summaryrefslogtreecommitdiffstats
path: root/src/occ_405/amec/amec_sensors_power.c
blob: b168c02f8141fef3fc95b81845d1fe837d983d1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/occ_405/amec/amec_sensors_power.c $                       */
/*                                                                        */
/* OpenPOWER OnChipController Project                                     */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2011,2017                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */


/******************************************************************************/
/* Includes                                                                   */
/******************************************************************************/
#include <occ_common.h>
#include <ssx.h>
#include <errl.h>               // Error logging
#include "sensor.h"
#include "rtls.h"
#include "occ_sys_config.h"
#include "occ_service_codes.h"  // for SSX_GENERIC_FAILURE
#include "dcom.h"
#include "proc_data.h"
#include "amec_smh.h"
#include "amec_slave_smh.h"
#include <trac.h>
#include "amec_sys.h"
#include "sensor_enum.h"
#include "amec_service_codes.h"
#include <amec_sensors_power.h>
#include <cmdh_snapshot.h>
#include "amec_oversub.h"
#include "avsbus.h"
#include <p9_pstates_occ.h>
/******************************************************************************/
/* Globals                                                                    */
/******************************************************************************/
// This holds the converted ADC Reads
uint32_t G_lastValidAdcValue[MAX_APSS_ADC_CHANNELS] = {0};

// Indicates if we have determined GPU presence
bool G_gpu_config_done = FALSE;

// Bitmap of GPUs present
uint32_t G_first_proc_gpu_config = 0;
uint32_t G_first_sys_gpu_config = 0;
uint32_t G_first_num_gpus_sys = 0;
uint32_t G_curr_proc_gpu_config = 0;
uint32_t G_curr_sys_gpu_config = 0;
uint32_t G_curr_num_gpus_sys = 0;

// There are only MAX_APSS_ADC_CHANNELS channels.  Therefore if the channel value
// is greater then the MAX, then there was no channel associated with the function id.
#define ADC_CONVERTED_VALUE(i_chan) \
    ((i_chan < MAX_APSS_ADC_CHANNELS) ? G_lastValidAdcValue[i_chan] : 0)

extern bool    G_gpu_monitoring_allowed;
extern uint8_t G_occ_interrupt_type;
extern bool    G_vrm_thermal_monitoring;
extern PWR_READING_TYPE  G_pwr_reading_type;
extern bool    G_apss_present;
extern OCCPstateParmBlock G_oppb;
extern task_t G_task_table[TASK_END];

//*************************************************************************/
// Code
//*************************************************************************/

// Function Specification
//
// Name: amec_sensor_from_apss_adc
//
// Description: Calculates sensor from raw ADC value
//
// Thread: RealTime Loop
//
// End Function Specification
uint32_t amec_value_from_apss_adc(uint8_t i_chan)
{
    uint16_t l_raw = 0;
    uint32_t l_temp = 0;
    uint32_t l_gain = 0;
    uint32_t l_offset = 0;

    if(i_chan != SYSCFG_INVALID_ADC_CHAN)
    {
        /*
         * The APSS value is in mV or mA depending on the channel and the raw
         * reading from the APSS must be decoded using the following info:
         *
         * APSS LSB: Vref/4096
         * Full scale: (Vref - LSB) = 0xFFF
         * Midscale: Vref/2 = 0x800
         * Midscale - 1 LSB: Vref/2 - 1 LSB, 0x7FF
         * Zero: 0V, 0x000
         * Any voltage at or above Vref will will result in an ADC channel value
         * of 0xFFF
         *
         * Our APSS has Vref pinned to 2.048 V
         * LSB: 0.5 mV (minimum ADC resolution)
         * Full scale: 2047.5 mV (0xFFF)
         * Midscale: 1024 mV (0x800)
         * Zero: 0V, 0x000
         *
         * To get the right mV reading from the raw APSS data all we need to do
         * is divide the raw 12 bit ADC code by 2.  The same logic applies if
         * the channel is measuring power in mA.
         *
         * If there is an offset it will bein mV or mA depending upon the sensor
         * and it needs to be added or subtracted from the raw value depending
         * on it's signedness.  Negative offsets are stored in 2's complement
         * form.
         *
         * The gain values will be multiplied by 1000 in TMGT before being sent
         * in the sysconfig packet.  Raw gain from the MRW values are in A/V and
         * TMGT will multiply this by 1000 before sending in the sysconfig
         * packet to preserve precision.  That makes the gain units mA/V.
         *
         * To apply the gain multiply the sysconfig value against the converted
         * APSS voltage.
         *
         * Applying the gain to the converted APSS data gives (mV . mA)/V so we
         * divide by 1000 to reduce the result to mA.  This is the unit that
         * is returned to the caller. For example:
         * raw APSS value: 0x800
         * converted value: raw/2 = 1024 mV
         * gain from MRW: 10.00 A/V
         * Converted gain: 10,000 mA/V
         * gain adjusted output: 1024mV * 10,000 mA/V = 10,240,000 (mV . mA)/V
         * Reduced value: adjusted/1000 = 10,240 mA
         *
         * Note that in the case of the remote ground and 12V sense the gain
         * values are in V/V so the returned value is actually in mVs.
         *
         * Max returnable value is 4,294,967,295 mA or approx. 4.3 MA
         */

