/* * Image manipulator for Marvell SoCs * supports Kirkwood, Dove, Armada 370, and Armada XP * * (C) Copyright 2013 Thomas Petazzoni * * * SPDX-License-Identifier: GPL-2.0+ * * Not implemented: support for the register headers and secure * headers in v1 images */ #include "imagetool.h" #include #include #include #include "kwbimage.h" static struct image_cfg_element *image_cfg; static int cfgn; struct boot_mode { unsigned int id; const char *name; }; struct boot_mode boot_modes[] = { { 0x4D, "i2c" }, { 0x5A, "spi" }, { 0x8B, "nand" }, { 0x78, "sata" }, { 0x9C, "pex" }, { 0x69, "uart" }, { 0xAE, "sdio" }, {}, }; struct nand_ecc_mode { unsigned int id; const char *name; }; struct nand_ecc_mode nand_ecc_modes[] = { { 0x00, "default" }, { 0x01, "hamming" }, { 0x02, "rs" }, { 0x03, "disabled" }, {}, }; /* Used to identify an undefined execution or destination address */ #define ADDR_INVALID ((uint32_t)-1) #define BINARY_MAX_ARGS 8 /* In-memory representation of a line of the configuration file */ struct image_cfg_element { enum { IMAGE_CFG_VERSION = 0x1, IMAGE_CFG_BOOT_FROM, IMAGE_CFG_DEST_ADDR, IMAGE_CFG_EXEC_ADDR, IMAGE_CFG_NAND_BLKSZ, IMAGE_CFG_NAND_BADBLK_LOCATION, IMAGE_CFG_NAND_ECC_MODE, IMAGE_CFG_NAND_PAGESZ, IMAGE_CFG_BINARY, IMAGE_CFG_PAYLOAD, IMAGE_CFG_DATA, } type; union { unsigned int version; unsigned int bootfrom; struct { const char *file; unsigned int args[BINARY_MAX_ARGS]; unsigned int nargs; } binary; const char *payload; unsigned int dstaddr; unsigned int execaddr; unsigned int nandblksz; unsigned int nandbadblklocation; unsigned int nandeccmode; unsigned int nandpagesz; struct ext_hdr_v0_reg regdata; }; }; #define IMAGE_CFG_ELEMENT_MAX 256 /* * Utility functions to manipulate boot mode and ecc modes (convert * them back and forth between description strings and the * corresponding numerical identifiers). */ static const char *image_boot_mode_name(unsigned int id) { int i; for (i = 0; boot_modes[i].name; i++) if (boot_modes[i].id == id) return boot_modes[i].name; return NULL; } int image_boot_mode_id(const char *boot_mode_name) { int i; for (i = 0; boot_modes[i].name; i++) if (!strcmp(boot_modes[i].name, boot_mode_name)) return boot_modes[i].id; return -1; } int image_nand_ecc_mode_id(const char *nand_ecc_mode_name) { int i; for (i = 0; nand_ecc_modes[i].name; i++) if (!strcmp(nand_ecc_modes[i].name, nand_ecc_mode_name)) return nand_ecc_modes[i].id; return -1; } static struct image_cfg_element * image_find_option(unsigned int optiontype) { int i; for (i = 0; i < cfgn; i++) { if (image_cfg[i].type == optiontype) return &image_cfg[i]; } return NULL; } static unsigned int image_count_options(unsigned int optiontype) { int i; unsigned int count = 0; for (i = 0; i < cfgn; i++) if (image_cfg[i].type == optiontype) count++; return count; } /* * Compute a 8-bit checksum of a memory area. This algorithm follows * the requirements of the Marvell SoC BootROM specifications. */ static uint8_t image_checksum8(void *start, uint32_t len) { uint8_t csum = 0; uint8_t *p = start; /* check len and return zero checksum if invalid */ if (!len) return 0; do { csum += *p; p++; } while (--len); return csum; } static uint32_t image_checksum32(void *start, uint32_t len) { uint32_t csum = 0; uint32_t *p = start; /* check len and return zero checksum if invalid */ if (!len) return 0; if (len % sizeof(uint32_t)) { fprintf(stderr, "Length %d is not in multiple of %zu\n", len, sizeof(uint32_t)); return 0; } do { csum += *p; p++; len -= sizeof(uint32_t); } while (len > 0); return csum; } static void *image_create_v0(size_t *imagesz, struct image_tool_params *params, int payloadsz) { struct image_cfg_element *e; size_t headersz; struct main_hdr_v0 *main_hdr; struct ext_hdr_v0 *ext_hdr; void *image; int has_ext = 0; /* * Calculate the size of the header and the size of the * payload */ headersz = sizeof(struct main_hdr_v0); if (image_count_options(IMAGE_CFG_DATA) > 0) { has_ext = 1; headersz += sizeof(struct ext_hdr_v0); } if (image_count_options(IMAGE_CFG_PAYLOAD) > 1) { fprintf(stderr, "More than one payload, not possible\n"); return NULL; } image = malloc(headersz); if (!image) { fprintf(stderr, "Cannot allocate memory for image\n"); return NULL; } memset(image, 0, headersz); main_hdr = image; /* Fill in the main header */ main_hdr->blocksize = cpu_to_le32(payloadsz + sizeof(uint32_t) - headersz); main_hdr->srcaddr = cpu_to_le32(headersz); main_hdr->ext = has_ext; main_hdr->destaddr = cpu_to_le32(params->addr); main_hdr->execaddr = cpu_to_le32(params->ep); e = image_find_option(IMAGE_CFG_BOOT_FROM); if (e) main_hdr->blockid = e->bootfrom; e = image_find_option(IMAGE_CFG_NAND_ECC_MODE); if (e) main_hdr->nandeccmode = e->nandeccmode; e = image_find_option(IMAGE_CFG_NAND_PAGESZ); if (e) main_hdr->nandpagesize = cpu_to_le16(e->nandpagesz); main_hdr->checksum = image_checksum8(image, sizeof(struct main_hdr_v0)); /* Generate the ext header */ if (has_ext) { int cfgi, datai; ext_hdr = image + sizeof(struct main_hdr_v0); ext_hdr->offset = cpu_to_le32(0x40); for (cfgi = 0, datai = 0; cfgi < cfgn; cfgi++) { e = &image_cfg[cfgi]; if (e->type != IMAGE_CFG_DATA) continue; ext_hdr->rcfg[datai].raddr = cpu_to_le32(e->regdata.raddr); ext_hdr->rcfg[datai].rdata = cpu_to_le32(e->regdata.rdata); datai++; } ext_hdr->checksum = image_checksum8(ext_hdr, sizeof(struct ext_hdr_v0)); } *imagesz = headersz; return image; } static size_t image_headersz_v1(struct image_tool_params *params, int *hasext) { struct image_cfg_element *binarye; size_t headersz; int ret; /* * Calculate the size of the header and the size of the * payload */ headersz = sizeof(struct main_hdr_v1); if (image_count_options(IMAGE_CFG_BINARY) > 1) { fprintf(stderr, "More than one binary blob, not supported\n"); return 0; } if (image_count_options(IMAGE_CFG_PAYLOAD) > 1) { fprintf(stderr, "More than one payload, not possible\n"); return 0; } binarye = image_find_option(IMAGE_CFG_BINARY); if (binarye) { struct stat s; ret = stat(binarye->binary.file, &s); if (ret < 0) { char cwd[PATH_MAX]; char *dir = cwd; memset(cwd, 0, sizeof(cwd)); if (!getcwd(cwd, sizeof(cwd))) { dir = "current working directory"; perror("getcwd() failed"); } fprintf(stderr, "Didn't find the file '%s' in '%s' which is mandatory to generate the image\n" "This file generally contains the DDR3 training code, and should be extracted from an existing bootable\n" "image for your board. See 'kwbimage -x' to extract it from an existing image.\n", binarye->binary.file, dir); return 0; } headersz += sizeof(struct opt_hdr_v1) + s.st_size + (binarye->binary.nargs + 2) * sizeof(uint32_t); if (hasext) *hasext = 1; } #if defined(CONFIG_SYS_U_BOOT_OFFS) if (headersz > CONFIG_SYS_U_BOOT_OFFS) { fprintf(stderr, "Error: Image header (incl. SPL image) too big!\n"); fprintf(stderr, "header=0x%x CONFIG_SYS_U_BOOT_OFFS=0x%x!\n", (int)headersz, CONFIG_SYS_U_BOOT_OFFS); fprintf(stderr, "Increase CONFIG_SYS_U_BOOT_OFFS!