summaryrefslogtreecommitdiffstats
path: root/src/occ_405/cmdh/cmdh_fsp_cmds.c
blob: 152653c02575502f92a0b4bd3b413a317594918d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/occ_405/cmdh/cmdh_fsp_cmds.c $                            */
/*                                                                        */
/* OpenPOWER OnChipController Project                                     */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2011,2019                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

#include "ssx.h"
#include "cmdh_service_codes.h"
#include "errl.h"
#include "trac.h"
#include "rtls.h"
#include "dcom.h"
#include "occ_common.h"
#include "state.h"
#include "cmdh_fsp_cmds.h"
#include "proc_pstate.h"
#include "centaur_data.h"
#include <amec_data.h>
#include "amec_amester.h"
#include "amec_service_codes.h"
#include "amec_freq.h"
#include "amec_sys.h"
#include "sensor.h"
#include "sensor_query_list.h"
#include "amec_master_smh.h"
#include <proc_data.h>
#include "homer.h"
#include <centaur_data.h>
#include <avsbus.h>
#include "wof.h"
#include "sensor_main_memory.h"
#include "gpu.h"

extern dimm_sensor_flags_t G_dimm_temp_expired_bitmap;
extern uint32_t G_first_proc_gpu_config;
extern uint32_t G_first_sys_gpu_config;
extern bool G_vrm_vdd_temp_expired;
extern bool G_reset_prep;
extern uint16_t G_amester_max_data_length;
extern uint8_t G_occ_interrupt_type;
extern bool G_epow_gpio_scheduled;
extern GpeRequest G_epow_gpio_detected_req;

extern opal_proc_voting_reason_t G_amec_opal_proc_throt_reason;

extern bool G_htmgt_notified_of_error;
extern bool G_smf_mode;

// This table contains tunable parameter information that can be exposed to
// customers (only Master OCC should access/control this table)
cmdh_tunable_param_table_t G_mst_tunable_parameter_table[CMDH_DEFAULT_TUNABLE_PARAM_NUM] =
{
    {1,   "Utilization threshold for increasing frequency",              3,  0,  980,  0,    1000},
    {2,   "Utilization threshold for decreasing frequency",              3,  0,  980,  0,    1000},
    {3,   "Number of samples for computing utilization statistics",      4,  0,  16,   1,    1024},
    {4,   "Step size for going up in frequency",                         3,  0,  8,    1,    1000},
    {5,   "Step size for going down in frequency",                       3,  0,  8,    1,    1000},
    {6,   "Delta percentage for determining active cores",               2,  0,  18,   0,    100 },
    {7,   "Utilization threshold to determine active cores with slack",  3,  0,  980,  0,    1000},
    {8,   "Enable/disable frequency delta between cores",                0,  0,  0,    0,    1   },
    {9,   "Maximum frequency delta between cores",                       2,  0,  10,   10,   100 },
    {10,  "Enable/disable Workload Optimized Frequency",                 0,  0,  1,    0,    1   },
};

// The first two columns of this table are the default tunable parameter values
// and mutipliers.
cmdh_tunable_param_table_ext_t G_mst_tunable_parameter_table_ext[CMDH_DEFAULT_TUNABLE_PARAM_NUM] =
{
    {980, 10,  9800},
    {980, 10,  9800},
    {16,  1,   16  },
    {8,   1,   8   },
    {8,   1,   8   },
    {18,  100, 1800},
    {980, 10,  980 },
    {0,   1,   0   },
    {10,  1,   10  },
    {1,   1,   1   },
};

// Flag to indicate that new tunable parameter values need to be written
// (=0: no new values available; =1: new values need to be written; =2: restore defaults)
uint8_t G_mst_tunable_parameter_overwrite = 0;

//Reverse association of channel to function.
uint8_t G_apss_ch_to_function[MAX_APSS_ADC_CHANNELS] = {0};

ERRL_RC cmdh_poll_v20 (cmdh_fsp_rsp_t * i_rsp_ptr);

#define MAX_CONSECUTIVE_HCODE_ELOGS 2

// Function Specification
//
// Name:  cmdh_tmgt_poll
//
// Description: Poll the OCC for OCC status, OCCs present
//              system mode, error log ID, etc.
//
// End Function Specification
errlHndl_t cmdh_tmgt_poll (const cmdh_fsp_cmd_t * i_cmd_ptr,
                           cmdh_fsp_rsp_t * o_rsp_ptr)
{
    errlHndl_t                  l_errlHndl  = NULL;
    cmdh_poll_query_t *         l_poll_cmd  = (cmdh_poll_query_t *) i_cmd_ptr;
    ERRL_RC                     l_rc        = ERRL_RC_INTERNAL_FAIL;

    do
    {
        if (l_poll_cmd->version == CMDH_POLL_VERSION20)
        {
            l_rc = cmdh_poll_v20(o_rsp_ptr);
            G_rsp_status = l_rc;
        }
        else
        {
            CMDH_TRAC_ERR("cmdh_tmgt_poll: Invalid version 0x%02X", l_poll_cmd->version);
            l_rc = ERRL_RC_INVALID_DATA;
            break;
        }
    } while(0);

    if(l_rc)
    {
        // Build Error Response packet
        cmdh_build_errl_rsp(i_cmd_ptr, o_rsp_ptr, l_rc, &l_errlHndl);
    }

    return l_errlHndl;
}


// Function Specification
//
// Name:  cmdh_poll_v20
//
// Description: Used for version 0x20 poll calls from BMC/HTMGT.
//
// End Function Specification
ERRL_RC cmdh_poll_v20(cmdh_fsp_rsp_t * o_rsp_ptr)
{
    ERRL_RC                     l_rc  = ERRL_RC_INTERNAL_FAIL;
    int                         k = 0, l_max_sensors = 0;
    int                         l_err_hist_idx = 0, l_sens_list_idx = 0;
    cmdh_poll_sensor_db_t       l_sensorHeader;
    static unsigned int         L_num_hcode_elogs = 0;

    // Set pointer to start of o_rsp_ptr
    cmdh_poll_resp_v20_fixed_t * l_poll_rsp = (cmdh_poll_resp_v20_fixed_t *) o_rsp_ptr;

    // Byte 1
    l_poll_rsp->status.word = SMGR_validate_get_valid_states();

    // Byte 2
    l_poll_rsp->ext_status.word = 0;

    //SET DVFS bits
    for ( k = 0; k < MAX_NUM_CORES; k++ )
    {
        uint32_t l_freq_reason = g_amec->proc[0].core[k].f_reason;
        if ( l_freq_reason & AMEC_VOTING_REASON_PROC_THRM )
        {
            // only set DVFS bit if throttling below frequency to report throttling
            if(G_amec_opal_proc_throt_reason == CPU_OVERTEMP)
            {
               l_poll_rsp->ext_status.dvfs_due_to_ot = 1;
            }
        }

        if ( l_freq_reason & AMEC_VOTING_REASON_VDD_THRM )
        {
            // only set DVFS bit if throttling below frequency to report throttling
            if(G_amec_opal_proc_throt_reason == VDD_OVERTEMP)
            {
               l_poll_rsp->ext_status.dvfs_due_to_vdd_ot = 1;
            }
        }

        if ( l_freq_reason & (AMEC_VOTING_REASON_PPB | AMEC_VOTING_REASON_PMAX | AMEC_VOTING_REASON_PWR) )
        {
            // only set DVFS bit if throttling below frequency to report throttling
            if(G_amec_opal_proc_throt_reason == POWERCAP)
            {
               l_poll_rsp->ext_status.dvfs_due_to_pwr = 1;
            }
        }
    }

    //If memory is being throttled due to OverTemp or due to Failure to read sensors set mthrot_due_to_ot bit.
    if (((g_amec->mem_throttle_reason == AMEC_MEM_VOTING_REASON_DIMM) ||
         (g_amec->mem_throttle_reason == AMEC_MEM_VOTING_REASON_CENT)))
    {
        l_poll_rsp->ext_status.mthrot_due_to_ot = 1;
    }

    //If we are in oversubscription, set the N_power bit.
    if( AMEC_INTF_GET_OVERSUBSCRIPTION() )
    {
        l_poll_rsp->ext_status.n_power = 1;
    }

    // Byte 3
    l_poll_rsp->occ_pres_mask   = G_sysConfigData.is_occ_present;
    // Byte 4
    l_poll_rsp->config_data     = DATA_request_cnfgdata();
    // Byte 5
    l_poll_rsp->state           = CURRENT_STATE();
    // Byte 6
    l_poll_rsp->mode            = CURRENT_MODE();
    // Byte 7
    l_poll_rsp->ips_status.word = 0;
    l_poll_rsp->ips_status.ips_enabled = G_ips_config_data.iv_ipsEnabled;
    l_poll_rsp->ips_status.ips_active = AMEC_mst_get_ips_active_status();
    // Error Log:
    bool check_405_elogs = true;
    // if (405 has no elogs) OR (have not hit max consecutive hcode elogs)
    if ((getOldestErrlID() == 0) || (L_num_hcode_elogs < MAX_CONSECUTIVE_HCODE_ELOGS))
    {
        // Check for HCODE errors
        hcode_elog_entry_t elog_entry;
        unsigned int index = 0;
        for (; index < G_hcode_elog_table_slots; ++index)
        {
            elog_entry.dw0.value = in64(&G_hcode_elog_table[index]);
            if (elog_entry.dw0.value != 0)
            { // Found HCODE elog
                if (elog_entry.dw0.fields.errlog_src != ERRL_SOURCE_405)
                {
                    ++L_num_hcode_elogs;
                    // Byte 8:
                    l_poll_rsp->errl_id         = elog_entry.dw0.fields.errlog_id;
                    // Byte 9 - 12:
                    l_poll_rsp->errl_address    = elog_entry.dw0.fields.errlog_addr;
                    // Byte 13 - 14:
                    l_poll_rsp->errl_length     = elog_entry.dw0.fields.errlog_len;
                    // Byte 15:
                    l_poll_rsp->errl_source     = elog_entry.dw0.fields.errlog_src;
                    check_405_elogs = false;
                    break;
                }
                else
                {
                    TRAC_ERR("cmdh_poll_v20: ignoring HCODE error with 405 source (id:0x%02X, len:0x%04X, address:0x%08X)",
                             elog_entry.dw0.fields.errlog_id, elog_entry.dw0.fields.errlog_len, elog_entry.dw0.fields.errlog_addr);
                    // Zero out error log entry in list so hcode can reuse
                    out64(&G_hcode_elog_table[index], 0);
                    G_htmgt_notified_of_error = false;
                }
            }
        }
    }
    if (check_405_elogs)
    { // No, HCODE errors, check/add any 405 elog
        L_num_hcode_elogs = 0;
        // Byte 8:
        l_poll_rsp->errl_id         = getOldestErrlID();
        // Byte 9 - 12:
        l_poll_rsp->errl_address    = getErrlOCIAddrByID(l_poll_rsp->errl_id);
        // Byte 13 - 14:
        l_poll_rsp->errl_length     = getErrlLengthByID(l_poll_rsp->errl_id);
        // Byte 15:
        l_poll_rsp->errl_source     = ERRL_SOURCE_405;
    }
    //If errl_id is not 0, then neither address or length should be zero.
    //This should not happen, but if it does TMGT will create an error log that
    //includes the data at the errl slot address given that can be used for debug.
    //NOTE: One cause for a false errlog id is corruption of data in one errl slot
    //      due to writing data greater than the size of the previous slot.  For
    //      example writing the CallHome errorlog (3kb) into a regular sized (2kb) slot.
    //      Make sure to verify the order of the memory allocation for the errl slots.
    if ( (l_poll_rsp->errl_id != 0) &&
         ((l_poll_rsp->errl_address == 0) || (l_poll_rsp->errl_length == 0)))
    {
        TRAC_ERR("cmdh_poll_v20: error log sent with bad data "
                 "(id:0x%02X, source:0x%02X, len:0x%04X, address:0x%08X)",
                 l_poll_rsp->errl_id, l_poll_rsp->errl_source, l_poll_rsp->errl_length, l_poll_rsp->errl_address);
    }