        // Get ADC Mapping calibration info for this entity.
        l_gain = G_sysConfigData.apss_cal[i_chan].gain;
        l_offset = G_sysConfigData.apss_cal[i_chan].offset;

        // Read Raw Value in mA (divide masked channel data by 2)
        l_raw = (G_dcom_slv_inbox_rx.adc[i_chan] & APSS_12BIT_ADC_MASK)/2;
        // Apply offset and gain
        if (l_offset & 0x80000000)
        {
            // Negative offset
            l_raw -= (~l_offset + 1);
        }
        else
        {
            l_raw += l_offset;
        }
        //Check to see if l_raw is negative.  If so, set raw to 0
        if (l_raw & 0x8000)
        {
            l_raw = 0;
        }

        l_temp = ((uint32_t)l_raw * l_gain);
        // Reduce value back to mA or mV
        l_temp /= 1000;
    }

    AMEC_DBG("APSS ADC info: chan=%d, raw=0x%04x, offset=%d, gain=%d calibrated output=%d\n",
             i_chan, l_raw, l_offset, l_gain, l_temp);

    return l_temp;
}

#define ADCMULT_TO_UNITS 1000000
#define ADCMULT_ROUND ADCMULT_TO_UNITS/2
// Function Specification
//
// Name: amec_update_apss_sensors
//
// Description: Calculates sensor from raw ADC values obtained from APSS
//
// Thread: RealTime Loop
//
// End Function Specification
void amec_update_apss_sensors(void)
{
    // Need to check to make sure APSS data has been received
    // via slave inbox first
    if (G_slv_inbox_received && (G_pwr_reading_type == PWR_READING_TYPE_APSS))
    {
        uint8_t l_proc   = G_pbax_id.chip_id;
        uint32_t temp32  = 0;
        uint8_t  l_idx   = 0;
        uint32_t l_bulk_current_sum = 0;

        // ----------------------------------------------------
        // Convert all ADC Channels immediately
        // ----------------------------------------------------
        for (l_idx = 0; l_idx < MAX_APSS_ADC_CHANNELS; l_idx++)
        {
            // These values returned are gain adjusted. The APSS readings for
            // the remote ground and 12V sense are returned in mVs, all other
            // readings are treated as mAs.
            G_lastValidAdcValue[l_idx] = amec_value_from_apss_adc(l_idx);

            // Add up all channels now, we will subtract ones later that don't
            // count towards the system power
            l_bulk_current_sum += G_lastValidAdcValue[l_idx];
        }

        // --------------------------------------------------------------
        // Convert 12Vsense into interim value - this has to happen first
        // --------------------------------------------------------------
        // Calculations involving bulk_voltage must be 64bit so final result
        // does not get truncated (before dividing by ADCMULT_TO_UNITS)
        uint64_t l_bulk_voltage = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.sense_12v);

        if (OCC_MASTER == G_occ_role)
        {
            // Update channel sensors for all channels (except 12v sense and gnd)
            for (l_idx = 0; l_idx < MAX_APSS_ADC_CHANNELS; l_idx++)
            {
                if(l_idx == G_sysConfigData.apss_adc_map.current_12v_stby)
                {
                    // Save value of 12V Standby Current (.01A) in a sensor for lab use only
                    temp32 = ADC_CONVERTED_VALUE(l_idx)/100;  // convert mA to .01A
                    sensor_update(AMECSENSOR_PTR(CUR12VSTBY), (uint16_t) temp32);
                }
                else if((l_idx != G_sysConfigData.apss_adc_map.sense_12v) &&
                        (l_idx != G_sysConfigData.apss_adc_map.remote_gnd))
                {
                    temp32 = ((ADC_CONVERTED_VALUE(l_idx) * l_bulk_voltage)+ADCMULT_ROUND)/ADCMULT_TO_UNITS;
                    sensor_update(AMECSENSOR_PTR(PWRAPSSCH0 + l_idx), (uint16_t) temp32);
                }
            }