\n"); return 0; } else { headersz = CONFIG_SYS_U_BOOT_OFFS; } #endif /* * The payload should be aligned on some reasonable * boundary */ return ALIGN_SUP(headersz, 4096); } static void *image_create_v1(size_t *imagesz, struct image_tool_params *params, int payloadsz) { struct image_cfg_element *e, *binarye; struct main_hdr_v1 *main_hdr; size_t headersz; void *image, *cur; int hasext = 0; int ret; /* * Calculate the size of the header and the size of the * payload */ headersz = image_headersz_v1(params, &hasext); if (headersz == 0) return NULL; image = malloc(headersz); if (!image) { fprintf(stderr, "Cannot allocate memory for image\n"); return NULL; } memset(image, 0, headersz); cur = main_hdr = image; cur += sizeof(struct main_hdr_v1); /* Fill the main header */ main_hdr->blocksize = cpu_to_le32(payloadsz - headersz + sizeof(uint32_t)); main_hdr->headersz_lsb = cpu_to_le16(headersz & 0xFFFF); main_hdr->headersz_msb = (headersz & 0xFFFF0000) >> 16; main_hdr->destaddr = cpu_to_le32(params->addr); main_hdr->execaddr = cpu_to_le32(params->ep); main_hdr->srcaddr = cpu_to_le32(headersz); main_hdr->ext = hasext; main_hdr->version = 1; e = image_find_option(IMAGE_CFG_BOOT_FROM); if (e) main_hdr->blockid = e->bootfrom; e = image_find_option(IMAGE_CFG_NAND_BLKSZ); if (e) main_hdr->nandblocksize = e->nandblksz / (64 * 1024); e = image_find_option(IMAGE_CFG_NAND_BADBLK_LOCATION); if (e) main_hdr->nandbadblklocation = e->nandbadblklocation; binarye = image_find_option(IMAGE_CFG_BINARY); if (binarye) { struct opt_hdr_v1 *hdr = cur; uint32_t *args; size_t binhdrsz; struct stat s; int argi; FILE *bin; hdr->headertype = OPT_HDR_V1_BINARY_TYPE; bin = fopen(binarye->binary.file, "r"); if (!bin) { fprintf(stderr, "Cannot open binary file %s\n", binarye->binary.file); return NULL; } fstat(fileno(bin), &s); binhdrsz = sizeof(struct opt_hdr_v1) + (binarye->binary.nargs + 2) * sizeof(uint32_t) + s.st_size; /* * The size includes the binary image size, rounded * up to a 4-byte boundary. Plus 4 bytes for the * next-header byte and 3-byte alignment at the end. */ binhdrsz = ALIGN_SUP(binhdrsz, 4) + 4; hdr->headersz_lsb = cpu_to_le16(binhdrsz & 0xFFFF); hdr->headersz_msb = (binhdrsz & 0xFFFF0000) >> 16; cur += sizeof(struct opt_hdr_v1); args = cur; *args = cpu_to_le32(binarye->binary.nargs); args++; for (argi = 0; argi < binarye->binary.nargs; argi++) args[argi] = cpu_to_le32(binarye->binary.args[argi]); cur += (binarye->binary.nargs + 1) * sizeof(uint32_t); ret = fread(cur, s.st_size, 1, bin); if (ret != 1) { fprintf(stderr, "Could not read binary image %s\n", binarye->binary.file); return NULL; } fclose(bin); cur += ALIGN_SUP(s.st_size, 4); /* * For now, we don't support more than one binary * header, and no other header types are * supported. So, the binary header is necessarily the * last one */ *((uint32_t *)cur) = 0x00000000; cur += sizeof(uint32_t); } /* Calculate and set the header checksum */ main_hdr->checksum = image_checksum8(main_hdr, headersz); *imagesz = headersz; return image; } static int image_create_config_parse_oneline(char *line, struct image_cfg_element *el) { char *keyword, *saveptr; char deliminiters[] = " \t"; keyword = strtok_r(line, deliminiters, &saveptr); if (!strcmp(keyword, "VERSION")) { char *value = strtok_r(NULL, deliminiters, &saveptr); el->type = IMAGE_CFG_VERSION; el->version = atoi(value); } else if (!strcmp(keyword, "BOOT_FROM")) { char *value = strtok_r(NULL, deliminiters, &saveptr); int ret = image_boot_mode_id(value); if (ret < 0) { fprintf(stderr, "Invalid boot media '%s'\n", value); return -1; } el->type = IMAGE_CFG_BOOT_FROM; el->bootfrom = ret; } else if (!strcmp(keyword, "NAND_BLKSZ")) { char *value = strtok_r(NULL, deliminiters, &saveptr); el->type = IMAGE_CFG_NAND_BLKSZ; el->nandblksz = strtoul(value, NULL, 16); } else if (!strcmp(keyword, "NAND_BADBLK_LOCATION")) { char *value = strtok_r(NULL, deliminiters, &saveptr); el->type = IMAGE_CFG_NAND_BADBLK_LOCATION; el->nandbadblklocation = strtoul(value, NULL, 16); } else if (!strcmp(keyword, "NAND_ECC_MODE")) { char *value = strtok_r(NULL, deliminiters, &saveptr); int ret = image_nand_ecc_mode_id(value); if (ret < 0) { fprintf(stderr, "Invalid NAND ECC mode '%s'\n", value); return -1; } el->type = IMAGE_CFG_NAND_ECC_MODE; el->nandeccmode = ret; } else if (!strcmp(keyword, "NAND_PAGE_SIZE")) { char *value = strtok_r(NULL, deliminiters, &saveptr); el->type = IMAGE_CFG_NAND_PAGESZ; el->nandpagesz = strtoul(value, NULL, 16); } else if (!strcmp(keyword, "BINARY")) { char *value = strtok_r(NULL, deliminiters, &saveptr); int argi = 0; el->type = IMAGE_CFG_BINARY; el->binary.file = strdup(value); while (1) { value = strtok_r(NULL, deliminiters, &saveptr); if (!value) break; el->binary.args[argi] = strtoul(value, NULL, 16); argi++; if (argi >= BINARY_MAX_ARGS) { fprintf(stderr, "Too many argument for binary\n"); return -1; } } el->binary.nargs = argi; } else if (!strcmp(keyword, "DATA")) { char *value1 = strtok_r(NULL, deliminiters, &saveptr); char *value2 = strtok_r(NULL, deliminiters, &saveptr); if (!value1 || !value2) { fprintf(stderr, "Invalid number of arguments for DATA\n"); return -1; } el->type = IMAGE_CFG_DATA; el->regdata.raddr = strtoul(value1, NULL, 16); el->regdata.rdata = strtoul(value2, NULL, 16); } else { fprintf(stderr, "Ignoring unknown line '%s'\n", line); } return 0; } /* * Parse the configuration file 'fcfg' into the array of configuration * elements 'image_cfg', and return the number of configuration * elements in 'cfgn'. */ static int image_create_config_parse(FILE *fcfg) { int ret; int cfgi = 0; /* Parse the configuration file */ while (!feof(fcfg)) { char *line; char buf[256]; /* Read the current line */ memset(buf, 0, sizeof(buf)); line = fgets(buf, sizeof(buf), fcfg); if (!line) break; /* Ignore useless lines */ if (line[0] == '\n' || line[0] == '#') continue; /* Strip final newline */ if (line[strlen(line) - 1] == '\n') line[strlen(line) - 1] = 0; /* Parse the current line */ ret = image_create_config_parse_oneline(line, &image_cfg[cfgi]); if (ret) return ret; cfgi++; if (cfgi >= IMAGE_CFG_ELEMENT_MAX) { fprintf(stderr, "Too many configuration elements in .cfg file\n"); return -1; } } cfgn = cfgi; return 0; } static int image_get_version(void) { struct image_cfg_element *e; e = image_find_option(IMAGE_CFG_VERSION); if (!e) return -1; return e->version; } static int image_version_file(const char *input) { FILE *fcfg; int version; int ret; fcfg = fopen(input, "r"); if (!fcfg) { fprintf(stderr, "Could not open input file %s\n", input); return -1; } image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); if (!image_cfg) { fprintf(stderr, "Cannot allocate memory\n"); fclose(fcfg); return -1; } memset(image_cfg, 0, IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); rewind(fcfg); ret = image_create_config_parse(fcfg); fclose(fcfg); if (ret) { free(image_cfg); return -1; } version = image_get_version(); /* Fallback to version 0 is no version is provided in the cfg file */ if (version == -1) version = 0; free(image_cfg); return version; } static void kwbimage_set_header(void *ptr, struct stat *sbuf, int ifd, struct image_tool_params *params) { FILE *fcfg; void *image = NULL; int version; size_t headersz = 0; uint32_t checksum; int ret; int size; fcfg = fopen(params->imagename, "r"); if (!fcfg) { fprintf(stderr, "Could not open input file %s\n", params->imagename); exit(EXIT_FAILURE); } image_cfg = malloc(IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); if (!image_cfg) { fprintf(stderr, "Cannot allocate memory\n"); fclose(fcfg); exit(EXIT_FAILURE); } memset(image_cfg, 0, IMAGE_CFG_ELEMENT_MAX * sizeof(struct image_cfg_element)); rewind(fcfg); ret = image_create_config_parse(fcfg); fclose(fcfg); if (ret) { free(image_cfg); exit(EXIT_FAILURE); } /* The MVEBU BootROM does not allow non word aligned payloads */ sbuf->st_size = ALIGN_SUP(sbuf->st_size, 4); version = image_get_version(); switch (version) { /* * Fallback to version 0 if no version is provided in