summaryrefslogtreecommitdiffstats
path: root/arch/arm/cpu/arm926ejs/mxs/mxs.c
blob: 365542fe0bb29e1a7c2cc4ff4d35c83adb41d37b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
 * Freescale i.MX23/i.MX28 common code
 *
 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
 * on behalf of DENX Software Engineering GmbH
 *
 * Based on code from LTIB:
 * Copyright (C) 2010 Freescale Semiconductor, Inc.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/imx-common/dma.h>
#include <asm/arch/gpio.h>
#include <asm/arch/iomux.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/sys_proto.h>
#include <linux/compiler.h>

DECLARE_GLOBAL_DATA_PTR;

/* Lowlevel init isn't used on i.MX28, so just have a dummy here */
inline void lowlevel_init(void) {}

void reset_cpu(ulong ignored) __attribute__((noreturn));

void reset_cpu(ulong ignored)
{
	struct mxs_rtc_regs *rtc_regs =
		(struct mxs_rtc_regs *)MXS_RTC_BASE;
	struct mxs_lcdif_regs *lcdif_regs =
		(struct mxs_lcdif_regs *)MXS_LCDIF_BASE;

	/*
	 * Shut down the LCD controller as it interferes with BootROM boot mode
	 * pads sampling.
	 */
	writel(LCDIF_CTRL_RUN, &lcdif_regs->hw_lcdif_ctrl_clr);

	/* Wait 1 uS before doing the actual watchdog reset */
	writel(1, &rtc_regs->hw_rtc_watchdog);
	writel(RTC_CTRL_WATCHDOGEN, &rtc_regs->hw_rtc_ctrl_set);

	/* Endless loop, reset will exit from here */
	for (;;)
		;
}

void enable_caches(void)
{
#ifndef CONFIG_SYS_ICACHE_OFF
	icache_enable();
#endif
#ifndef CONFIG_SYS_DCACHE_OFF
	dcache_enable();
#endif
}

/*
 * This function will craft a jumptable at 0x0 which will redirect interrupt
 * vectoring to proper location of U-Boot in RAM.
 *
 * The structure of the jumptable will be as follows:
 *  ldr pc, [pc, #0x18] ..... for each vector, thus repeated 8 times
 *  <destination address> ... for each previous ldr, thus also repeated 8 times
 *
 * The "ldr pc, [pc, #0x18]" instruction above loads address from memory at
 * offset 0x18 from current value of PC register. Note that PC is already
 * incremented by 4 when computing the offset, so the effective offset is
 * actually 0x20, this the associated <destination address>. Loading the PC
 * register with an address performs a jump to that address.
 */
void mx28_fixup_vt(uint32_t start_addr)
{
	/* ldr pc, [pc, #0x18] */
	const uint32_t ldr_pc = 0xe59ff018;
	/* Jumptable location is 0x0 */
	uint32_t *vt = (uint32_t *)0x0;
	int i;

	for (i = 0; i < 8; i++) {
		vt[i] = ldr_pc;
		vt[i + 8] = start_addr + (4 * i);
	}
}

#ifdef	CONFIG_ARCH_MISC_INIT
int arch_misc_init(void)
{
	mx28_fixup_vt(gd->relocaddr);
	return 0;
}
#endif

int arch_cpu_init(void)
{
	struct mxs_clkctrl_regs *clkctrl_regs =
		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
	extern uint32_t _start;

	mx28_fixup_vt((uint32_t)&_start);

	/*
	 * Enable NAND clock
	 */
	/* Clear bypass bit */
	writel(CLKCTRL_CLKSEQ_BYPASS_GPMI,
		&clkctrl_regs->hw_clkctrl_clkseq_set);

	/* Set GPMI clock to ref_gpmi / 12 */
	clrsetbits_le32(&clkctrl_regs->hw_clkctrl_gpmi,
		CLKCTRL_GPMI_CLKGATE | CLKCTRL_GPMI_DIV_MASK, 1);

	udelay(1000);

	/*
	 * Configure GPIO unit
	 */
	mxs_gpio_init();

#ifdef	CONFIG_APBH_DMA
	/* Start APBH DMA */
	mxs_dma_init();
#endif

	return 0;
}

#if defined(CONFIG_DISPLAY_CPUINFO)
static const char *get_cpu_type(void)
{
	struct mxs_digctl_regs *digctl_regs =
		(struct mxs_digctl_regs *)MXS_DIGCTL_BASE;

	switch (readl(&digctl_regs->hw_digctl_chipid) & HW_DIGCTL_CHIPID_MASK) {
	case HW_DIGCTL_CHIPID_MX23:
		return "23";
	case HW_DIGCTL_CHIPID_MX28:
		return "28";
	default:
		return "??";
	}
}

static const char *get_cpu_rev(void)
{
	struct mxs_digctl_regs *digctl_regs =
		(struct mxs_digctl_regs *)MXS_DIGCTL_BASE;
	uint8_t rev = readl(&digctl_regs->hw_digctl_chipid) & 0x000000FF;

