/* * Tests for the core driver model code * * Copyright (c) 2013 Google, Inc * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; enum { TEST_INTVAL1 = 0, TEST_INTVAL2 = 3, TEST_INTVAL3 = 6, TEST_INTVAL_MANUAL = 101112, TEST_INTVAL_PRE_RELOC = 7, }; static const struct dm_test_pdata test_pdata[] = { { .ping_add = TEST_INTVAL1, }, { .ping_add = TEST_INTVAL2, }, { .ping_add = TEST_INTVAL3, }, }; static const struct dm_test_pdata test_pdata_manual = { .ping_add = TEST_INTVAL_MANUAL, }; static const struct dm_test_pdata test_pdata_pre_reloc = { .ping_add = TEST_INTVAL_PRE_RELOC, }; U_BOOT_DEVICE(dm_test_info1) = { .name = "test_drv", .platdata = &test_pdata[0], }; U_BOOT_DEVICE(dm_test_info2) = { .name = "test_drv", .platdata = &test_pdata[1], }; U_BOOT_DEVICE(dm_test_info3) = { .name = "test_drv", .platdata = &test_pdata[2], }; static struct driver_info driver_info_manual = { .name = "test_manual_drv", .platdata = &test_pdata_manual, }; static struct driver_info driver_info_pre_reloc = { .name = "test_pre_reloc_drv", .platdata = &test_pdata_manual, }; void dm_leak_check_start(struct unit_test_state *uts) { uts->start = mallinfo(); if (!uts->start.uordblks) puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n"); } int dm_leak_check_end(struct unit_test_state *uts) { struct mallinfo end; int id; /* Don't delete the root class, since we started with that */ for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) { struct uclass *uc; uc = uclass_find(id); if (!uc) continue; ut_assertok(uclass_destroy(uc)); } end = mallinfo(); ut_asserteq(uts->start.uordblks, end.uordblks); return 0; } /* Test that binding with platdata occurs correctly */ static int dm_test_autobind(struct unit_test_state *uts) { struct dm_test_state *dms = uts->priv; struct udevice *dev; /* * We should have a single class (UCLASS_ROOT) and a single root * device with no children. */ ut_assert(dms->root); ut_asserteq(1, list_count_items(&gd->uclass_root)); ut_asserteq(0, list_count_items(&gd->dm_root->child_head)); ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]); ut_assertok(dm_scan_platdata(false)); /* We should have our test class now at least, plus more children */ ut_assert(1 < list_count_items(&gd->uclass_root)); ut_assert(0 < list_count_items(&gd->dm_root->child_head)); /* Our 3 dm_test_infox children should be bound to the test uclass */ ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]); /* No devices should be probed */ list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node) ut_assert(!(dev->flags & DM_FLAG_ACTIVATED)); /* Our test driver should have been bound 3 times */ ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3); return 0; } DM_TEST(dm_test_autobind, 0); /* Test that binding with uclass platdata allocation occurs correctly */ static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts) { struct dm_test_perdev_uc_pdata *uc_pdata; struct udevice *dev; struct uclass *uc; ut_assertok(uclass_get(UCLASS_TEST, &uc)); ut_assert(uc); /** * Test if test uclass driver requires allocation for the uclass * platform data and then check the dev->uclass_platdata pointer. */ ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size); for (uclass_find_first_device(UCLASS_TEST, &dev); dev; uclass_find_next_device(&dev)) { ut_assert(dev); uc_pdata = dev_get_uclass_platdata(dev); ut_assert(uc_pdata); } return 0; } DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA); /* Test that binding with uclass platdata setting occurs correctly */ static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts) { struct dm_test_perdev_uc_pdata *uc_pdata; struct udevice *dev; /** * In the test_postbind() method of test uclass driver, the uclass * platform data should be set to three test int values - test it. */ for (uclass_find_first_device(UCLASS_TEST, &dev); dev; uclass_find_next_device(&dev)) { ut_assert(dev); uc_pdata = dev_get_uclass_platdata(dev); ut_assert(uc_pdata); ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1); ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2); ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3); } return 0; } DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA); /* Test that autoprobe finds all the expected devices */ static int dm_test_autoprobe(struct unit_test_state *uts) { struct dm_test_state *dms = uts->priv; int expected_base_add; struct udevice *dev; struct uclass *uc; int i; ut_assertok(uclass_get(UCLASS_TEST, &uc)); ut_assert(uc); ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]); ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]); /* The root device should not be activated until needed */ ut_assert(dms->root->flags & DM_FLAG_ACTIVATED); /* * We should be able to find the three test devices, and they should * all be activated as they are used (lazy activation, required by * U-Boot) */ for (i = 0; i < 3; i++) { ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); ut_assert(dev); ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED), "Driver %d/%s already activated", i, dev->name); /* This should activate it */ ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); ut_assert(dev); ut_assert(dev->flags & DM_FLAG_ACTIVATED); /* Activating a device should activate the root device */ if (!i) ut_assert(dms->root->flags & DM_FLAG_ACTIVATED); } /* * Our 3 dm_test_info children should