            amec_update_apss_gpio();
        }

        // ----------------------------------------------------------
        // Convert Raw Vdd/Vcs/Vio/Vpcie Power from APSS into sensors
        // ----------------------------------------------------------
        // Some sensor values are in Watts so after getting the mA readings we
        // multiply by the bulk voltage (mVs) which requires us to then divide
        // by 1000000 to get W (A.V), ie.
        //  divide by    1000 to get it back to milliUnits (0.001)
        //  divide by   10000 to get it to centiUnits      (0.01)
        //  divide by  100000 to get it to deciUnits       (0.1)
        //  divide by 1000000 to get it to Units           (1)

        //Update channel specific sensors based on saved pairing between function Ids and Channels.

        // Make sure there is a channel for processor power else proc power sensor is using AVS bus and will
        // be updated in update_avsbus_power_sensors() instead
        if( (G_sysConfigData.apss_adc_map.vdd[l_proc] != SYSCFG_INVALID_ADC_CHAN) ||
            (G_sysConfigData.apss_adc_map.vcs_vio_vpcie[l_proc] != SYSCFG_INVALID_ADC_CHAN) )
        {
            uint32_t l_vdd = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.vdd[l_proc]);
            uint32_t l_vcs_vio_vpcie = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.vcs_vio_vpcie[l_proc]);
            temp32 = ((l_vcs_vio_vpcie + l_vdd) * l_bulk_voltage)/ADCMULT_TO_UNITS;
            sensor_update(AMECSENSOR_PTR(PWRPROC), (uint16_t) temp32);
        }

        // Save off the combined power from all modules
        for (l_idx=0; l_idx < MAX_NUM_CHIP_MODULES; l_idx++)
        {
            uint32_t l_vd = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.vdd[l_idx]);
            uint32_t l_vpcie = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.vcs_vio_vpcie[l_idx]);
            g_amec->proc_snr_pwr[l_idx] =  ((l_vpcie + l_vd) * l_bulk_voltage)/ADCMULT_TO_UNITS;
        }

        // All readings from APSS come back as milliUnits, so if we want
        // to convert one, we need to
        //  divide by    1 to get it back to milliUnits (0.001)
        //  divide by   10 to get it to centiUnits      (0.01)
        //  divide by  100 to get it to deciUnits       (0.1)
        //  divide by 1000 to get it to Units           (1)

        // ----------------------------------------------------
        // Convert Other Raw Misc Power from APSS into sensors
        // ----------------------------------------------------

        // Fans: Add up all Fan channels
        temp32  = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.fans[0]);
        temp32 += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.fans[1]);
        temp32  = ((temp32  * l_bulk_voltage)+ADCMULT_ROUND)/ADCMULT_TO_UNITS;
        sensor_update( AMECSENSOR_PTR(PWRFAN), (uint16_t)temp32);

        // I/O: Add up all I/O channels
        temp32  = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.io[0]);
        temp32 += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.io[1]);
        temp32 += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.io[2]);
        temp32 = ((temp32  * l_bulk_voltage)+ADCMULT_ROUND)/ADCMULT_TO_UNITS;
        sensor_update( AMECSENSOR_PTR(PWRIO), (uint16_t)temp32);

        // Memory: Add up all channels for the same processor.
        temp32 = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.memory[l_proc][0]);
        temp32 += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.memory[l_proc][1]);
        temp32 += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.memory[l_proc][2]);
        temp32 += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.memory[l_proc][3]);
        //Only for FSP-LESS systems do we add in Centaur power because it is measured on its own A/D channel, but is part of memory power
        if (FSP_SUPPORTED_OCC != G_occ_interrupt_type)
        {
            temp32 += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.mem_cache);
        }
        temp32 = ((temp32  * l_bulk_voltage)+ADCMULT_ROUND)/ADCMULT_TO_UNITS;
        sensor_update( AMECSENSOR_PTR(PWRMEM), (uint16_t)temp32);

        // Save off the combined power from all memory
        for (l_idx=0; l_idx < MAX_NUM_CHIP_MODULES; l_idx++)
        {
            uint32_t l_temp = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.memory[l_idx][0]);
            l_temp += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.memory[l_idx][1]);
            l_temp += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.memory[l_idx][2]);
            l_temp += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.memory[l_idx][3]);
            g_amec->mem_snr_pwr[l_idx] = ((l_temp  * l_bulk_voltage)+ADCMULT_ROUND)/ADCMULT_TO_UNITS;
        }