	switch (readl(&digctl_regs->hw_digctl_chipid) & HW_DIGCTL_CHIPID_MASK) {
	case HW_DIGCTL_CHIPID_MX23:
		switch (rev) {
		case 0x0:
			return "1.0";
		case 0x1:
			return "1.1";
		case 0x2:
			return "1.2";
		case 0x3:
			return "1.3";
		case 0x4:
			return "1.4";
		default:
			return "??";
		}
	case HW_DIGCTL_CHIPID_MX28:
		switch (rev) {
		case 0x1:
			return "1.2";
		default:
			return "??";
		}
	default:
		return "??";
	}
}

int print_cpuinfo(void)
{
	struct mxs_spl_data *data = (struct mxs_spl_data *)
		((CONFIG_SYS_TEXT_BASE - sizeof(struct mxs_spl_data)) & ~0xf);

	printf("CPU:   Freescale i.MX%s rev%s at %d MHz\n",
		get_cpu_type(),
		get_cpu_rev(),
		mxc_get_clock(MXC_ARM_CLK) / 1000000);
	printf("BOOT:  %s\n", mxs_boot_modes[data->boot_mode_idx].mode);
	return 0;
}
#endif

int do_mx28_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
{
	printf("CPU:   %3d MHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000000);
	printf("BUS:   %3d MHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000000);
	printf("EMI:   %3d MHz\n", mxc_get_clock(MXC_EMI_CLK));
	printf("GPMI:  %3d MHz\n", mxc_get_clock(MXC_GPMI_CLK) / 1000000);
	return 0;
}

/*
 * Initializes on-chip ethernet controllers.
 */
#if defined(CONFIG_MX28) && defined(CONFIG_CMD_NET)
int cpu_eth_init(bd_t *bis)
{
	struct mxs_clkctrl_regs *clkctrl_regs =
		(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;

	/* Turn on ENET clocks */
	clrbits_le32(&clkctrl_regs->hw_clkctrl_enet,
		CLKCTRL_ENET_SLEEP | CLKCTRL_ENET_DISABLE);

	/* Set up ENET PLL for 50 MHz */
	/* Power on ENET PLL */
	writel(CLKCTRL_PLL2CTRL0_POWER,
		&clkctrl_regs->hw_clkctrl_pll2ctrl0_set);

	udelay(10);

	/* Gate on ENET PLL */
	writel(CLKCTRL_PLL2CTRL0_CLKGATE,
		&clkctrl_regs->hw_clkctrl_pll2ctrl0_clr);

	/* Enable pad output */
	setbits_le32(&clkctrl_regs->hw_clkctrl_enet, CLKCTRL_ENET_CLK_OUT_EN);

	return 0;
}
#endif

__weak void mx28_adjust_mac(int dev_id, unsigned char *mac)
{
	mac[0] = 0x00;
	mac[1] = 0x04; /* Use FSL vendor MAC address by default */

	if (dev_id == 1) /* Let MAC1 be MAC0 + 1 by default */
		mac[5] += 1;
}

#ifdef	CONFIG_MX28_FEC_MAC_IN_OCOTP

#define	MXS_OCOTP_MAX_TIMEOUT	1000000
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
	struct mxs_ocotp_regs *ocotp_regs =
		(struct mxs_ocotp_regs *)MXS_OCOTP_BASE;
	uint32_t data;

	memset(mac, 0, 6);

	writel(OCOTP_CTRL_RD_BANK_OPEN, &ocotp_regs->hw_ocotp_ctrl_set);

	if (mxs_wait_mask_clr(&ocotp_regs->hw_ocotp_ctrl_reg, OCOTP_CTRL_BUSY,
				MXS_OCOTP_MAX_TIMEOUT)) {
		printf("MXS FEC: Can't get MAC from OCOTP\n");
		return;
	}

	data = readl(&ocotp_regs->hw_ocotp_cust0);

	mac[2] = (data >> 24) & 0xff;
	mac[3] = (data >> 16) & 0xff;
	mac[4] = (data >> 8) & 0xff;
	mac[5] = data & 0xff;
	mx28_adjust_mac(dev_id, mac);
}
#else
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
	memset(mac, 0, 6);
}
#endif

int mxs_dram_init(void)
{
	struct mxs_spl_data *data = (struct mxs_spl_data *)
		((CONFIG_SYS_TEXT_BASE - sizeof(struct mxs_spl_data)) & ~0xf);

	if (data->mem_dram_size == 0) {
		printf("MXS:\n"
			"Error, the RAM size passed up from SPL is 0!\n");
		hang();
	}

	gd->ram_size = data->mem_dram_size;
	return 0;
}

U_BOOT_CMD(
	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx28_showclocks,
	"display clocks",
	""
);
OpenPOWER on IntegriCloud