be passed to pre_probe and * post_probe */ ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]); ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]); /* Also we can check the per-device data */ expected_base_add = 0; for (i = 0; i < 3; i++) { struct dm_test_uclass_perdev_priv *priv; struct dm_test_pdata *pdata; ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); ut_assert(dev); priv = dev_get_uclass_priv(dev); ut_assert(priv); ut_asserteq(expected_base_add, priv->base_add); pdata = dev->platdata; expected_base_add += pdata->ping_add; } return 0; } DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA); /* Check that we see the correct platdata in each device */ static int dm_test_platdata(struct unit_test_state *uts) { const struct dm_test_pdata *pdata; struct udevice *dev; int i; for (i = 0; i < 3; i++) { ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); ut_assert(dev); pdata = dev->platdata; ut_assert(pdata->ping_add == test_pdata[i].ping_add); } return 0; } DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA); /* Test that we can bind, probe, remove, unbind a driver */ static int dm_test_lifecycle(struct unit_test_state *uts) { struct dm_test_state *dms = uts->priv; int op_count[DM_TEST_OP_COUNT]; struct udevice *dev, *test_dev; int pingret; int ret; memcpy(op_count, dm_testdrv_op_count, sizeof(op_count)); ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, &dev)); ut_assert(dev); ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == op_count[DM_TEST_OP_BIND] + 1); ut_assert(!dev->priv); /* Probe the device - it should fail allocating private data */ dms->force_fail_alloc = 1; ret = device_probe(dev); ut_assert(ret == -ENOMEM); ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE] == op_count[DM_TEST_OP_PROBE] + 1); ut_assert(!dev->priv); /* Try again without the alloc failure */ dms->force_fail_alloc = 0; ut_assertok(device_probe(dev)); ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE] == op_count[DM_TEST_OP_PROBE] + 2); ut_assert(dev->priv); /* This should be device 3 in the uclass */ ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); ut_assert(dev == test_dev); /* Try ping */ ut_assertok(test_ping(dev, 100, &pingret)); ut_assert(pingret == 102); /* Now remove device 3 */ ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]); ut_assertok(device_remove(dev)); ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]); ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]); ut_assertok(device_unbind(dev)); ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]); return 0; } DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST); /* Test that we can bind/unbind and the lists update correctly */ static int dm_test_ordering(struct unit_test_state *uts) { struct dm_test_state *dms = uts->priv; struct udevice *dev, *dev_penultimate, *dev_last, *test_dev; int pingret; ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, &dev)); ut_assert(dev); /* Bind two new devices (numbers 4 and 5) */ ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, &dev_penultimate)); ut_assert(dev_penultimate); ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, &dev_last)); ut_assert(dev_last); /* Now remove device 3 */ ut_assertok(device_remove(dev)); ut_assertok(device_unbind(dev)); /* The device numbering should have shifted down one */ ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); ut_assert(dev_penultimate == test_dev); ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev)); ut_assert(dev_last == test_dev); /* Add back the original device 3, now in position 5 */ ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual, &dev)); ut_assert(dev); /* Try ping */ ut_assertok(test_ping(dev, 100, &pingret)); ut_assert(pingret == 102); /* Remove 3 and 4 */ ut_assertok(device_remove(dev_penultimate)); ut_assertok(device_unbind(dev_penultimate)); ut_assertok(device_remove(dev_last)); ut_assertok(device_unbind(dev_last)); /* Our device should now be in position 3 */ ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); ut_assert(dev == test_dev); /* Now remove device 3 */ ut_assertok(device_remove(dev)); ut_assertok(device_unbind(dev)); return 0; } DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA); /* Check that we can perform operations on a device (do a ping) */ int dm_check_operations(struct unit_test_state *uts, struct udevice *dev, uint32_t base, struct dm_test_priv *priv) { int expected; int pingret; /* Getting the child device should allocate platdata / priv */ ut_assertok(testfdt_ping(dev, 10, &pingret)); ut_assert(dev->priv); ut_assert(dev->platdata); expected = 10 + base; ut_asserteq(expected, pingret); /* Do another ping */ ut_assertok(testfdt_ping(dev, 20, &pingret)); expected = 20 + base; ut_asserteq(expected, pingret); /* Now check the ping_total */ priv = dev->priv; ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2, priv->ping_total); return 0; } /* Check that we can perform operations on devices */ static int dm_test_operations(struct unit_test_state *uts) { struct udevice *dev; int i; /* * Now check that the ping adds are what we expect. This is using the * ping-add property in each node. */ for (i = 0; i < ARRAY_SIZE(test_pdata); i++) { uint32_t base; ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); /* * Get the 'reg' property, which tells us what the ping add * should