        // Storage/Media
        temp32  = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.storage_media[0]);
        temp32 += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.storage_media[1]);
        temp32  = ((temp32  * l_bulk_voltage)+ADCMULT_ROUND)/ADCMULT_TO_UNITS;
        sensor_update( AMECSENSOR_PTR(PWRSTORE), (uint16_t)temp32);

        // Save total GPU adapter for this proc
        if (l_proc < MAX_GPU_DOMAINS)
        {
            temp32 = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.gpu[l_proc][0]);
            temp32 += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.gpu[l_proc][1]);
            temp32 += ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.gpu[l_proc][2]);
            temp32 = ((temp32 * l_bulk_voltage)+ADCMULT_ROUND)/ADCMULT_TO_UNITS;
            sensor_update( AMECSENSOR_PTR(PWRGPU), (uint16_t)temp32);
        }

        // ----------------------------------------------------
        // Convert Raw Bulk Power from APSS into sensors
        // ----------------------------------------------------
        // We don't get this adc channel in some systems, we have to add it manually.
        // With valid sysconfig data the code here should automatically use what
        // is provided by the APSS if it is available, or manually sum it up if not.
        temp32 = ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.total_current_12v);
        temp32 = ((temp32 * l_bulk_voltage)+ADCMULT_ROUND)/ADCMULT_TO_UNITS;

        // To calculated the total 12V current based on a sum of all ADC channels,
        // Subract adc channels that don't measure power
        l_bulk_current_sum -= ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.sense_12v);
        l_bulk_current_sum -= ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.remote_gnd);
        l_bulk_current_sum -= ADC_CONVERTED_VALUE(G_sysConfigData.apss_adc_map.current_12v_stby);

        // If we don't have a ADC channel that measures the bulk 12v power, use
        // the ADC sum instead
        if(0 == temp32)
        {
            temp32 = ((l_bulk_current_sum * l_bulk_voltage)+ADCMULT_ROUND)/ADCMULT_TO_UNITS;
        }
        sensor_update(AMECSENSOR_PTR(PWRSYS), (uint16_t)temp32);

        // Calculate average frequency of all OCCs.
        uint32_t    l_allOccAvgFreqOver250us = 0;
        uint8_t     l_presentOCCs = 0;
        uint8_t     l_occCount = 0;

        // Add up the average freq from all OCCs.
        for (l_occCount = 0; l_occCount < MAX_OCCS; l_occCount++)
        {
            if (G_sysConfigData.is_occ_present & (1<< l_occCount))
            {
                l_allOccAvgFreqOver250us += G_dcom_slv_outbox_rx[l_occCount].freqa;
                l_presentOCCs++;
            }
        }
        //Calculate average of all the OCCs.
        l_allOccAvgFreqOver250us /= l_presentOCCs;

        // Save the max and min pwr sensors and keep an accumulator of the
        // average frequency over 30 seconds.
        if (g_pwr250us_over30sec.count == 0)
        {
            //The counter has been reset, therefore initialize the stored values.
            g_pwr250us_over30sec.max = (uint16_t) temp32;
            g_pwr250us_over30sec.min = (uint16_t) temp32;
            g_pwr250us_over30sec.freqaAccum = l_allOccAvgFreqOver250us;
        }
        else
        {
            //Check for max.
            if (temp32 > g_pwr250us_over30sec.max)
            {
                g_pwr250us_over30sec.max = (uint16_t) temp32;
            }
            //Check for min.
            if (temp32 < g_pwr250us_over30sec.min)
            {
                g_pwr250us_over30sec.min = (uint16_t) temp32;
            }
            //Average frequency accumulator.
            g_pwr250us_over30sec.freqaAccum += l_allOccAvgFreqOver250us;
        }

        //Count of number of updates.
        g_pwr250us_over30sec.count++;

        // Check the GPU presence signals
        amec_update_gpu_configuration();

        // ----------------------------------------------------
        // Clear Flag to indicate that AMEC has received the data.
        // ----------------------------------------------------
        G_slv_inbox_received = FALSE;
    }
    else
    {
        // Skip it...AMEC Health Monitor will figure out we didn't
        // update this sensor.
    }
}