    // Byte 16: GPU Configuration
    l_poll_rsp->gpu_presence = (uint8_t)G_first_proc_gpu_config;

    // Byte 17 - 32 (16 bytes): OCC level
    memcpy( (void *) l_poll_rsp->occ_level, (void *) &G_occ_buildname[0], 16);

    // Byte 33 - 38:
    char l_sensor_ec[6] = "SENSOR";
    memcpy( (void *) l_poll_rsp->sensor_ec, (void *) &l_sensor_ec[0], (size_t) sizeof(l_sensor_ec));
    // Byte 39:
    l_poll_rsp->sensor_dblock_count = 0;
    // Byte 40:
    l_poll_rsp->sensor_dblock_version = 0x01;  //Currently only 0x01 is supported.

    //l_rsp_index is used as an index into o_rsp_ptr
    uint16_t l_rsp_index = CMDH_POLL_RESP_LEN_V20;

    ////////////////////
    // TEMP sensors:
    // Generate datablock header for temp sensors and sensor data.

    // Set up the header
    memset((void*) &l_sensorHeader, 0, (size_t)sizeof(cmdh_poll_sensor_db_t));
    memcpy ((void *) &(l_sensorHeader.eyecatcher[0]), SENSOR_TEMP, 4);
    l_sensorHeader.format = 0x02;
    l_sensorHeader.length = sizeof(cmdh_poll_temp_sensor_t);
    l_sensorHeader.count  = 0;

    //Initialize to max number of possible temperature sensors.
    l_max_sensors = MAX_NUM_CORES + MAX_NUM_MEM_CONTROLLERS + (MAX_NUM_MEM_CONTROLLERS * NUM_DIMMS_PER_CENTAUR) + (MAX_NUM_GPU_PER_DOMAIN * 2);
    l_max_sensors++;  // +1 for VRM
    cmdh_poll_temp_sensor_t l_tempSensorList[l_max_sensors];
    memset(l_tempSensorList, 0x00, sizeof(l_tempSensorList));

    // Add the core temperatures
    for (k=0; k<MAX_NUM_CORES; k++)
    {
        if(CORE_PRESENT(k))
        {
            l_tempSensorList[l_sensorHeader.count].id = G_amec_sensor_list[TEMPPROCTHRMC0 + k]->ipmi_sid;
            l_tempSensorList[l_sensorHeader.count].fru_type = DATA_FRU_PROC;
            l_tempSensorList[l_sensorHeader.count].value = (G_amec_sensor_list[TEMPPROCTHRMC0 + k]->sample) & 0xFF;
            l_sensorHeader.count++;
        }
    }

    // Add the DIMM and centaur temperatures
    uint8_t l_cent, l_port, l_dimm = 0;
    if(G_sysConfigData.mem_type == MEM_TYPE_NIMBUS)
    {
        for (l_port=0; l_port < NUM_DIMM_PORTS; l_port++)
        {
            for(l_dimm=0; l_dimm < NUM_DIMMS_PER_CENTAUR; l_dimm++)
            {
                if (g_amec->proc[0].memctl[l_port].centaur.dimm_temps[l_dimm].temp_sid != 0)
                {
                    l_tempSensorList[l_sensorHeader.count].id = g_amec->proc[0].memctl[l_port].centaur.dimm_temps[l_dimm].temp_sid;
                    l_tempSensorList[l_sensorHeader.count].fru_type = DATA_FRU_DIMM;
                    //If a dimm timed out long enough, we should return 0xFFFF for that sensor.
                    if (G_dimm_temp_expired_bitmap.bytes[l_port] & (DIMM_SENSOR0 >> l_dimm))
                    {
                        l_tempSensorList[l_sensorHeader.count].value = 0xFF;
                    }
                    else
                    {
                        l_tempSensorList[l_sensorHeader.count].value = (g_amec->proc[0].memctl[l_port].centaur.dimm_temps[l_dimm].cur_temp) & 0xFF;
                    }

                    l_sensorHeader.count++;
                }
            }
        }
    }
    else if (G_sysConfigData.mem_type == MEM_TYPE_CUMULUS)
    {
        static bool l_traced_missing_sid = FALSE;
        for (l_cent=0; l_cent < MAX_NUM_MEM_CONTROLLERS; l_cent++)
        {
            if (CENTAUR_PRESENT(l_cent))
            {
                //Add entry for centaurs.
                uint32_t l_temp_sid = g_amec->proc[0].memctl[l_cent].centaur.temp_sid;
                l_tempSensorList[l_sensorHeader.count].id = l_temp_sid;
                l_tempSensorList[l_sensorHeader.count].fru_type = DATA_FRU_CENTAUR;
                if (G_cent_timeout_logged_bitmap & (CENTAUR0_PRESENT_MASK >> l_cent))
                {
                    l_tempSensorList[l_sensorHeader.count].value = 0xFF;
                }
                else
                {
                    l_tempSensorList[l_sensorHeader.count].value = (g_amec->proc[0].memctl[l_cent].centaur.centaur_hottest.cur_temp) & 0xFF;
                }

                l_sensorHeader.count++;

                //Add entries for present dimms associated with current centaur l_cent.
                for(l_dimm=0; l_dimm < NUM_DIMMS_PER_CENTAUR; l_dimm++)
                {
                    l_temp_sid = g_amec->proc[0].memctl[l_cent].centaur.dimm_temps[l_dimm].temp_sid;

                    if((FSP_SUPPORTED_OCC == G_occ_interrupt_type) && (l_temp_sid == 0) && (g_amec->proc[0].memctl[l_cent].centaur.dimm_temps[l_dimm].cur_temp != 0))
                    {
                        if (!l_traced_missing_sid)
                        {
                            CMDH_TRAC_ERR("cmdh_poll_v20: DIMM%04X sensor not defined but temperature was non-zero", ((l_cent << 8)|l_dimm));
                            l_traced_missing_sid = TRUE;
                        }
                        l_temp_sid = 1 + l_dimm; // If sid is zero them make up a sid for FSP
                    }

                    if (l_temp_sid != 0)
                    {
                        l_tempSensorList[l_sensorHeader.count].id = l_temp_sid;
                        l_tempSensorList[l_sensorHeader.count].fru_type = DATA_FRU_DIMM;
                        //If a dimm timed out long enough, we should return 0xFFFF for that sensor.
                        if (G_dimm_temp_expired_bitmap.bytes[l_cent] & (DIMM_SENSOR0 >> l_dimm))
                        {
                            l_tempSensorList[l_sensorHeader.count].value = 0xFF;
                        }
                        else
                        {
                            l_tempSensorList[l_sensorHeader.count].value = (g_amec->proc[0].memctl[l_cent].centaur.dimm_temps[l_dimm].cur_temp & 0xFF);
                        }

                        l_sensorHeader.count++;
                    }
                }
            }
        }
    }

    if (G_avsbus_vdd_monitoring)
    {
        // Add Vdd temp
        const sensor_t *tempvdd = getSensorByGsid(TEMPVDD);
        if (tempvdd != NULL)
        {
            l_tempSensorList[l_sensorHeader.count].id = AMECSENSOR_PTR(TEMPVDD)->ipmi_sid;
            l_tempSensorList[l_sensorHeader.count].fru_type = DATA_FRU_VRM_VDD;
            if (G_vrm_vdd_temp_expired)
            {
                l_tempSensorList[l_sensorHeader.count].value = 0xFF;
            }
            else
            {
                l_tempSensorList[l_sensorHeader.count].value = tempvdd->sample & 0xFF;
            }
            l_sensorHeader.count++;
        }
    }

    // Add GPU temperatures
    for (k=0; k<MAX_NUM_GPU_PER_DOMAIN; k++)
    {
        if(GPU_PRESENT(k))
        {
            // GPU core temperature
            l_tempSensorList[l_sensorHeader.count].id = G_amec_sensor_list[TEMPGPU0 + k]->ipmi_sid;
            l_tempSensorList[l_sensorHeader.count].fru_type = DATA_FRU_GPU;
            if(g_amec->gpu[k].status.coreTempFailure)
            {
               // failed to read core temperature return 0xFF
               l_tempSensorList[l_sensorHeader.count].value = 0xFF;
            }
            else if(g_amec->gpu[k].status.coreTempNotAvailable)
            {
               // core temperature not available return 0
               l_tempSensorList[l_sensorHeader.count].value = 0;
            }
            else
            {
               // have a good core temperature return the reading
               l_tempSensorList[l_sensorHeader.count].value = (G_amec_sensor_list[TEMPGPU0 + k]->sample) & 0xFF;
            }
            l_sensorHeader.count++;

            // GPU memory temperature
            l_tempSensorList[l_sensorHeader.count].id = G_amec_sensor_list[TEMPGPU0MEM + k]->ipmi_sid;
            l_tempSensorList[l_sensorHeader.count].fru_type = DATA_FRU_GPU_MEM;
            if(g_amec->gpu[k].status.memTempFailure)
            {
               // failed to read memory temperature return 0xFF
               l_tempSensorList[l_sensorHeader.count].value = 0xFF;
            }
            else if(g_amec->gpu[k].status.memTempNotAvailable)
            {
               // memory temperature not available return 0
               l_tempSensorList[l_sensorHeader.count].value = 0;
            }
            else
            {
               // have a good memory temperature return the reading
               l_tempSensorList[l_sensorHeader.count].value = (G_amec_sensor_list[TEMPGPU0MEM + k]->sample) & 0xFF;
            }
            l_sensorHeader.count++;
        }
    }

