1");
        //dumpHexString(&l_core_data->sensors_v8, sizeof(l_core_data->sensors_v8), "Sensor V8");
        //dumpHexString(&l_core_data->sensors_v9, sizeof(l_core_data->sensors_v9), "Sensor V9");
        PROC_DBG("\n");
    }
    else
    {
        PROC_DBG("\n G_core_data_ptrs[%x] is NULL. This should not happen.\n", core);
    }
    return;
}

// Function Specification
//
// Name: print_core_status
//
// Description: Print out information of a specified core in the chip
//
// End Function Specification

void print_core_status(uint8_t core)
{
    CoreData * l_core_data = proc_get_bulk_core_data_ptr(core);

    if( l_core_data != NULL )
    {
        PROC_DBG("\n-------------------------\n");
        PROC_DBG("Core [%x] status \n", core);
        // TODO: Commented these out b/c they take too long to run in task.
        //dumpHexString(&l_core_data->core_tod, sizeof(l_core_data->core_tod), "Core TOD");
        //dumpHexString(&l_core_data->core_raw_cycles, sizeof(l_core_data->core_raw_cycles), "Core Raw Cycles");
        //dumpHexString(&l_core_data->core_run_cycles, sizeof(l_core_data->core_run_cycles), "Run Cycles");
        //dumpHexString(&l_core_data->core_dispatch, sizeof(l_core_data->core_dispatch), "Core Dispatch");
        //dumpHexString(&l_core_data->core_completion, sizeof(l_core_data->core_completion), "Core Completion");
        //dumpHexString(&l_core_data->core_workrate, sizeof(l_core_data->core_workrate), "Core Workrate");
        //dumpHexString(&l_core_data->core_spurr, sizeof(l_core_data->core_spurr), "Core Spurr");
        //dumpHexString(&l_core_data->core_mem_hler_a, sizeof(l_core_data->core_mem_hler_a), "Mem A");
        //dumpHexString(&l_core_data->core_mem_hler_b, sizeof(l_core_data->core_mem_hler_b), "Mem B");
        //dumpHexString(&l_core_data->mem_tod, sizeof(l_core_data->mem_tod), "Mem TOD");
        //dumpHexString(&l_core_data->mem_raw_cycles, sizeof(l_core_data->mem_raw_cycles), "Mem Raw Cycles");
        PROC_DBG("\n");
    }
    else
    {
        PROC_DBG("\n G_core_data_ptrs[%x] is NULL. This should not happen.\n", core);
    }
    return;
}

#endif

OpenPOWER on IntegriCloud