summaryrefslogtreecommitdiffstats
path: root/drivers/block/ftide020.c
blob: 0b7c129fb40df1fad20a384dad3ee47c368efff4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/*
 * Faraday FTIDE020 ATA Controller (AHB)
 *
 * (C) Copyright 2011 Andes Technology
 * Greentime Hu <greentime@andestech.com>
 * Macpaul Lin <macpaul@andestech.com>
 * Kuo-Wei Chou <kwchou@andestech.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */
/* ftide020.c - ide support functions for the FTIDE020_S controller */

#include <config.h>
#include <common.h>
#include <ata.h>
#include <ide.h>
#include <asm/io.h>
#include <api_public.h>

#include "ftide020.h"

/* base address */
#define FTIDE_BASE	CONFIG_SYS_ATA_BASE_ADDR

/*
 * data address - The CMD and DATA use the same FIFO in FTIDE020_S
 *   FTIDE_DATA = CONFIG_SYS_ATA_BASE_ADDR + CONFIG_SYS_ATA_DATA_OFFSET
 *		= &ftide020->rw_fifo
 */
#define FTIDE_DATA	(&ftide020->rw_fifo)

/* command and data I/O macros */
/* 0x0 - DATA FIFO */
#define WRITE_DATA(x)	outl((x), &ftide020->rw_fifo)	/* 0x00 */
#define READ_DATA()	inl(&ftide020->rw_fifo)		/* 0x00 */
/* 0x04 - R: Status Reg, W: CMD_FIFO */
#define WRITE_CMD(x)	outl((x), &ftide020->cmd_fifo)	/* 0x04 */
#define READ_STATUS()	inl(&ftide020->cmd_fifo)	/* 0x04 */

void ftide_set_device(int cx8, int dev)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;

	WRITE_CMD(SET_DEV_CMD | IDE_SET_CX8(cx8) | dev);
}

unsigned char ide_read_register(int dev, unsigned int port)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;

	ftide_set_device(0, dev);
	WRITE_CMD(READ_REG_CMD | IDE_REG_CS_READ(CONFIG_IDE_REG_CS) |
		IDE_REG_DA_WRITE(port));

	return READ_DATA() & 0xff;
}

void ide_write_register(int dev, unsigned int port, unsigned char val)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;

	ftide_set_device(0, dev);
	WRITE_CMD(WRITE_REG_CMD | IDE_REG_CS_WRITE(CONFIG_IDE_REG_CS) |
		IDE_REG_DA_WRITE(port) | val);
}

void ide_write_data(int dev, ulong *sect_buf, int words)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;

	ftide_set_device(0, dev);
	WRITE_CMD(WRITE_DATA_CMD | ((words << 2) - 1));

	/* block write */
	outsl(FTIDE_DATA, sect_buf, words);
}

void ide_read_data(int dev, ulong *sect_buf, int words)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;

	ftide_set_device(0, dev);
	WRITE_CMD(READ_DATA_CMD | ((words << 2) - 1));

	/* block read */
	insl(FTIDE_DATA, sect_buf, words);
}

void ftide_dfifo_ready(ulong *time)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;

	while (!(READ_STATUS() & STATUS_RFE)) {
		if (*time-- == 0)
			break;

		udelay(100);
	}
}

extern ulong ide_bus_offset[CONFIG_SYS_IDE_MAXBUS];

/* Reset_IDE_controller */
static void reset_ide_controller(void)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
	unsigned int val;

	val = inl(&ftide020->cr);

	val |= CONTROL_RST;
	outl(val, &ftide020->cr);

	/* wait until reset OK, this is poor HW design */
	mdelay(50);
	val &= ~(CONTROL_RST);
	outl(val, &ftide020->cr);

	mdelay(50);
	val |= CONTROL_SRST;
	outl(val, &ftide020->cr);

	/* wait until reset OK, this is poor HW design */
	mdelay(50);
	val &= ~(CONTROL_SRST);
	outl(val, &ftide020->cr);