    // Copy header first.
    memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]), (void *)&l_sensorHeader, sizeof(l_sensorHeader));
    // Increment index into response buffer.
    l_rsp_index += sizeof(l_sensorHeader);
    l_poll_rsp->sensor_dblock_count +=1;
    // Write data to resp buffer if any.
    if (l_sensorHeader.count)
    {
        int l_sensordataSz = l_sensorHeader.count * l_sensorHeader.length;
        // Copy sensor data into response buffer.
        memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]), (void *)l_tempSensorList, l_sensordataSz);
        // Increment index into response buffer.
        l_rsp_index += l_sensordataSz;

    }

    ///////////////////
    // FREQ Sensors:
    // Generate datablock header for freq sensors and sensor data.
    memset((void*) &l_sensorHeader, 0, (size_t)sizeof(cmdh_poll_sensor_db_t));
    memcpy ((void *) &(l_sensorHeader.eyecatcher[0]), SENSOR_FREQ, 4);
    l_sensorHeader.format = 0x02;
    l_sensorHeader.length = sizeof(cmdh_poll_freq_sensor_t);
    l_sensorHeader.count  = 0;

    cmdh_poll_freq_sensor_t l_freqSensorList[MAX_NUM_CORES];
    for (k=0; k<MAX_NUM_CORES; k++)
    {
        if(CORE_PRESENT(k))
        {
            l_freqSensorList[l_sensorHeader.count].id = G_amec_sensor_list[FREQAC0 + k]->ipmi_sid;
            l_freqSensorList[l_sensorHeader.count].value = G_amec_sensor_list[FREQAC0 + k]->sample;
            l_sensorHeader.count++;
        }
    }

    // Copy header to response buffer.
    memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]), (void *)&l_sensorHeader, sizeof(l_sensorHeader));
    //Increment index into response buffer.
    l_rsp_index += sizeof(l_sensorHeader);
    l_poll_rsp->sensor_dblock_count +=1;
    // Write data to outbuffer if any.
    if (l_sensorHeader.count)
    {
        int l_sensordataSz = l_sensorHeader.count * l_sensorHeader.length;
        // Copy sensor data into response buffer.
        memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]), (void *)l_freqSensorList, l_sensordataSz);
        // Increment index into response buffer.
        l_rsp_index += l_sensordataSz;
    }

    /////////////////////
    // POWR Sensors:
    // Generate datablock header for power sensors and sensor data.
    // If APSS is present return format version 0x02 by MASTER ONLY.
    // If no APSS present return format version 0xA0 by all OCCs.
    if ( (G_occ_role == OCC_MASTER) && (G_pwr_reading_type == PWR_READING_TYPE_APSS) )
    {
        memset((void*) &l_sensorHeader, 0, (size_t)sizeof(cmdh_poll_sensor_db_t));
        memcpy ((void *) &(l_sensorHeader.eyecatcher[0]), SENSOR_POWR, 4);
        l_sensorHeader.format = 0x02;
        l_sensorHeader.length = sizeof(cmdh_poll_power_sensor_t);
        l_sensorHeader.count  = 0;

        // Generate sensor list.
        cmdh_poll_power_sensor_t l_pwrSensorList[MAX_APSS_ADC_CHANNELS];
        for (k = 0; k < MAX_APSS_ADC_CHANNELS; k++)
        {
            const uint8_t function_id = G_apss_ch_to_function[k];
            if ((function_id != ADC_12V_SENSE) &&
                (function_id != ADC_GND_REMOTE_SENSE) &&
                (function_id != ADC_12V_STANDBY_CURRENT) &&
                (function_id != ADC_VOLT_SENSE_2))
            {
                // only return channel power for GPU if the GPU is present
                bool include = FALSE;
                if  ( (function_id == ADC_GPU_0_0) ||
                      ((function_id >= ADC_GPU_0_1) && (function_id <= ADC_GPU_VOLT2_1_1)) )
                {
                    // GPU channel: include if has a non-zero reading or if GPU is present
                    if ( ( G_amec_sensor_list[PWRAPSSCH0 + k]->sample > 0) ||
                         ( ((ADC_GPU_0_0 == function_id) || (ADC_GPU_VOLT2_0_0 == function_id)) &&
                           (G_first_sys_gpu_config & 0x01) ) ||
                         ( ((ADC_GPU_0_1 == function_id) || (ADC_GPU_VOLT2_0_1 == function_id)) &&
                           (G_first_sys_gpu_config & 0x02) ) ||
                         ( ( ADC_GPU_0_2 == function_id) &&
                           (G_first_sys_gpu_config & 0x04) ) ||
                         ( ((ADC_GPU_1_0 == function_id) || (ADC_GPU_VOLT2_1_0 == function_id)) &&
                           (G_first_sys_gpu_config & 0x08) ) ||
                         ( ((ADC_GPU_1_1 == function_id) || (ADC_GPU_VOLT2_1_1 == function_id)) &&
                           (G_first_sys_gpu_config & 0x10) ) ||
                         ( ( ADC_GPU_1_2 == function_id) &&
                           (G_first_sys_gpu_config & 0x20) ) )
                    {
                        // GPU is present
                        include = TRUE;
                    }
                }
                else
                {
                    // non-GPU channel
                    include = TRUE;
                }
                if (include)
                {
                    l_pwrSensorList[l_sensorHeader.count].id = G_amec_sensor_list[PWRAPSSCH0 + k]->ipmi_sid;
                    l_pwrSensorList[l_sensorHeader.count].function_id = function_id;
                    l_pwrSensorList[l_sensorHeader.count].apss_channel = k;
                    l_pwrSensorList[l_sensorHeader.count].reserved = 0;
                    l_pwrSensorList[l_sensorHeader.count].current = G_amec_sensor_list[PWRAPSSCH0 + k]->sample;
                    l_pwrSensorList[l_sensorHeader.count].accumul = G_amec_sensor_list[PWRAPSSCH0 + k]->accumulator;
                    l_pwrSensorList[l_sensorHeader.count].update_tag  = G_amec_sensor_list[PWRAPSSCH0 + k]->update_tag;
                    l_sensorHeader.count++;
                }
            }
        }

        // Copy header to response buffer.
        memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]), (void *)&l_sensorHeader, sizeof(l_sensorHeader));
        // Increment index into response buffer.
        l_rsp_index += sizeof(l_sensorHeader);
        l_poll_rsp->sensor_dblock_count +=1;
        // Write data to resp buffer if any.
        if (l_sensorHeader.count)
        {
            uint16_t l_sensordataSz = l_sensorHeader.count * l_sensorHeader.length;
            // Copy sensor data into response buffer.
            memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]), (void *)l_pwrSensorList, l_sensordataSz);
            // Increment index into response buffer.
            l_rsp_index += l_sensordataSz;
        }
    }

    else if (G_pwr_reading_type != PWR_READING_TYPE_APSS)
    {
        memset((void*) &l_sensorHeader, 0, (size_t)sizeof(cmdh_poll_sensor_db_t));
        memcpy ((void *) &(l_sensorHeader.eyecatcher[0]), SENSOR_POWR, 4);
        l_sensorHeader.format = 0xA0;
        l_sensorHeader.length = sizeof(cmdh_poll_power_no_apss_sensor_t);
        l_sensorHeader.count  = 1;

        cmdh_poll_power_no_apss_sensor_t l_pwrData;
        memset((void*) &l_pwrData, 0, (size_t)sizeof(cmdh_poll_power_no_apss_sensor_t));

        // if there is a non-APSS chip for system power fill in system power else return 0's
        if(G_pwr_reading_type != PWR_READING_TYPE_NONE)
        {
            l_pwrData.sys_pwr_id = G_amec_sensor_list[PWRSYS]->ipmi_sid;
            l_pwrData.sys_pwr_update_time = G_mics_per_tick; // system power is read every tick
            l_pwrData.sys_pwr_current = G_amec_sensor_list[PWRSYS]->sample;
            l_pwrData.sys_pwr_update_tag = G_amec_sensor_list[PWRSYS]->update_tag;
            l_pwrData.sys_pwr_accumul = G_amec_sensor_list[PWRSYS]->accumulator;
        }

        // Proc power is from AVS bus, return readings if reading Vdd and Vdn else return 0's
        if( (G_avsbus_vdd_monitoring) && (G_avsbus_vdn_monitoring) )
        {
            // when no APSS present proc readings are updated based on AVS timing use PWRVDD/N timing (2 ticks)
            l_pwrData.proc_pwr_update_time = G_mics_per_tick * 2;
            l_pwrData.proc_pwr_current = G_amec_sensor_list[PWRPROC]->sample;
            l_pwrData.proc_pwr_update_tag = G_amec_sensor_list[PWRPROC]->update_tag;
            l_pwrData.proc_pwr_accumul = G_amec_sensor_list[PWRPROC]->accumulator;
            l_pwrData.vdd_pwr_current = G_amec_sensor_list[PWRVDD]->sample;
            l_pwrData.vdd_pwr_update_tag = G_amec_sensor_list[PWRVDD]->update_tag;
            l_pwrData.vdd_pwr_accumul = G_amec_sensor_list[PWRVDD]->accumulator;
            l_pwrData.vdn_pwr_current = G_amec_sensor_list[PWRVDN]->sample;
            l_pwrData.vdn_pwr_update_tag = G_amec_sensor_list[PWRVDN]->update_tag;
            l_pwrData.vdn_pwr_accumul = G_amec_sensor_list[PWRVDN]->accumulator;
        }

        // Copy header to response buffer.
        memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]),
                (void *)&l_sensorHeader, sizeof(l_sensorHeader));
        // Increment index into response buffer.
        l_rsp_index += sizeof(l_sensorHeader);

        // Copy sensor data into response buffer.
        memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]),
                (void *)&(l_pwrData), sizeof(cmdh_poll_power_no_apss_sensor_t));
        // Increment index into response buffer.
        l_rsp_index += sizeof(cmdh_poll_power_no_apss_sensor_t);

        l_poll_rsp->sensor_dblock_count +=1;
    }

    ////////////////////////
    // POWER CAPS:
    // Generate datablock header for power caps.  RETURNED by MASTER ONLY.
    if (G_occ_role == OCC_MASTER)
    {
        memset((void*) &l_sensorHeader, 0, (size_t)sizeof(cmdh_poll_sensor_db_t));
        memcpy ((void *) &(l_sensorHeader.eyecatcher[0]), SENSOR_CAPS, 4);
        l_sensorHeader.format = 0x03;
        l_sensorHeader.length = sizeof(cmdh_poll_pcaps_sensor_t);
        l_sensorHeader.count  = 1;

        cmdh_poll_pcaps_sensor_t l_pcapData;
        memset((void*) &l_pcapData, 0, (size_t)sizeof(cmdh_poll_pcaps_sensor_t));