// Read the current from AVS Bus and update sensors
void process_avsbus_current()
{
    if (G_avsbus_vdd_monitoring)
    {
        // Read Vdd current (returns 10mA)
        uint32_t current = avsbus_read(AVSBUS_VDD, AVSBUS_CURRENT);
        if (current != 0)
        {
            // Current value stored in the sensor should be in 10mA (A scale -2)
            sensor_update(AMECSENSOR_PTR(CURVDD), (uint16_t)current);
        }
    }
    if (G_avsbus_vdn_monitoring)
    {
        // Read Vdn current (returns 10mA)
        uint32_t current = avsbus_read(AVSBUS_VDN, AVSBUS_CURRENT);
        if (current != 0)
        {
            // Current value stored in the sensor should be in 10mA (A scale -2)
            sensor_update(AMECSENSOR_PTR(CURVDN), (uint16_t)current);
        }
    }
}


// Read the voltage from AVS Bus and update sensors
void process_avsbus_voltage()
{
    if (G_avsbus_vdd_monitoring)
    {
        // Read Vdd voltage (returns mV)
        uint32_t voltage = avsbus_read(AVSBUS_VDD, AVSBUS_VOLTAGE);
        if (voltage != 0)
        {
            // Voltage value stored in the sensor should be in 100uV (mV scale -1)
            voltage *= 10;
            sensor_update(AMECSENSOR_PTR(VOLTVDD), (uint16_t)voltage);
        }
    }
    if (G_avsbus_vdn_monitoring)
    {
        // Read Vdn voltage (returns mV)
        uint32_t voltage = avsbus_read(AVSBUS_VDN, AVSBUS_VOLTAGE);
        if (voltage != 0)
        {
            // Voltage value stored in the sensor should be in 100uV (mV scale -1)
            voltage *= 10;
            sensor_update(AMECSENSOR_PTR(VOLTVDN), (uint16_t)voltage);
        }
    }
}


// Calculate chip voltage and power and update sensors
void update_avsbus_power_sensors(const avsbus_type_e i_type)
{
    static bool L_throttle_vdd = FALSE;
    static bool L_throttle_vdn = FALSE;
    bool * L_throttle = &L_throttle_vdd;
    uint32_t l_loadline = G_oppb.vdd_sysparm.loadline_uohm;
    uint32_t l_distloss = G_oppb.vdd_sysparm.distloss_uohm;
    uint32_t l_currentSensor = CURVDD;
    uint32_t l_voltageSensor = VOLTVDD;
    uint32_t l_voltageChip = VOLTVDDSENSE;
    uint32_t l_powerSensor = PWRVDD;
    uint32_t l_powerSensor2 = PWRVDN;
    if (AVSBUS_VDN == i_type)
    {
        L_throttle = &L_throttle_vdn;
        l_loadline = G_oppb.vdn_sysparm.loadline_uohm;
        l_distloss = G_oppb.vdn_sysparm.distloss_uohm;
        l_currentSensor = CURVDN;
        l_voltageSensor = VOLTVDN;
        l_voltageChip = VOLTVDNSENSE;
        l_powerSensor = PWRVDN;
        l_powerSensor2 = PWRVDD;
    }

    // Read latest voltage/current sensors
    uint32_t l_voltage_100uv = 0;
    uint32_t l_current_10ma = 0;
    sensor_t *l_sensor = getSensorByGsid(l_voltageSensor);
    if (l_sensor != NULL)
    {
        l_voltage_100uv = l_sensor->sample;
    }
    l_sensor = getSensorByGsid(l_currentSensor);
    if (l_sensor != NULL)
    {
        l_current_10ma = l_sensor->sample;
    }


    if ((l_voltage_100uv != 0) && (l_current_10ma != 0))
    {
        // Calculate voltage on just processor package (need to take load-line into account)
        // Voltage value stored in the sensor should be in 100uV (mV scale -1)
        // (current is in 10mA units, and load-line is in microOhms)
        // v(V)     = i(10mA)*(1 A/1000 mA) * r(1 uOhm)*(1 Ohm/1,000,000 uOhm)
        //          = i * (1 A/100) * r * (1 Ohm/1,000,000)
        //          = i * r / 100,000,000
        // v(uV)    = v(V) * 1,000,000
        // v(100uV) = v(uV) / 100
        //          = (v(V) * 1,000,000) / 100 = v(V) * 10,000
        //          = (i * r / 100,000,000) * 10,000 = i * r / 10,000
        // NOTE: distloss is the same as Rpath in the WOF algorithm
        const uint64_t l_volt_drop_100uv = (l_current_10ma * (l_loadline+l_distloss)) / 10000;
        // Calculate chip voltage
        int32_t l_chip_voltage_100uv = l_voltage_100uv - l_volt_drop_100uv;
        if ((l_chip_voltage_100uv <= 0) || (l_chip_voltage_100uv > 0xFFFF))
        {
            // Voltage out of range, do not write sensors
            if (!*L_throttle)
            {
                TRAC_ERR("update_avsbus_power_sensors: chip voltage out of range! %d(100uV) - %d(100uV) = %d(100uV)",
                         l_voltage_100uv, WORD_LOW(l_volt_drop_100uv), l_chip_voltage_100uv);
                *L_throttle = TRUE;
            }
        }
        else
        {
            *L_throttle = FALSE;