	/* IORDY enable for PIO, for 2 device */
	val |= (CONTROL_IRE0 | CONTROL_IRE1);
	outl(val, &ftide020->cr);
}

/* IDE clock frequence */
uint ftide_clock_freq(void)
{
	/*
	 * todo: To aquire dynamic system frequency is dependend on the power
	 * management unit which the ftide020 is connected to. In current,
	 * there are only few PMU supports in u-boot.
	 * So this function is wait for future enhancement.
	 */
	return 100;
}

/* Calculate Timing Registers */
static unsigned int timing_cal(u16 t0, u16 t1, u16 t2, u16 t4)
{
	unsigned int val, ahb_ns = 8;
	u8 TEOC, T1, T2, T4;

	T1 = (u8) (t1 / ahb_ns);
	if ((T1 * ahb_ns) == t1)
		T1--;

	T2 = (u8) (t2 / ahb_ns);
	if ((T2 * ahb_ns) == t2)
		T2--;

	T4 = (u8) (t4 / ahb_ns);
	if ((T4 * ahb_ns) == t4)
		T4--;

	TEOC = (u8) (t0 / ahb_ns);
	if ((TEOC * ahb_ns) == t0)
		TEOC--;

	TEOC = ((TEOC > (T1 + T2 + T4)) ? (TEOC - (T1 + T2 + T4)) : 0);

	/*
	 * Here the fields in data timing registers in PIO mode
	 * is accessed the same way as command timing registers.
	 */
	val =	DT_REG_PIO_T1(T1)	|
		DT_REG_PIO_T2(T2)	|
		DT_REG_PIO_T4(T4)	|
		DT_REG_PIO_TEOC(TEOC);

	return val;
}

/* Set Timing Register */
static unsigned int set_mode_timing(u8 dev, u8 id, u8 mode)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
	u16 t0, t1, t2, t4;
	u8 tcyc, tcvs, tmli, tenv, tack, trp;
	unsigned int val, sysclk = 8;

	if (id >= TATOL_TIMING)
		return 0;

	sysclk = ftide_clock_freq();
	switch (id) {
	case CMD_TIMING:
		if (mode < REG_MODE) {
			t0 = REG_ACCESS_TIMING[REG_T0][mode];
			t1 = REG_ACCESS_TIMING[REG_T1][mode];
			t2 = REG_ACCESS_TIMING[REG_T2][mode];
			t4 = REG_ACCESS_TIMING[REG_T4][mode];

			val = timing_cal(t0, t1, t2, t4);
			outl(val, (dev ? &ftide020->ctrd1 : &ftide020->ctrd0));
			return 1;
		} else
			return 0;
	case PIO_TIMING:
		if (mode < PIO_MODE) {
			t0 = PIO_ACCESS_TIMING[PIO_T0][mode];
			t1 = PIO_ACCESS_TIMING[PIO_T1][mode];
			t2 = PIO_ACCESS_TIMING[PIO_T2][mode];
			t4 = PIO_ACCESS_TIMING[PIO_T4][mode];

			val = timing_cal(t0, t1, t2, t4);

			outl(val, (dev ? &ftide020->dtrd1 : &ftide020->dtrd0));
			return 1;
		} else
			return 0;
	case DMA_TIMING:
		if (mode < UDMA_MODE) {
			/*
			 * 0.999 is ceiling
			 * for tcyc, tcvs, tmli, tenv, trp, tack
			 */
			tcyc = (u8) (((UDMA_ACCESS_TIMING[UDMA_TCYC][mode] \
						* sysclk) + 9990) / 10000);
			tcvs = (u8) (((UDMA_ACCESS_TIMING[UDMA_TCVS][mode] \
						* sysclk) + 9990) / 10000);
			tmli = (u8) (((UDMA_ACCESS_TIMING[UDMA_TMLI][mode] \
						* sysclk) + 9990) / 10000);
			tenv = (u8) (((UDMA_ACCESS_TIMING[UDMA_TENV][mode] \
						* sysclk) + 9990) / 10000);
			trp  = (u8) (((UDMA_ACCESS_TIMING[UDMA_TRP][mode] \
						* sysclk) + 9990) / 10000);
			tack = (u8) (((UDMA_ACCESS_TIMING[UDMA_TACK][mode] \
						 * sysclk) + 9990) / 10000);