        // Return 0's for power cap section if there is no system power reading
        // OCC can't support power capping without knowing the system power
        if(G_pwr_reading_type != PWR_READING_TYPE_NONE)
        {
            if ((G_sysConfigData.system_type.non_redund_ps == false) ||
                (! AMEC_INTF_GET_OVERSUBSCRIPTION()))
            {
                l_pcapData.current = g_amec->pcap.active_node_pcap;
            }
            // else OCC is not running pcap algorithim so leave current cap as 0
            l_pcapData.system = G_amec_sensor_list[PWRSYS]->sample;
            l_pcapData.n = G_sysConfigData.pcap.oversub_pcap;
            l_pcapData.max = G_sysConfigData.pcap.max_pcap;
            l_pcapData.hard_min = G_sysConfigData.pcap.hard_min_pcap;
            l_pcapData.soft_min = G_sysConfigData.pcap.soft_min_pcap;
            l_pcapData.user = G_sysConfigData.pcap.current_pcap;
            l_pcapData.source = G_sysConfigData.pcap.source;
        }

        // Copy header to response buffer.
        memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]),
                (void *)&l_sensorHeader, sizeof(l_sensorHeader));
        // Increment index into response buffer.
        l_rsp_index += sizeof(l_sensorHeader);

        // Copy sensor data into response buffer.
        memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]),
                (void *)&(l_pcapData), sizeof(cmdh_poll_pcaps_sensor_t));
        // Increment index into response buffer.
        l_rsp_index += sizeof(cmdh_poll_pcaps_sensor_t);

        l_poll_rsp->sensor_dblock_count +=1;
    }

    ///////////////////
    // EXTN Sensors:
    // Generate datablock header for freq sensors and sensor data.
    memset((void*) &l_sensorHeader, 0, (size_t)sizeof(cmdh_poll_sensor_db_t));
    memcpy ((void *) &(l_sensorHeader.eyecatcher[0]), SENSOR_EXTN, 4);
    l_sensorHeader.format = 0x01;
    l_sensorHeader.length = sizeof(cmdh_poll_extn_sensor_t);
    l_sensorHeader.count  = 0;

    cmdh_poll_extn_sensor_t l_extnSensorList[MAX_EXTN_SENSORS] = {{0}};
    l_extnSensorList[l_sensorHeader.count].name = EXTN_NAME_FMIN;
    uint16_t freq = G_sysConfigData.sys_mode_freq.table[OCC_MODE_MIN_FREQUENCY];
    l_extnSensorList[l_sensorHeader.count].data[0] = proc_freq2pstate(freq);
    l_extnSensorList[l_sensorHeader.count].data[1] = CONVERT_UINT16_UINT8_HIGH(freq);
    l_extnSensorList[l_sensorHeader.count].data[2] = CONVERT_UINT16_UINT8_LOW(freq);
    l_sensorHeader.count++;
    l_extnSensorList[l_sensorHeader.count].name = EXTN_NAME_FNOM;
    freq = G_sysConfigData.sys_mode_freq.table[OCC_MODE_NOMINAL];
    l_extnSensorList[l_sensorHeader.count].data[0] = proc_freq2pstate(freq);
    l_extnSensorList[l_sensorHeader.count].data[1] = CONVERT_UINT16_UINT8_HIGH(freq);
    l_extnSensorList[l_sensorHeader.count].data[2] = CONVERT_UINT16_UINT8_LOW(freq);
    l_sensorHeader.count++;
    l_extnSensorList[l_sensorHeader.count].name = EXTN_NAME_FTURBO;
    freq = G_sysConfigData.sys_mode_freq.table[OCC_MODE_TURBO];
    if (freq > 0)
    {
        l_extnSensorList[l_sensorHeader.count].data[0] = proc_freq2pstate(freq);
        l_extnSensorList[l_sensorHeader.count].data[1] = CONVERT_UINT16_UINT8_HIGH(freq);
        l_extnSensorList[l_sensorHeader.count].data[2] = CONVERT_UINT16_UINT8_LOW(freq);
    }
    l_sensorHeader.count++;
    l_extnSensorList[l_sensorHeader.count].name = EXTN_NAME_FUTURBO;
    freq = G_sysConfigData.sys_mode_freq.table[OCC_MODE_UTURBO];
    if (freq > 0)
    {
        l_extnSensorList[l_sensorHeader.count].data[0] = proc_freq2pstate(freq);
        l_extnSensorList[l_sensorHeader.count].data[1] = CONVERT_UINT16_UINT8_HIGH(freq);
        l_extnSensorList[l_sensorHeader.count].data[2] = CONVERT_UINT16_UINT8_LOW(freq);
    }
    l_sensorHeader.count++;

    l_extnSensorList[l_sensorHeader.count].name = EXTN_NAME_CLIP;
    // get Pstate for the current minimum maximum frequency OCC is allowing
    // actual frequency is driven down by the lowest max frequency across all cores
    freq = g_amec->proc[0].core_min_freq;
    if (freq > 0)
    {
        l_extnSensorList[l_sensorHeader.count].data[0] = proc_freq2pstate(freq);
    }
    else
    {
        l_extnSensorList[l_sensorHeader.count].data[0] = 0xFF;
    }

    // current counter will be 0 if not currently clipping
    l_extnSensorList[l_sensorHeader.count].data[1] = g_amec->proc[0].current_clip_count;
    // clip history reason
    l_extnSensorList[l_sensorHeader.count].data[2] = CONVERT_UINT32_UINT8_UPPER_HIGH(g_amec->proc[0].chip_f_reason_history);
    l_extnSensorList[l_sensorHeader.count].data[3] = CONVERT_UINT32_UINT8_UPPER_LOW(g_amec->proc[0].chip_f_reason_history);
    l_extnSensorList[l_sensorHeader.count].data[4] = CONVERT_UINT32_UINT8_LOWER_HIGH(g_amec->proc[0].chip_f_reason_history);
    l_extnSensorList[l_sensorHeader.count].data[5] = CONVERT_UINT32_UINT8_LOWER_LOW(g_amec->proc[0].chip_f_reason_history);
    l_sensorHeader.count++;

    // WOF clip info from PGPE
    l_extnSensorList[l_sensorHeader.count].name = EXTN_NAME_WOFC;
    if(g_amec->wof.wof_disabled)
    {
        // WOF disabled put 0xFF for clip followed by WOF disable reason
        l_extnSensorList[l_sensorHeader.count].data[0] = 0xFF;
        l_extnSensorList[l_sensorHeader.count].data[1] = 0x00;
        l_extnSensorList[l_sensorHeader.count].data[2] = CONVERT_UINT32_UINT8_UPPER_HIGH(g_amec->wof.wof_disabled);
        l_extnSensorList[l_sensorHeader.count].data[3] = CONVERT_UINT32_UINT8_UPPER_LOW(g_amec->wof.wof_disabled);
        l_extnSensorList[l_sensorHeader.count].data[4] = CONVERT_UINT32_UINT8_LOWER_HIGH(g_amec->wof.wof_disabled);
        l_extnSensorList[l_sensorHeader.count].data[5] = CONVERT_UINT32_UINT8_LOWER_LOW(g_amec->wof.wof_disabled);
    }
    else
    {
        // WOF is enabled return WOF information from PGPE
        // These are read from PGPE shared SRAM every WOF cycle
        l_extnSensorList[l_sensorHeader.count].data[0] = g_amec->wof.f_clip_ps;
        l_extnSensorList[l_sensorHeader.count].data[1] = CONVERT_UINT16_UINT8_HIGH(g_amec->wof.v_clip);
        l_extnSensorList[l_sensorHeader.count].data[2] = CONVERT_UINT16_UINT8_LOW(g_amec->wof.v_clip);
        l_extnSensorList[l_sensorHeader.count].data[3] = CONVERT_UINT16_UINT8_HIGH(g_amec->wof.v_ratio);
        l_extnSensorList[l_sensorHeader.count].data[4] = CONVERT_UINT16_UINT8_LOW(g_amec->wof.v_ratio);
    }
    l_sensorHeader.count++;

    // add any non-0 error history counts
    for(l_err_hist_idx=0; l_err_hist_idx < ERR_HISTORY_SIZE; l_err_hist_idx++)
    {
        if(G_error_history[l_err_hist_idx])
        {
            if(l_sens_list_idx == 0)
            {
                // first one to add fill in name
                l_extnSensorList[l_sensorHeader.count].name = EXTN_NAME_ERRHIST;
                l_extnSensorList[l_sensorHeader.count].data[l_sens_list_idx] = l_err_hist_idx;
                l_sens_list_idx++;
                l_extnSensorList[l_sensorHeader.count].data[l_sens_list_idx] = G_error_history[l_err_hist_idx];
                l_sens_list_idx++;
            }
            else if(l_sens_list_idx < 5)  // room in current extended error history sensor?
            {
                l_extnSensorList[l_sensorHeader.count].data[l_sens_list_idx] = l_err_hist_idx;
                l_sens_list_idx++;
                l_extnSensorList[l_sensorHeader.count].data[l_sens_list_idx] = G_error_history[l_err_hist_idx];
                l_sens_list_idx++;
            }
            else // no room start another extended error history sensor
            {
                l_sensorHeader.count++;
                l_extnSensorList[l_sensorHeader.count].name = EXTN_NAME_ERRHIST;
                l_sens_list_idx = 0;
                l_extnSensorList[l_sensorHeader.count].data[l_sens_list_idx] = l_err_hist_idx;
                l_sens_list_idx++;
                l_extnSensorList[l_sensorHeader.count].data[l_sens_list_idx] = G_error_history[l_err_hist_idx];
                l_sens_list_idx++;
            }
        }
    }
    if(l_sens_list_idx)
    {
        l_sensorHeader.count++;
    }


    // Copy header to response buffer.
    memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]), (void *)&l_sensorHeader, sizeof(l_sensorHeader));
    //Increment index into response buffer.
    l_rsp_index += sizeof(l_sensorHeader);
    l_poll_rsp->sensor_dblock_count +=1;
    // Write data to outbuffer if any.
    if (l_sensorHeader.count)
    {
        int l_sensordataSz = l_sensorHeader.count * l_sensorHeader.length;
        // Copy sensor data into response buffer.
        memcpy ((void *) &(o_rsp_ptr->data[l_rsp_index]), (void *)l_extnSensorList, l_sensordataSz);
        // Increment index into response buffer.
        l_rsp_index += l_sensordataSz;
    }


    l_poll_rsp->data_length[0] = CONVERT_UINT16_UINT8_HIGH(l_rsp_index);
    l_poll_rsp->data_length[1] = CONVERT_UINT16_UINT8_LOW(l_rsp_index);
    l_rc                       = ERRL_RC_SUCCESS;
    // Response status is returned (must be written to rsp buffer last)

    return l_rc;
}



// Function Specification
//
// Name:  cmdh_reset_prep_t
//
// Description: Process reset prep command
//
// End Function Specification
errlHndl_t cmdh_reset_prep (const cmdh_fsp_cmd_t * i_cmd_ptr,
                                  cmdh_fsp_rsp_t * o_rsp_ptr)
{
    errlHndl_t                  l_errlHndl = NULL;
    cmdh_reset_prep_t *         l_cmd_ptr = (cmdh_reset_prep_t *) i_cmd_ptr;
    ERRL_RC                     l_rc = ERRL_RC_SUCCESS;
    bool                        l_ffdc = FALSE;