            // Update chip voltage (remote sense adjusted for loadline) (100uV units)
            sensor_update(AMECSENSOR_PTR(l_voltageChip), (uint16_t)l_chip_voltage_100uv);

            // Power value stored in the sensor should be in W (scale 0)
            // p(W) = v(V) * i(A) = v(100uV)*100/1,000,000 * i(10mA)*10/1000
            //                    = v(100uV)/10,000        * i(10mA)/100
            //                    = v(100uV) * i(10mA) / 1,000,000
            const uint32_t l_power = l_chip_voltage_100uv * l_current_10ma / 1000000;
            sensor_update(AMECSENSOR_PTR(l_powerSensor), (uint16_t)l_power);

            // check if there is an APSS with processor channel that would be providing the processor power sensor
            if( ( G_pwr_reading_type != PWR_READING_TYPE_APSS ) ||
                ( (G_sysConfigData.apss_adc_map.vdd[G_pbax_id.chip_id] == SYSCFG_INVALID_ADC_CHAN) &&
                  (G_sysConfigData.apss_adc_map.vcs_vio_vpcie[G_pbax_id.chip_id] == SYSCFG_INVALID_ADC_CHAN) ) )
            {
               // no proc pwr from APSS, update the processor power sensor with AVS bus total processor power
               // Vdd + Vdn + fixed adder for parts not measured (i.e. Vddr, Vcs, Vio etc)
               sensor_t *l_sensor2 = getSensorByGsid(l_powerSensor2);
               const uint16_t l_proc_power = (uint16_t)l_power + l_sensor2->sample + G_sysConfigData.proc_power_adder;
               sensor_update(AMECSENSOR_PTR(PWRPROC), l_proc_power);
            }
        }

    }

} // end update_avsbus_power_sensors()


// Function Specification
//
// Name: amec_update_avsbus_sensors
//
// Description: Read AVS Bus data and update sensors (called every tick)
//   Tick 0: start read current (for Vdd/Vdn)
//   Tick 1: process current, start voltage read (Vdd/Vdn)
//   Tick 2: process voltage, start Vdd temp read
//   Tick 3: process Vdd temp, start current read (Vdd/Vdn)
//   Tick 4: process current, start voltage read (Vdd/Vdn)
//   Tick 5: process voltage, start status read (Vdd/Vdn)
//   Tick 6: process status, start current read (Vdd/Vdn)
//   (back to tick 1)
//
//   Vdd/Vdn current and voltage are read every 3 ticks
//   Vdd temperature and status is read every 6 ticks
//
// Thread: RealTime Loop
//
// End Function Specification
void amec_update_avsbus_sensors(void)
{
    static enum {
        AVSBUS_STATE_DISABLED           = 0,
        AVSBUS_STATE_INITIATE_READ      = 1,
        AVSBUS_STATE_PROCESS_CURRENT    = 2,
        AVSBUS_STATE_PROCESS_VOLTAGE    = 3,
        AVSBUS_STATE_PROCESS_STATUS     = 4,
        AVSBUS_STATE_PROCESS_TEMPERATURE= 5
    } L_avsbus_state = AVSBUS_STATE_INITIATE_READ;

    // Flag to select either temperature or status to read on 3rd tick
    static bool L_read_temp = true;

    if (isSafeStateRequested())
    {
        L_avsbus_state = AVSBUS_STATE_DISABLED;
        G_avsbus_vdd_monitoring = FALSE;
        G_avsbus_vdn_monitoring = FALSE;
        G_vrm_thermal_monitoring = FALSE;
    }

    switch (L_avsbus_state)
    {
        case AVSBUS_STATE_INITIATE_READ:
            // Start first AVS Bus read of current
            initiate_avsbus_reads(AVSBUS_CURRENT);
            L_avsbus_state = AVSBUS_STATE_PROCESS_CURRENT;
            break;

        case AVSBUS_STATE_PROCESS_CURRENT:
            // Process the current readings
            process_avsbus_current();
            // Initiate read of voltages
            initiate_avsbus_reads(AVSBUS_VOLTAGE);
            L_avsbus_state = AVSBUS_STATE_PROCESS_VOLTAGE;
            break;

        case AVSBUS_STATE_PROCESS_VOLTAGE:
            // Process the voltage readings
            process_avsbus_voltage();