the * cfg file */ case -1: case 0: image = image_create_v0(&headersz, params, sbuf->st_size); break; case 1: image = image_create_v1(&headersz, params, sbuf->st_size); break; default: fprintf(stderr, "Unsupported version %d\n", version); free(image_cfg); exit(EXIT_FAILURE); } if (!image) { fprintf(stderr, "Could not create image\n"); free(image_cfg); exit(EXIT_FAILURE); } free(image_cfg); /* Build and add image checksum header */ checksum = cpu_to_le32(image_checksum32((uint32_t *)ptr, sbuf->st_size)); size = write(ifd, &checksum, sizeof(uint32_t)); if (size != sizeof(uint32_t)) { fprintf(stderr, "Error:%s - Checksum write %d bytes %s\n", params->cmdname, size, params->imagefile); exit(EXIT_FAILURE); } sbuf->st_size += sizeof(uint32_t); /* Finally copy the header into the image area */ memcpy(ptr, image, headersz); free(image); } static void kwbimage_print_header(const void *ptr) { struct main_hdr_v0 *mhdr = (struct main_hdr_v0 *)ptr; printf("Image Type: MVEBU Boot from %s Image\n", image_boot_mode_name(mhdr->blockid)); printf("Image version:%d\n", image_version((void *)ptr)); printf("Data Size: "); genimg_print_size(mhdr->blocksize - sizeof(uint32_t)); printf("Load Address: %08x\n", mhdr->destaddr); printf("Entry Point: %08x\n", mhdr->execaddr); } static int kwbimage_check_image_types(uint8_t type) { if (type == IH_TYPE_KWBIMAGE) return EXIT_SUCCESS; else return EXIT_FAILURE; } static int kwbimage_verify_header(unsigned char *ptr, int image_size, struct image_tool_params *params) { struct main_hdr_v0 *main_hdr; struct ext_hdr_v0 *ext_hdr; uint8_t checksum; main_hdr = (void *)ptr; checksum = image_checksum8(ptr, sizeof(struct main_hdr_v0) - sizeof(uint8_t)); if (checksum != main_hdr->checksum) return -FDT_ERR_BADSTRUCTURE; /* Only version 0 extended header has checksum */ if (image_version((void *)ptr) == 0) { ext_hdr = (void *)ptr + sizeof(struct main_hdr_v0); checksum = image_checksum8(ext_hdr, sizeof(struct ext_hdr_v0) - sizeof(uint8_t)); if (checksum != ext_hdr->checksum) return -FDT_ERR_BADSTRUCTURE; } return 0; } static int kwbimage_generate(struct image_tool_params *params, struct image_type_params *tparams) { int alloc_len; void *hdr; int version = 0; version = image_version_file(params->imagename); if (version == 0) { alloc_len = sizeof(struct main_hdr_v0) + sizeof(struct ext_hdr_v0); } else { alloc_len = image_headersz_v1(params, NULL); } hdr = malloc(alloc_len); if (!hdr) { fprintf(stderr, "%s: malloc return failure: %s\n", params->cmdname, strerror(errno)); exit(EXIT_FAILURE); } memset(hdr, 0, alloc_len); tparams->header_size = alloc_len; tparams->hdr = hdr; /* * The resulting image needs to be 4-byte aligned. At least * the Marvell hdrparser tool complains if its unaligned. * By returning 1 here in this function, called via * tparams->vrec_header() in mkimage.c, mkimage will * automatically pad the the resulting image to a 4-byte * size if necessary. */ return 1; } /* * Report Error if xflag is set in addition to default */ static int kwbimage_check_params(struct image_tool_params *params) { if (!strlen(params->imagename)) { fprintf(stderr, "Error:%s - Configuration file not specified, " "it is needed for kwbimage generation\n", params->cmdname); return CFG_INVALID; } return (params->dflag && (params->fflag || params->lflag)) || (params->fflag && (params->dflag || params->lflag)) || (params->lflag && (params->dflag || params->fflag)) || (params->xflag) || !(strlen(params->imagename)); } /* * kwbimage type parameters definition */ U_BOOT_IMAGE_TYPE( kwbimage, "Marvell MVEBU Boot Image support", 0, NULL, kwbimage_check_params, kwbimage_verify_header, kwbimage_print_header, kwbimage_set_header, NULL, kwbimage_check_image_types, NULL, kwbimage_generate );