    G_rsp_status = ERRL_RC_SUCCESS;
    o_rsp_ptr->data_length[0] = 0;
    o_rsp_ptr->data_length[1] = 0;

    do
    {
        if (G_epow_gpio_scheduled)
        {
            // Check to see if EPOW_GPIO IPC request is not idle. If not, sleep
            // 4ms to give it time to finish and then continue.
            if(!async_request_is_idle(&G_epow_gpio_detected_req.request))
            {
                TRAC_IMP("cmdh_reset_prep: EPOW IPC request is NOT idle. Sleeping for 4ms");
                ssx_sleep(SSX_MILLISECONDS(4));
                if(!async_request_is_idle(&G_epow_gpio_detected_req.request))
                {
                    TRAC_ERR("cmdh_reset_prep: EPOW IPC request is still NOT idle. completion state=0x%08X",
                             G_epow_gpio_detected_req.request.completion_state);
                }
            }
            else
            {
                TRAC_IMP("cmdh_reset_prep: EPOW IPC request IS idle. completion state=0x%08X",
                         G_epow_gpio_detected_req.request.completion_state);
            }
        }

        // Command Length Check - make sure we at least have a version number
        if( CMDH_DATALEN_FIELD_UINT16(i_cmd_ptr) < CMDH_RESET_PREP_MIN_DATALEN)
        {
            l_rc = ERRL_RC_INVALID_CMD_LEN;
            break;
        }

        // Version Number Check
        if(l_cmd_ptr->version != CMDH_RESET_PREP_VERSION)
        {
            l_rc = ERRL_RC_INVALID_DATA;
            break;
        }

        TRAC_IMP("cmdh_reset_prep: Prep for reset command received! reason[0x%.2X]",
                 l_cmd_ptr->reason);

        G_reset_prep = true;

        // Command Handling
        switch( l_cmd_ptr->reason )
        {
            case CMDH_PREP_NONFAILURE:
                // No FFDC Error Log Needed
                l_rc = ERRL_RC_SUCCESS;
                break;

            case CMDH_PREP_FAILON_THISOCC:
                l_ffdc = TRUE;
                l_rc = ERRL_RC_SUCCESS;
                break;

            case CMDH_PREP_FAILON_OTHEROCC:
                // If OCC is master, we may want to generate FFDC log
                if (G_occ_role == OCC_MASTER)
                {
                    l_ffdc = TRUE;
                }
                l_rc = ERRL_RC_SUCCESS;
                break;

            case CMDH_PREP_FAILON_OTHERNODE:
                // No FFDC Error Log Needed
                l_rc = ERRL_RC_SUCCESS;
                break;

            case CMDH_PREP_POWER_OFF:
                // System powering off, stop DCOM and other tasks that still run in standby
                rtl_stop_task(TASK_ID_DCOM_WAIT_4_MSTR);
                rtl_stop_task(TASK_ID_DCOM_RX_INBX);
                rtl_stop_task(TASK_ID_DCOM_TX_INBX);
                rtl_stop_task(TASK_ID_DCOM_RX_OUTBX);
                rtl_stop_task(TASK_ID_DCOM_TX_OUTBX);
                rtl_stop_task(TASK_ID_DCOM_PARSE_FW_MSG);
                rtl_stop_task(TASK_ID_MISC_405_CHECKS);
                rtl_stop_task(TASK_ID_POKE_WDT);

                l_rc = ERRL_RC_SUCCESS;
                break;


            default:
                l_rc = ERRL_RC_INVALID_DATA;
                break;
        }

        // Generate FFDC error log if required
        if (TRUE == l_ffdc)
        {
            /* @
             * @errortype
             * @moduleid    DATA_GET_RESET_PREP_ERRL
             * @reasoncode  PREP_FOR_RESET
             * @userdata1   reset reason
             * @userdata2   0
             * @userdata4   0
             * @devdesc     Generate error log for ResetPrep command
             */
            l_errlHndl = createErrl(
                DATA_GET_RESET_PREP_ERRL,           //modId
                PREP_FOR_RESET,                     //reasoncode
                OCC_NO_EXTENDED_RC,                 //Extended reason code
                ERRL_SEV_INFORMATIONAL,             //Severity
                NULL,                               //Trace Buf
                CMDH_RESET_PREP_TRACE_SIZE,         //Trace Size
                l_cmd_ptr->reason,                  //userdata1
                0                                   //userdata2
                );

            // commit error log
            if (l_errlHndl != NULL)
            {
                commitErrl(&l_errlHndl);
            }
        }

        if (G_sysConfigData.system_type.kvm && isSafeStateRequested() &&
            (l_cmd_ptr->reason != CMDH_PREP_POWER_OFF))
        {
            // Notify dcom thread to update opal table
            ssx_semaphore_post(&G_dcomThreadWakeupSem);
        }
        if (CURRENT_STATE() != OCC_STATE_STANDBY)
        {
            // Put OCC in stand-by state
            l_errlHndl = SMGR_set_state(OCC_STATE_STANDBY);
        }

        if(l_errlHndl)
        {
            // Commit error log for the failed transition
            commitErrl(&l_errlHndl);
            TRAC_ERR("cmdh_reset_prep: Failed to transition to stand-by state!");
            l_rc = ERRL_RC_INTERNAL_FAIL;
        }
        else
        {
            // Prevent the OCC from going back to the original state it was
            // prior to the reset prep command
            if (G_occ_role == OCC_MASTER)
            {
                G_occ_external_req_state = OCC_STATE_STANDBY;
            }
        }

    } while(0);

    G_rsp_status = l_rc;

    if(ERRL_RC_SUCCESS != l_rc)
    {
        // Build Error Response packet
        cmdh_build_errl_rsp(i_cmd_ptr, o_rsp_ptr, l_rc, &l_errlHndl);
    }
    return l_errlHndl;
}

// Function Specification
//
// Name:  cmdh_clear_elog
//
// Description: Clear elog and free up entry
//
// End Function Specification
errlHndl_t cmdh_clear_elog (const   cmdh_fsp_cmd_t * i_cmd_ptr,
                            cmdh_fsp_rsp_t * o_rsp_ptr)
{
    cmdh_clear_elog_query_t *l_cmd_ptr = (cmdh_clear_elog_query_t *) i_cmd_ptr;
    cmdh_clear_elog_version_t *l_cmd_version_ptr = (cmdh_clear_elog_version_t *) i_cmd_ptr;
    ERRL_RC                  l_rc = ERRL_RC_SUCCESS;
    uint16_t                 l_data_length = CMDH_DATALEN_FIELD_UINT16(l_cmd_ptr);
    uint8_t                  l_elog_id = 0;
    uint8_t                  l_elog_source = ERRL_SOURCE_INVALID;

    int l_SlotNum = ERRL_INVALID_SLOT;
    errlHndl_t l_err = NULL;
    errlHndl_t l_oci_address = INVALID_ERR_HNDL;

    o_rsp_ptr->data_length[0] = 0;
    o_rsp_ptr->data_length[1] = 0;
    do
    {
       // must support old and new version 1 until (H)TMGT removes support for old version
       // old version didn't have a version number, use data length to determine version
       if(l_data_length == CLEAR_ELOG_V0_CMD_LEN)
       {
          l_elog_id = l_cmd_ptr->elog_id;
          // version 0 only supported elogs from the 405
          l_elog_source = ERRL_SOURCE_405;
       }
       else if( (l_data_length == CLEAR_ELOG_V1_CMD_LEN) &&
                (l_cmd_version_ptr->version == 1) )
       {
          l_elog_id = l_cmd_version_ptr->elog_id;
          l_elog_source = l_cmd_version_ptr->elog_source;
       }

       else
       {
          CMDH_TRAC_ERR("cmdh_clear_elog: Invalid version 0x%02X or data length 0x%02X",
                          l_cmd_version_ptr->version, l_data_length);
          l_rc = ERRL_RC_INVALID_DATA;
          break;
       }

       // process the clear command based on elog source
       switch(l_elog_source)
       {
           case ERRL_SOURCE_405:
               // Get Errl Array index
               l_SlotNum = getErrSlotNumByErrId(l_elog_id);

               // Get ERRL address
               l_oci_address = (errlHndl_t)getErrSlotOCIAddr(l_SlotNum);

               if ((l_oci_address != NULL) &&
                   (l_oci_address != INVALID_ERR_HNDL))
               {
                   // clear only one Errl by ID
                   l_err = deleteErrl(&l_oci_address);
               }
               else
               {
                   CMDH_TRAC_ERR("cmdh_clear_elog: 405 error log ID[0x%02X] not found", l_elog_id);
                   l_rc = ERRL_RC_INVALID_DATA;
               }
               break;

           default: // non-405 error log
               {
                   unsigned int index = 0;
                   for (; index < G_hcode_elog_table_slots; ++index)
                   {
                       hcode_elog_entry_t elog_entry;
                       elog_entry.dw0.value = in64(&G_hcode_elog_table[index]);
                       if ((elog_entry.dw0.fields.errlog_id == l_elog_id) && (elog_entry.dw0.fields.errlog_src == l_elog_source))
                       {
                           CMDH_TRAC_INFO("cmdh_clear_elog: Clearing HCODE elog id 0x%02X from source 0x%02X",
                                          l_elog_id, l_elog_source);