            // Initiate read of temperature or error status (OT/OC)
            if (L_read_temp)
            {
                // Initiate AVS Bus read for Vdd temperature
                avsbus_read_start(AVSBUS_VDD, AVSBUS_TEMPERATURE);
                L_avsbus_state = AVSBUS_STATE_PROCESS_TEMPERATURE;
            }
            else
            {
                initiate_avsbus_read_status();
                L_avsbus_state = AVSBUS_STATE_PROCESS_STATUS;
            }
            // Toggle between reading temperature and status
            L_read_temp = !L_read_temp;
            break;

        case AVSBUS_STATE_PROCESS_STATUS:
            {
                // Process the status
                uint16_t otStatus = process_avsbus_status();
                if (G_vrm_thermal_monitoring)
                {
                    // Update sensor with the OT status (0 / 1)
                    sensor_update(AMECSENSOR_PTR(VRMPROCOT), otStatus);
                }
                // Back to reading currents
                initiate_avsbus_reads(AVSBUS_CURRENT);
                L_avsbus_state = AVSBUS_STATE_PROCESS_CURRENT;
            }
            break;

        case AVSBUS_STATE_PROCESS_TEMPERATURE:
            {
                // Read and process Vdd temperature
                avsbus_read(AVSBUS_VDD, AVSBUS_TEMPERATURE);
                // Back to reading currents
                initiate_avsbus_reads(AVSBUS_CURRENT);
                L_avsbus_state = AVSBUS_STATE_PROCESS_CURRENT;
            }
            break;

        case AVSBUS_STATE_DISABLED:
            break;

        default:
            TRAC_ERR("amec_update_avsbus_sensors: INVALID AVSBUS STATE 0x%02X", L_avsbus_state);
            L_avsbus_state = AVSBUS_STATE_INITIATE_READ;
            break;
    }

    // Update the chip voltage and power sensors after every reading
    if (G_avsbus_vdd_monitoring)
    {
        update_avsbus_power_sensors(AVSBUS_VDD);
    }
    if (G_avsbus_vdn_monitoring)
    {
        update_avsbus_power_sensors(AVSBUS_VDN);
    }

} // end amec_update_avsbus_sensors()

// Function Specification
//
// Name: amec_update_apss_gpio
//
// Description: Updates sensors based on the GPIO data from the APSS
//
// Thread: RealTime Loop
//
// End Function Specification
void amec_update_apss_gpio(void)
{
    // GPIO port numbers from system model
    uint8_t * l_vrhot_port_nums = G_sysConfigData.apss_gpio_map.vr_fan;

    // Actual values of the GPIO
    uint8_t   l_vrhot0 = 1, l_vrhot1 = 1;

    // Data is valid?
    uint8_t   l_valid0 = FALSE, l_valid1 = FALSE;

    // Get value from most recent APSS data
    l_valid0 = apss_gpio_get(l_vrhot_port_nums[0], &l_vrhot0); //GPIO_VR_HOT_MEM_PROC_0
    l_valid1 = apss_gpio_get(l_vrhot_port_nums[1], &l_vrhot1); //GPIO_VR_HOT_MEM_PROC_1

    // Only log once
    static uint8_t L_err_logged;

    // These signals are active low
    if( (l_valid0 && !l_vrhot0) || (l_valid1 && !l_vrhot1) )
    {
        // Update the sensor indicating that one of the vrhot signals was asserted
        sensor_update(AMECSENSOR_PTR(VRHOTMEMPRCCNT), 1);

        // Only log once
        if(!L_err_logged)
        {
            INTR_TRAC_ERR("GPIO_VR_HOT_MEM_PROC_0[%d, valid=%d] GPIO_VR_HOT_MEM_PROC_1[%d, valid=%d]",
                 l_vrhot0, l_valid0, l_vrhot1, l_valid1);
            /*
             * @errortype
             * @moduleid    AMEC_UPDATE_APSS_GPIO
             * @reasoncode  VR_HOT_MEM_PROC_ASSERTED
             * @userdata1   0
             * @userdata2   0
             * @userdata4   OCC_NO_EXTENDED_RC
             * @devdesc     GPIO_VR_HOT_MEM_PROC_0/1 was asserted
             */
            errlHndl_t l_err = createErrl(AMEC_UPDATE_APSS_GPIO,
                                          VR_HOT_MEM_PROC_ASSERTED,
                                          OCC_NO_EXTENDED_RC,
                                          ERRL_SEV_INFORMATIONAL,
                                          NULL,
                                          DEFAULT_TRACE_SIZE,
                                         0,
                                          0);