			val  =	DT_REG_UDMA_TENV((tenv > 0) ? (tenv - 1) : 0) |
				DT_REG_UDMA_TMLI((tmli > 0) ? (tmli - 1) : 0) |
				DT_REG_UDMA_TCYC((tcyc > 0) ? (tcyc - 1) : 0) |
				DT_REG_UDMA_TACK((tack > 0) ? (tack - 1) : 0) |
				DT_REG_UDMA_TCVS((tcvs > 0) ? (tcvs - 1) : 0) |
				DT_REG_UDMA_TRP((trp > 0) ? (trp - 1) : 0);

			outl(val, (dev ? &ftide020->dtrd1 : &ftide020->dtrd0));
			return 1;
		} else
			return 0;
	default:
		return 0;
	}
}

static void ftide_read_hwrev(void)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
	unsigned int rev;

	rev = inl(&ftide020->revision);
}

static int ftide_controller_probe(void)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
	unsigned int bak;

	bak = inl(&ftide020->ctrd1);

	/* probing by using shorter setup time */
	outl(CONFIG_CTRD1_PROBE_T1, &ftide020->ctrd1);
	if ((inl(&ftide020->ctrd1) & 0xff) != CONFIG_CTRD1_PROBE_T1) {
		outl(bak, &ftide020->ctrd1);
		return 0;
	}

	/* probing by using longer setup time */
	outl(CONFIG_CTRD1_PROBE_T2, &ftide020->ctrd1);
	if ((inl(&ftide020->ctrd1) & 0xff) != CONFIG_CTRD1_PROBE_T2) {
		outl(bak, &ftide020->ctrd1);
		return 0;
	}

	outl(bak, &ftide020->ctrd1);

	return 1;
}

/* ide_preinit() was migrated from linux driver ide_probe_for_ftide() */
int ide_preinit(void)
{
	static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE;
	int status;
	unsigned int val;
	int i;

	status = 1;
	for (i = 0; i < CONFIG_SYS_IDE_MAXBUS; i++)
		ide_bus_offset[i] = -ATA_STATUS;

	/* auto-detect IDE controller */
	if (ftide_controller_probe()) {
		printf("FTIDE020_S\n");
	} else {
		printf("FTIDE020_S ATA controller not found.\n");
		return API_ENODEV;
	}

	/* check HW IP revision */
	ftide_read_hwrev();

	/* set FIFO threshold */
	outl(((WRITE_FIFO - RX_THRESH) << 16) | RX_THRESH, &ftide020->dmatirr);

	/* set Device_0 PIO_4 timing */
	set_mode_timing(0, CMD_TIMING, REG_MODE4);
	set_mode_timing(0, PIO_TIMING, PIO_MODE4);

	/* set Device_1 PIO_4 timing */
	set_mode_timing(1, CMD_TIMING, REG_MODE4);
	set_mode_timing(1, PIO_TIMING, PIO_MODE4);

	/* from E-bios */
	/* little endian */
	outl(0x0, &ftide020->cr);
	mdelay(10);

	outl(0x0fff0fff, &ftide020->ahbtr);
	mdelay(10);

	/* Enable controller Interrupt */
	val = inl(&ftide020->cr);

	/* Enable: IDE IRQ, IDE Terminate ERROR IRQ, AHB Timeout error IRQ */
	val |= (CONTROL_IIE | CONTROL_TERIE | CONTROL_AERIE);
	outl(val, &ftide020->cr);

	status = 0;

	return status;
}

void ide_set_reset(int flag)
{
	debug("ide_set_reset()\n");
	reset_ide_controller();
	return;
}
OpenPOWER on IntegriCloud