                           // Zero out error log entry in list so hcode can reuse
                           out64(&G_hcode_elog_table[index], 0);
                           break;
                       }
                   }
                   if (index == G_hcode_elog_table_slots)
                   {
                       // Did not find matching entry in hcode table for non-405 error
                       CMDH_TRAC_ERR("cmdh_clear_elog: Could not find elog id 0x%02X with source 0x%02X",
                                     l_elog_id, l_elog_source);
                       l_rc = ERRL_RC_INVALID_DATA;
                   }
                   G_htmgt_notified_of_error = false;
               }
               break;
       }
    }while(0);

    if ( (l_err == NULL) && (l_rc == ERRL_RC_SUCCESS) )
    {
        G_rsp_status = ERRL_RC_SUCCESS;
    }
    else
    {
        /// Build Error Response packet
        cmdh_build_errl_rsp(i_cmd_ptr, o_rsp_ptr, ERRL_RC_INVALID_DATA, &l_err);
    }

    return l_err;
}

// Function Specification
//
// Name:  SMGR_base_setmodestate_cmdh
//
// Description: Process set mode and state command
//
// End Function Specification
errlHndl_t cmdh_tmgt_setmodestate(const cmdh_fsp_cmd_t * i_cmd_ptr,
                                  cmdh_fsp_rsp_t * o_rsp_ptr)
{
    errlHndl_t                      l_errlHndl     = NULL;
    smgr_setmodestate_v0_query_t*   l_cmd_ptr      = (smgr_setmodestate_v0_query_t *)i_cmd_ptr;
    ERRL_RC                         l_rc           = ERRL_RC_INTERNAL_FAIL;
    SsxInterval                     l_timeout      = SSX_SECONDS(15);
    SsxTimebase                     l_start        = ssx_timebase_get();
    OCC_STATE                       l_pre_state    = CURRENT_STATE();
    OCC_MODE                        l_pre_mode     = CURRENT_MODE();

    // OPAL only accepts DPS-FE mode. In case OCC gets other modes, it should accept the request
    // and keep reporting back that it is in that mode.
    if(G_sysConfigData.system_type.kvm)
    {
        l_pre_mode  = G_occ_external_req_mode_kvm;
    }

    do
    {
        // -------------------------------------------------
        // Check Command & Function Inputs
        // -------------------------------------------------
        // Function Inputs Sanity Check
        if( (NULL == i_cmd_ptr) || (NULL == o_rsp_ptr) )
        {
            l_rc = ERRL_RC_INTERNAL_FAIL;
            break;
        }

        // Command Version Check
        if(l_cmd_ptr->version != SMGR_SMS_CMD_VERSION)
        {
            l_rc = ERRL_RC_INVALID_DATA;
            break;
        }

        // Command Length Check
        if( CMDH_DATALEN_FIELD_UINT16(i_cmd_ptr) !=
                (sizeof(smgr_setmodestate_v0_query_t) - sizeof(cmdh_fsp_cmd_header_t)))
        {
            l_rc = ERRL_RC_INVALID_CMD_LEN;
            break;
        }

        // Can't send this command to a slave
        if( OCC_SLAVE == G_occ_role )
        {
            l_rc = ERRL_RC_INVALID_CMD;
            break;
        }

        // Verify that the state and mode are correct
        if (!OCC_STATE_IS_VALID(l_cmd_ptr->occ_state) || !OCC_MODE_IS_VALID(l_cmd_ptr->occ_mode))
        {
            CMDH_TRAC_ERR("Invalid state and/or mode! State=0x%0X Mode=0x%0X",
                          l_cmd_ptr->occ_state, l_cmd_ptr->occ_mode);
            l_rc = ERRL_RC_INVALID_DATA;
            break;
        }

        // Verify not in safe state
        if ((TRUE == isSafeStateRequested()) || (CURRENT_STATE() == OCC_STATE_SAFE))
        {
            CMDH_TRAC_ERR("OCC in safe state, rejecting mode change request");
            l_rc = ERRL_RC_INVALID_STATE;
            break;
        }

        // -------------------------------------------------
        // Act on State & Mode Changes
        // -------------------------------------------------
        CMDH_TRAC_INFO("SMS Mode=%d, State=%d\n",l_cmd_ptr->occ_mode, l_cmd_ptr->occ_state);

        G_occ_external_req_mode  = l_cmd_ptr->occ_mode;
        G_occ_external_req_state = l_cmd_ptr->occ_state;

        // We need to wait and see if all Slaves correctly make it to state/mode.
        do
        {
            uint8_t l_slv_idx = 0;
            uint8_t l_occ_passed_num = 0;
            uint8_t l_occ_num = G_occ_num_present;
            uint8_t l_occ_bitmap_present = G_sysConfigData.is_occ_present;
            uint8_t l_occ_bitmap_succeeded = 0;

            for(l_slv_idx=0; l_slv_idx < MAX_OCCS; l_slv_idx++)
            {
                // Check if the occ exists
                if( (0x01<<l_slv_idx) & l_occ_bitmap_present )
                {
                    // Check if occ reaches the requested state/mode
                    if( ( (G_dcom_slv_outbox_rx[l_slv_idx].occ_fw_mailbox[0] == G_occ_external_req_state)
                          || (G_occ_external_req_state == OCC_STATE_NOCHANGE)                             ) &&
                        ( (G_dcom_slv_outbox_rx[l_slv_idx].occ_fw_mailbox[1] == G_occ_external_req_mode)
                          || (G_occ_external_req_mode == OCC_MODE_NOCHANGE)                               )     )
                    {
                        l_occ_bitmap_succeeded |= (0x01<<l_slv_idx);
                        l_occ_passed_num++;
                    }
                }
            }

            if(l_occ_num <= l_occ_passed_num)
            {
                // This means that all present OCCs have reached the desired state/mode
                CMDH_TRAC_INFO("cmdh_tmgt_setmodestate: changed state from %d to %d, mode from %d to %d",
                          l_pre_state, G_occ_external_req_state, l_pre_mode, G_occ_external_req_mode);
                l_rc = ERRL_RC_SUCCESS;
                break;
            }
            else
            {
                // check time and break out if we reached limit
                if ( ((ssx_timebase_get() - l_start) > l_timeout))
                {
                    CMDH_TRAC_ERR("cmdh_tmgt_setmodestate: time out waiting for all slave occ (expected:%d, passed:%d)",
                                  l_occ_num, l_occ_passed_num);
                    /* @
                     * @errortype
                     * @moduleid    CMDH_GENERIC_CMD_FAILURE
                     * @reasoncode  INTERNAL_FAILURE
                     * @userdata1   OCC present bitmap
                     * @userdata2   OCC succeeded bitmap
                     * @userdata4   OCC_NO_EXTENDED_RC
                     * @devdesc     Timed out trying to reach requested power mode/state
                     */
                    l_errlHndl = createErrl(
                            CMDH_GENERIC_CMD_FAILURE,           //modId
                            INTERNAL_FAILURE,                   //reasoncode
                            OCC_NO_EXTENDED_RC,                 //Extended reason code
                            ERRL_SEV_UNRECOVERABLE,             //Severity
                            NULL,                               //Trace Buf
                            DEFAULT_TRACE_SIZE,                 //Trace Size
                            l_occ_bitmap_present,               //userdata1
                            l_occ_bitmap_succeeded              //userdata2
                            );
                    addCalloutToErrl(l_errlHndl,
                                     ERRL_CALLOUT_TYPE_COMPONENT_ID,
                                     ERRL_COMPONENT_ID_FIRMWARE,
                                     ERRL_CALLOUT_PRIORITY_HIGH);
                    l_rc = ERRL_RC_INTERNAL_FAIL;
                    break;
                }
                else
                {
                    // Give OCCs a chance to get to active state. This
                    // timeout is arbitrary, but there's no point in making
                    // it too small.
                    ssx_sleep(SSX_MILLISECONDS(100));
                }
            }

        }while( 1 );

    }while(0);

    if(l_rc)
    {
        // Build Error Response packet
        cmdh_build_errl_rsp(i_cmd_ptr, o_rsp_ptr, l_rc, &l_errlHndl);
    }

    return l_errlHndl;
}

// Function Specification
//
// Name:  cmdh_amec_pass_through
//
// Description: Process Amester pass-through command
//
// End Function Specification
errlHndl_t cmdh_amec_pass_through(const cmdh_fsp_cmd_t * i_cmd_ptr,
                                  cmdh_fsp_rsp_t * o_rsp_ptr)
{
    errlHndl_t                      l_errlHndl    = NULL;
    IPMIMsg_t                       l_IPMImsg;
    uint8_t                         l_rc          = 0;
    uint16_t                        l_rsp_data_length = CMDH_FSP_RSP_DATA_SIZE;
    errl_generic_resp_t*            l_err_resp_ptr = (errl_generic_resp_t*)o_rsp_ptr;
    static bool L_traced_reject = FALSE;

    if (G_smf_mode == false)
    {
        do
        {
            // Function Inputs Sanity Check
            if( (NULL == i_cmd_ptr) || (NULL == o_rsp_ptr) )
            {
                l_rc = ERRL_RC_INTERNAL_FAIL;
                break;
            }

            // Byte0 is ipmi command number
            l_IPMImsg.u8Cmd = i_cmd_ptr->data[0];

            //set the ipmi command data size, byte0 and byte1 is ipmi header
            l_IPMImsg.u8CmdDataLen = CONVERT_UINT8_ARRAY_UINT16( i_cmd_ptr->data_length[0],
                                                                 i_cmd_ptr->data_length[1])
                - AMEC_AME_CMD_HEADER_SZ;

            // Set the ipmi command data buffer
            l_IPMImsg.au8CmdData_ptr = (uint8_t *)&i_cmd_ptr->data[AMEC_AME_CMD_HEADER_SZ];

            // Call the amester entry point
            l_rc = amester_entry_point( &l_IPMImsg,
                                        &l_rsp_data_length,
                                        o_rsp_ptr->data);

            if(COMPCODE_NORMAL != l_rc)
            {
                TRAC_ERR("amester_entry_point failured, rc (ipmi completion code) = %d", l_rc);

                // Just put the rc in the return packet and return success
                l_rsp_data_length = 1;
                o_rsp_ptr->data[0] = l_rc;
                l_rc = ERRL_RC_SUCCESS;
            }

            // Protect from overflowing buffer
            if(l_rsp_data_length > G_amester_max_data_length)
            {
                TRAC_ERR("amester_entry_point returned too much data. Got back %d bytes, but we only support sending %d bytes to IPMI",
                         l_rsp_data_length, G_amester_max_data_length);
                /* @
                 * @errortype
                 * @moduleid    AMEC_AMESTER_INTERFACE
                 * @reasoncode  INTERNAL_FAILURE
                 * @userdata1   response data length
                 * @userdata2   max data length
                 * @userdata4   OCC_NO_EXTENDED_RC
                 * @devdesc     amester_entry_point returned too much data.
                 */
                l_errlHndl = createErrl(
                                        AMEC_AMESTER_INTERFACE,             //modId
                                        INTERNAL_FAILURE,                   //reasoncode
                                        OCC_NO_EXTENDED_RC,                 //Extended reason code
                                        ERRL_SEV_INFORMATIONAL,             //Severity
                                        NULL,                               //Trace Buf
                                        DEFAULT_TRACE_SIZE,                 //Trace Size
                                        l_rsp_data_length,                  //userdata1
                                        G_amester_max_data_length           //userdata2
                                       );

                l_rc = ERRL_RC_INTERNAL_FAIL;
                break;
            }
            // Set response rc and length
            G_rsp_status = ERRL_RC_SUCCESS;
            o_rsp_ptr->data_length[0] = ((uint8_t *)&l_rsp_data_length)[0];
            o_rsp_ptr->data_length[1] = ((uint8_t *)&l_rsp_data_length)[1];