            // Manufacturing error only
            setErrlActions(l_err, ERRL_ACTIONS_MANUFACTURING_ERROR);

            // Processor callout
            addCalloutToErrl(l_err,
                             ERRL_CALLOUT_TYPE_HUID,
                             G_sysConfigData.proc_huid,
                             ERRL_CALLOUT_PRIORITY_HIGH);

            // APSS callout
            addCalloutToErrl(l_err,
                             ERRL_CALLOUT_TYPE_HUID,
                             G_sysConfigData.apss_huid,
                             ERRL_CALLOUT_PRIORITY_LOW);

            commitErrl(&l_err);

            L_err_logged = TRUE;
        }
    }
    else if ( (l_valid0 && l_vrhot0) && (l_valid1 && l_vrhot1) )
    {
        sensor_update(AMECSENSOR_PTR(VRHOTMEMPRCCNT), 0);
    }
}

// Function Specification
//
// Name: amec_update_gpu_configuration
//
// Description: Checks the APSS data to see which GPUs are present
//
// Thread: RealTime Loop
//
// End Function Specification
void amec_update_gpu_configuration(void)
{
    // GPIO port numbers from system model
    uint8_t * l_gpu_port_nums = G_sysConfigData.apss_gpio_map.gpu;

    // Actual values of the GPIO
    uint8_t   l_gpu_pres = 1;

    // Data is valid?
    bool   l_valid = FALSE;
    bool   l_all_valid = FALSE;

    uint8_t   i = 0;
    uint8_t   l_start_proc = (G_pbax_id.chip_id * GPU_PRES_SIGN_PER_OCC);

    uint8_t   l_valid_bitmask_proc = 0; // Bitmask for present GPUs behind just this proc
    uint8_t   l_valid_bitmask_sys = 0;  // Bitmask for present GPUs behind both procs
    uint8_t   l_num_gpus_sys = 0;       // Number of GPUs both procs

    // Check which GPUs are present
    for( i=0; i < MAX_GPU_PRES_SIGNALS; i++ )
    {
        l_valid = apss_gpio_get(l_gpu_port_nums[i], &l_gpu_pres);

        // Presence signal is active low
        l_gpu_pres = (l_gpu_pres ? 0 : 1);
        if(l_valid)
        {
            l_all_valid = TRUE;

            // Keep track of number and configuration of GPUs behind both procs
            l_num_gpus_sys += l_gpu_pres;
            l_valid_bitmask_sys |= (l_gpu_pres << i);

            // Also want to keep a separate tally of GPUs behind only this proc
            if( (i >= l_start_proc) && (i < (l_start_proc + GPU_PRES_SIGN_PER_OCC)) )
            {
                l_valid_bitmask_proc |= (l_gpu_pres << (i - l_start_proc));
            }
        }
        else
        {
            l_all_valid = FALSE;
            break;
        }
    }

    // If all GPU signals are valid, update the global if this is the first read.
    // If this is not the first read, make sure that the signals match the first.
    if(l_all_valid)
    {
        G_curr_proc_gpu_config = l_valid_bitmask_proc;
        G_curr_sys_gpu_config = l_valid_bitmask_sys;
        G_curr_num_gpus_sys = l_num_gpus_sys;
        if(!G_gpu_config_done)
        {
            G_gpu_config_done = TRUE;
            G_first_proc_gpu_config = l_valid_bitmask_proc;
            if(G_first_proc_gpu_config)
            {
               // GPUs are present enable monitoring
               G_gpu_monitoring_allowed = TRUE;
               G_task_table[TASK_ID_GPU_SM].flags = GPU_RTL_FLAGS;
            }
            G_first_sys_gpu_config = l_valid_bitmask_sys;
            G_first_num_gpus_sys = l_num_gpus_sys;
            TRAC_IMP("GPU presence detection completed. GPU configuration for this OCC: 0x%08X, total[%d]",
                     G_curr_proc_gpu_config, G_curr_num_gpus_sys);
        }
        else if (G_curr_sys_gpu_config != G_first_sys_gpu_config)
        {
            TRAC_ERR("GPU presence has changed unexpectedly! Old:0x%02X, New:0x%02X",
                     G_first_sys_gpu_config, l_valid_bitmask_sys);
        }
    }
}
/*----------------------------------------------------------------------------*/
/* End                                                                        */
/*----------------------------------------------------------------------------*/
OpenPOWER on IntegriCloud