        }while(0);

        if(l_rc)
        {
            l_err_resp_ptr->data_length[0] = 0;
            l_err_resp_ptr->data_length[1] = 1;
            G_rsp_status = l_rc;

            if(l_errlHndl)
            {
                l_err_resp_ptr->log_id = l_errlHndl->iv_entryId;
            }
            else
            {
                l_err_resp_ptr->log_id = 0;
            }
        }
    }
    else
    {
        if (!L_traced_reject)
        {
            TRAC_ERR("cmdh_amec_pass_through: Amester not supported in SMF mode");
            L_traced_reject = TRUE;
        }
        // Return error to TMGT w/no log
        G_rsp_status = ERRL_RC_NO_SUPPORT_IN_SMF_MODE;
        o_rsp_ptr->data_length[0] = 0;
        o_rsp_ptr->data_length[1] = 1;
        o_rsp_ptr->data[0] = 0x00; // no error log
    }

    return l_errlHndl;
}


// Function Specification
//
// Name: cmdh_tmgt_get_field_debug_data
//
// Description: Process get field debug data command
//
// End Function Specification
errlHndl_t cmdh_tmgt_get_field_debug_data(const cmdh_fsp_cmd_t * i_cmd_ptr,
                                          cmdh_fsp_rsp_t * o_rsp_ptr)
{
    errlHndl_t                        l_err             = NULL;
    uint16_t                          i                 = 0;
    UINT                              l_rtLen           = 0;
    uint16_t                          l_num_of_sensors  = CMDH_FIELD_MAX_NUM_SENSORS;
    sensorQueryList_t                 l_sensor_list[CMDH_FIELD_MAX_NUM_SENSORS];
    sensor_t                          *l_sensor_ptr     = NULL;
    cmdh_get_field_debug_data_resp_t  *l_resp_ptr       = (cmdh_get_field_debug_data_resp_t*) o_rsp_ptr;
    uint16_t                          l_rsp_data_length = 0;
    ERRL_RC                           l_rc              = ERRL_RC_SUCCESS;

    do
    {
        // Function Inputs Sanity Check
        if( (NULL == i_cmd_ptr) || (NULL == o_rsp_ptr) )
        {
            l_rc = ERRL_RC_INTERNAL_FAIL;
            break;
        }

        // Add occ infomation so that we know where the debug data from
        l_resp_ptr->occ_node     = G_pbax_id.node_id;

        l_resp_ptr->occ_id       =  G_pbax_id.chip_id;
        l_resp_ptr->occ_role     = G_occ_role;

        // copy trace data
        l_rtLen = CMDH_FIELD_TRACE_DATA_SIZE;
        TRAC_get_buffer_partial(TRAC_get_td("ERR"), l_resp_ptr->trace_err, &l_rtLen);

        l_rtLen = CMDH_FIELD_TRACE_DATA_SIZE;
        TRAC_get_buffer_partial(TRAC_get_td("INF"), l_resp_ptr->trace_inf, &l_rtLen);

        querySensorListArg_t l_qsl_arg = {
            0,                         // i_startGsid - start with sensor 0x0000
            0,                         // i_present
            (AMEC_SENSOR_TYPE_POWER|   // i_type
             AMEC_SENSOR_TYPE_TEMP),
            AMEC_SENSOR_LOC_ALL,       // i_loc
            &l_num_of_sensors,         // io_numOfSensors
            l_sensor_list,             // o_sensors
            NULL                       // o_sensorInfoPtr
        };

        // Get sensor list
        l_err = querySensorList(&l_qsl_arg);

        if (NULL != l_err)
        {
            // Query failure, this should not happen
            TRAC_ERR("get_field_debug_data: Failed to get sensor list. Error status is: 0x%x",
                     l_err->iv_reasonCode);

            // Commit error log
            commitErrl(&l_err);
            l_rc = ERRL_RC_INTERNAL_FAIL;
            break;
        }
        else
        {
            // Populate the response data packet
            l_resp_ptr->num_sensors = l_num_of_sensors;
            for (i=0; i<l_num_of_sensors; i++)
            {
                l_resp_ptr->sensor[i].gsid = l_sensor_list[i].gsid;
                l_resp_ptr->sensor[i].sample = l_sensor_list[i].sample;
                strcpy(l_resp_ptr->sensor[i].name, l_sensor_list[i].name);

                // Capture the min and max value for this sensor
                l_sensor_ptr = getSensorByGsid(l_sensor_list[i].gsid);
                if (l_sensor_ptr == NULL)
                {
                    TRAC_INFO("get_field_debug_data: Unable to find sensor with gsid[0x%.4X]. Values won't be accurate.",
                              l_sensor_list[i].gsid);

                    // Didn't find this sensor, just continue
                    continue;
                }
                l_resp_ptr->sensor[i].sample_min = l_sensor_ptr->sample_min;
                l_resp_ptr->sensor[i].sample_max = l_sensor_ptr->sample_max;
            }
        }
        // -------------------------------------------------
        // Build Response Packet
        // -------------------------------------------------
        // Populate the response data header
        l_rsp_data_length = (sizeof(cmdh_get_field_debug_data_resp_t) - CMDH_DBUG_FSP_RESP_LEN);
        l_resp_ptr->data_length[0] = ((uint8_t *)&l_rsp_data_length)[0];
        l_resp_ptr->data_length[1] = ((uint8_t *)&l_rsp_data_length)[1];
        G_rsp_status = l_rc;

    } while(0);

    if (l_rc)
    {
        // Build Error Response packet
        cmdh_build_errl_rsp(i_cmd_ptr, o_rsp_ptr, l_rc, &l_err);
    }
    return l_err;
}

// Function Specification
//
// Name:  cmdh_set_user_pcap_common
//
// Description: Implements the common part of Set Use Power Cap cmd from inband or out of band
//
// End Function Specification
uint8_t cmdh_set_user_pcap_common(uint16_t i_pcap,
                                  uint8_t  i_source)
{
    uint8_t  l_rc = ERRL_RC_SUCCESS;

    do
    {
        // Can't send this command to a slave
        if (OCC_SLAVE == G_occ_role)
        {
            TRAC_ERR("From source %d User PCAP %d must be sent to master OCC",
                      i_source, i_pcap);
            l_rc = ERRL_RC_INVALID_CMD;
            break;
        }

        //A value of 0 means this pcap has been deactivated, otherwise
        //make sure it's within the min & max.
        if ((i_pcap != 0) && (i_pcap < G_master_pcap_data.soft_min_pcap))
        {
            TRAC_ERR("From source %d User PCAP %d is below the minimum allowed (%d)",
                      i_source, i_pcap, G_master_pcap_data.soft_min_pcap);

            l_rc = ERRL_RC_INVALID_DATA;
            break;
        }
        else if ((i_pcap > G_master_pcap_data.system_pcap) &&
                 (G_master_pcap_data.system_pcap != 0))
        {
            TRAC_ERR("From source %d User PCAP %d is above the maximum allowed (%d)",
                      i_source, i_pcap, G_master_pcap_data.system_pcap);

            l_rc = ERRL_RC_INVALID_DATA;
            break;
        }
        else
        {
            G_master_pcap_data.current_pcap = i_pcap;

            //Indicate there is new PCAP data available
            G_master_pcap_data.pcap_data_count++;
            // if user pcap was just disabled set source to 0 (no user pcap)
            if(i_pcap == 0)
            {
               G_master_pcap_data.source = 0;
            }
            else
            {
               G_master_pcap_data.source = i_source;
            }
        }

        TRAC_INFO("User selected power limit = %d set from source %d",
                  G_master_pcap_data.current_pcap, i_source);

    } while (0);

    return l_rc;
}

// Function Specification
//
// Name:  cmdh_set_user_pcap
//
// Description: Implements the Set Use Power Cap command from out of band interface
//
// End Function Specification
errlHndl_t cmdh_set_user_pcap(const cmdh_fsp_cmd_t * i_cmd_ptr,
                              cmdh_fsp_rsp_t * o_rsp_ptr)
{
    errlHndl_t l_err = NULL;
    ERRL_RC  l_rc = ERRL_RC_SUCCESS;


    G_rsp_status = ERRL_RC_SUCCESS;
    o_rsp_ptr->data_length[0] = 0;
    o_rsp_ptr->data_length[1] = 0;

    if (CMDH_DATALEN_FIELD_UINT16(i_cmd_ptr) != CMDH_SET_USER_PCAP_DATALEN)
    {
        TRAC_ERR("cmdh_set_user_pcap: Invalid command length %u, expected %u ",
                  CMDH_DATALEN_FIELD_UINT16(i_cmd_ptr), CMDH_SET_USER_PCAP_DATALEN);
        l_rc = ERRL_RC_INVALID_CMD_LEN;
    }
    else
    {
        uint16_t l_pcap = CONVERT_UINT8_ARRAY_UINT16(i_cmd_ptr->data[0],
                                                     i_cmd_ptr->data[1]);
        l_rc = cmdh_set_user_pcap_common(l_pcap, OUT_OF_BAND);
    }

    if (ERRL_RC_SUCCESS != l_rc)
    {
        // Build Error Response packet
        cmdh_build_errl_rsp(i_cmd_ptr, o_rsp_ptr, l_rc, &l_err);
    }

    return l_err;
}

// Function Specification
//
// Name:  cmdh_clear_sensor_data
//
// Description: Implements the Clear sensor data command
//
// End Function Specification
uint8_t cmdh_clear_sensor_data(const uint16_t  i_cmd_data_length,
                               const uint8_t*  i_cmd_data_ptr,
                               const uint16_t  i_max_rsp_data_length,
                                     uint16_t* o_rsp_data_length,
                                     uint8_t*  o_rsp_data_ptr)
{
    uint8_t  l_rc = ERRL_RC_SUCCESS;
    cmdh_clear_sensor_cmd_data_t *l_cmd_ptr = (cmdh_clear_sensor_cmd_data_t *) i_cmd_data_ptr;
    cmdh_clear_sensor_rsp_data_t *l_rsp_ptr = (cmdh_clear_sensor_rsp_data_t*) o_rsp_data_ptr;
    *o_rsp_data_length = 0;

    do
    {
        // Command Length Check
        if( i_cmd_data_length != sizeof(cmdh_clear_sensor_cmd_data_t) )
        {
            TRAC_ERR("cmdh_clear_sensor_data: Invalid command length %u, expected %u ",
                     i_cmd_data_length, sizeof(cmdh_clear_sensor_cmd_data_t));
            l_rc = ERRL_RC_INVALID_CMD_LEN;
            break;
        }
        // Make sure there is enough room in response buffer
        if( sizeof(cmdh_clear_sensor_rsp_data_t) > i_max_rsp_data_length )
        {
            TRAC_ERR("cmdh_clear_sensor_data: Response size %u is larger than buffer size %u ",
                     sizeof(cmdh_clear_sensor_rsp_data_t), i_max_rsp_data_length);
            l_rc = ERRL_RC_INTERNAL_FAIL;
            break;
        }
        // Check that the owner(s) to clear sensors for are valid
        if( (l_cmd_ptr->sensor_owner_id & ~(VALID_CLEAR_SENSOR_OWNER_MASK) ) ||
            (l_cmd_ptr->sensor_owner_id == 0) )
        {
            TRAC_ERR("cmdh_clear_sensor_data: Invalid sensor owners = 0x%02X",
                     l_cmd_ptr->sensor_owner_id);
            l_rc = ERRL_RC_INVALID_DATA;
            break;
        }

        // clear min/max fields of all sensors for the given owner(s)
        sensor_t *l_sensor_ptr = NULL;
        uint16_t i = 0;
        for( i = 0;i < G_amec_sensor_count; i++)
        {
            l_sensor_ptr = getSensorByGsid(i);
            sensor_clear_minmax(l_sensor_ptr, l_cmd_ptr->sensor_owner_id);
        }

        // copy the owner_id to the response buffer and set the rsp length
        l_rsp_ptr->sensor_owner_id = l_cmd_ptr->sensor_owner_id;
        *o_rsp_data_length = (uint16_t) sizeof(cmdh_clear_sensor_rsp_data_t);
        TRAC_INFO("cmdh_clear_sensor_data: Sensor min/max cleared for owners = 0x%02X",
                   l_rsp_ptr->sensor_owner_id);
    } while (0);

    return l_rc;
}

// Function Specification
//
// Name:  cmdh_set_pcap_inband
//
// Description: Implements setting a power cap from the inband interface
//
// End Function Specification
uint8_t cmdh_set_pcap_inband(const uint16_t  i_cmd_data_length,
                             const uint8_t*  i_cmd_data_ptr,
                             const uint16_t  i_max_rsp_data_length,
                                   uint16_t* o_rsp_data_length,
                                   uint8_t*  o_rsp_data_ptr)
{
    uint8_t  l_rc = ERRL_RC_SUCCESS;
    cmdh_set_inband_pcap_cmd_data_t *l_cmd_ptr = (cmdh_set_inband_pcap_cmd_data_t *) i_cmd_data_ptr;
    cmdh_set_inband_pcap_rsp_data_t *l_rsp_ptr = (cmdh_set_inband_pcap_rsp_data_t*) o_rsp_data_ptr;
    *o_rsp_data_length = 0;

    do
    {
        // Command Length Check
        if( i_cmd_data_length != sizeof(cmdh_set_inband_pcap_cmd_data_t) )
        {
            TRAC_ERR("cmdh_set_pcap_inband: Invalid command length %u, expected %u ",
                     i_cmd_data_length, sizeof(cmdh_set_inband_pcap_cmd_data_t));
            l_rc = ERRL_RC_INVALID_CMD_LEN;
            break;
        }

        // Make sure there is enough room in response buffer
        if( sizeof(cmdh_set_inband_pcap_rsp_data_t) > i_max_rsp_data_length )
        {
            TRAC_ERR("cmdh_set_pcap_inband: Response size %u is larger than buffer size %u ",
                     sizeof(cmdh_set_inband_pcap_rsp_data_t), i_max_rsp_data_length);
            l_rc = ERRL_RC_INTERNAL_FAIL;
            break;
        }

        uint16_t l_pcap = CONVERT_UINT8_ARRAY_UINT16(l_cmd_ptr->power_cap[0],
                                                     l_cmd_ptr->power_cap[1]);
        l_rc = cmdh_set_user_pcap_common(l_pcap, IN_BAND);

        // if successful copy the power cap to the response buffer and set the rsp length
        if(l_rc == ERRL_RC_SUCCESS)
        {
           l_rsp_ptr->power_cap[0] = l_cmd_ptr->power_cap[0];
           l_rsp_ptr->power_cap[1] = l_cmd_ptr->power_cap[1];
           *o_rsp_data_length = (uint16_t) sizeof(cmdh_set_inband_pcap_rsp_data_t);
        }
    } while (0);

    return l_rc;
}

// Function Specification
//
// Name:  cmdh_write_psr
//
// Description: Implements the Write Power Shifting Ratio command
//
// End Function Specification
uint8_t cmdh_write_psr(const uint16_t  i_cmd_data_length,
                       const uint8_t*  i_cmd_data_ptr,
                       const uint16_t  i_max_rsp_data_length,
                             uint16_t* o_rsp_data_length,
                             uint8_t*  o_rsp_data_ptr)
{
    uint8_t  l_rc = ERRL_RC_SUCCESS;
    cmdh_write_psr_cmd_data_t *l_cmd_ptr = (cmdh_write_psr_cmd_data_t *) i_cmd_data_ptr;
    cmdh_write_psr_rsp_data_t *l_rsp_ptr = (cmdh_write_psr_rsp_data_t*) o_rsp_data_ptr;
    *o_rsp_data_length = 0;

    do
    {
        // Command Length Check
        if( i_cmd_data_length != sizeof(cmdh_write_psr_cmd_data_t) )
        {
            TRAC_ERR("cmdh_write_psr: Invalid command length %u, expected %u ",
                     i_cmd_data_length, sizeof(cmdh_write_psr_cmd_data_t));
            l_rc = ERRL_RC_INVALID_CMD_LEN;
            break;
        }
        // Make sure there is enough room in response buffer
        if( sizeof(cmdh_write_psr_rsp_data_t) > i_max_rsp_data_length )
        {
            TRAC_ERR("cmdh_write_psr: Response size %u is larger than buffer size %u ",
                     sizeof(cmdh_write_psr_rsp_data_t), i_max_rsp_data_length);
            l_rc = ERRL_RC_INTERNAL_FAIL;
            break;
        }
        // Verify PSR is within range 0-100%
        if(l_cmd_ptr->psr > 100)
        {
            TRAC_ERR("cmdh_write_psr: Invalid PSR %u",
                     l_cmd_ptr->psr);
            l_rc = ERRL_RC_INVALID_DATA;
            break;
        }

        // PSR is valid
        TRAC_INFO("cmdh_write_psr: PSR changed from %u to %u", G_sysConfigData.psr, l_cmd_ptr->psr);
        G_sysConfigData.psr = l_cmd_ptr->psr;

        // copy the PSR to the response buffer and set the rsp length
        l_rsp_ptr->psr = l_cmd_ptr->psr;
        *o_rsp_data_length = (uint16_t) sizeof(cmdh_write_psr_rsp_data_t);
    } while (0);

    return l_rc;
}

// Function Specification
//
// Name:  cmdh_select_sensor_groups
//
// Description: Implements the Select sensor Groups command to select
//               sensor types that will be copied to main memory
//
// End Function Specification
uint8_t cmdh_select_sensor_groups(const uint16_t  i_cmd_data_length,
                                  const uint8_t*  i_cmd_data_ptr,
                                  const uint16_t  i_max_rsp_data_length,
                                        uint16_t* o_rsp_data_length,
                                        uint8_t*  o_rsp_data_ptr)
{
    uint8_t  l_rc = ERRL_RC_SUCCESS;
    uint16_t l_sensor_groups = 0;
    cmdh_select_sensor_groups_cmd_data_t *l_cmd_ptr = (cmdh_select_sensor_groups_cmd_data_t *) i_cmd_data_ptr;
    cmdh_select_sensor_groups_rsp_data_t *l_rsp_ptr = (cmdh_select_sensor_groups_rsp_data_t*) o_rsp_data_ptr;
    *o_rsp_data_length = 0;
    do
    {
        // Command Length Check
        if( i_cmd_data_length != sizeof(cmdh_select_sensor_groups_cmd_data_t) )
        {
            TRAC_ERR("cmdh_select_sensor_groups: Invalid command length %u, expected %u ",
                     i_cmd_data_length, sizeof(cmdh_select_sensor_groups_cmd_data_t));
            l_rc = ERRL_RC_INVALID_CMD_LEN;
            break;
        }
        // Make sure there is enough room in response buffer
        if( sizeof(cmdh_select_sensor_groups_rsp_data_t) > i_max_rsp_data_length )
        {
            TRAC_ERR("cmdh_select_sensor_groups: Response size %u is larger than buffer size %u ",
                     sizeof(cmdh_select_sensor_groups_rsp_data_t), i_max_rsp_data_length);
            l_rc = ERRL_RC_INTERNAL_FAIL;
            break;
        }
        // Check that the sensor group(s) to select are valid
        // 0 is valid and means not to copy any sensors to main memory
        l_sensor_groups = CONVERT_UINT8_ARRAY_UINT16(l_cmd_ptr->sensor_groups[0],
                                                     l_cmd_ptr->sensor_groups[1]);
        if(l_sensor_groups & ~(VALID_SET_SENSOR_GROUPS_MASK))
        {
            TRAC_ERR("cmdh_select_sensor_groups: Invalid sensor groups = 0x%04X",
                     l_sensor_groups);
            l_rc = ERRL_RC_INVALID_DATA;
            break;
        }

        // Loop thru 16 bits to check all possible sensor types
        uint8_t l_bit = 0;
        uint16_t l_sensor_type = 0;
        bool l_enabled = false;
        for(l_bit = 0; l_bit < 16; l_bit++)
        {
           l_sensor_type = 0x0001 << l_bit;
           // only set eanbled for sensor types that are valid
           if( l_sensor_type & (VALID_SET_SENSOR_GROUPS_MASK) )
           {
              // type is valid now set enabled based on sensor groups selected
              l_enabled = (l_sensor_groups & l_sensor_type) ? true : false;
              main_mem_sensors_set_enabled(l_sensor_type, l_enabled);
           }
        }

        // copy the sensor groups to the response buffer and set the rsp length
        l_rsp_ptr->sensor_groups[0] = l_cmd_ptr->sensor_groups[0];
        l_rsp_ptr->sensor_groups[1] = l_cmd_ptr->sensor_groups[1];
        *o_rsp_data_length = (uint16_t) sizeof(cmdh_select_sensor_groups_rsp_data_t);
        TRAC_INFO("cmdh_select_sensor_groups: Sensor groups 0x%04X selected",
                   l_sensor_groups);
    } while (0);

    return l_rc;
}
OpenPOWER on IntegriCloud