be. We don't use the platdata because we want * to test the code that sets that up (testfdt_drv_probe()). */ base = test_pdata[i].ping_add; debug("dev=%d, base=%d\n", i, base); ut_assert(!dm_check_operations(uts, dev, base, dev->priv)); } return 0; } DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA); /* Remove all drivers and check that things work */ static int dm_test_remove(struct unit_test_state *uts) { struct udevice *dev; int i; for (i = 0; i < 3; i++) { ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); ut_assert(dev); ut_assertf(dev->flags & DM_FLAG_ACTIVATED, "Driver %d/%s not activated", i, dev->name); ut_assertok(device_remove(dev)); ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED), "Driver %d/%s should have deactivated", i, dev->name); ut_assert(!dev->priv); } return 0; } DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST); /* Remove and recreate everything, check for memory leaks */ static int dm_test_leak(struct unit_test_state *uts) { int i; for (i = 0; i < 2; i++) { struct udevice *dev; int ret; int id; dm_leak_check_start(uts); ut_assertok(dm_scan_platdata(false)); ut_assertok(dm_scan_fdt(gd->fdt_blob, false)); /* Scanning the uclass is enough to probe all the devices */ for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) { for (ret = uclass_first_device(UCLASS_TEST, &dev); dev; ret = uclass_next_device(&dev)) ; ut_assertok(ret); } ut_assertok(dm_leak_check_end(uts)); } return 0; } DM_TEST(dm_test_leak, 0); /* Test uclass init/destroy methods */ static int dm_test_uclass(struct unit_test_state *uts) { struct uclass *uc; ut_assertok(uclass_get(UCLASS_TEST, &uc)); ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]); ut_assert(uc->priv); ut_assertok(uclass_destroy(uc)); ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]); return 0; } DM_TEST(dm_test_uclass, 0); /** * create_children() - Create children of a parent node * * @dms: Test system state * @parent: Parent device * @count: Number of children to create * @key: Key value to put in first child. Subsequence children * receive an incrementing value * @child: If not NULL, then the child device pointers are written into * this array. * @return 0 if OK, -ve on error */ static int create_children(struct unit_test_state *uts, struct udevice *parent, int count, int key, struct udevice *child[]) { struct udevice *dev; int i; for (i = 0; i < count; i++) { struct dm_test_pdata *pdata; ut_assertok(device_bind_by_name(parent, false, &driver_info_manual, &dev)); pdata = calloc(1, sizeof(*pdata)); pdata->ping_add = key + i; dev->platdata = pdata; if (child) child[i] = dev; } return 0; } #define NODE_COUNT 10 static int dm_test_children(struct unit_test_state *uts) { struct dm_test_state *dms = uts->priv; struct udevice *top[NODE_COUNT]; struct udevice *child[NODE_COUNT]; struct udevice *grandchild[NODE_COUNT]; struct udevice *dev; int total; int ret; int i; /* We don't care about the numbering for this test */ dms->skip_post_probe = 1; ut_assert(NODE_COUNT > 5); /* First create 10 top-level children */ ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top)); /* Now a few have their own children */ ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL)); ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child)); /* And grandchildren */ for (i = 0; i < NODE_COUNT; i++) ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i, i == 2 ? grandchild : NULL)); /* Check total number of devices */ total = NODE_COUNT * (3 + NODE_COUNT); ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]); /* Try probing one of the grandchildren */ ut_assertok(uclass_get_device(UCLASS_TEST, NODE_COUNT * 3 + 2 * NODE_COUNT, &dev)); ut_asserteq_ptr(grandchild[0], dev); /* * This should have probed the child and top node also, for a total * of 3 nodes. */ ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]); /* Probe the other grandchildren */ for (i = 1; i < NODE_COUNT; i++) ut_assertok(device_probe(grandchild[i])); ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]); /* Probe everything */ for (ret = uclass_first_device(UCLASS_TEST, &dev); dev; ret = uclass_next_device(&dev)) ; ut_assertok(ret); ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]); /* Remove a top-level child and check that the children are removed */ ut_assertok(device_remove(top[2])); ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]); dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0; /* Try one with grandchildren */ ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev)); ut_asserteq_ptr(dev, top[5]); ut_assertok(device_remove(dev)); ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT), dm_testdrv_op_count[DM_TEST_OP_REMOVE]); /* Try the same with unbind */ ut_assertok(device_unbind(top[2])); ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0; /* Try one with grandchildren */ ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev)); ut_asserteq_ptr(dev, top[6]); ut_assertok(device_unbind(top[5])); ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT), dm_testdrv_op_count[DM_TEST_OP_UNBIND]); return 0; } DM_TEST(dm_test_children, 0); /* Test that pre-relocation devices work as expected */ static int dm_test_pre_reloc(struct unit_test_state *uts) { struct dm_test_state *dms = uts->priv; struct udevice *dev; /* The normal driver should refuse to bind before relocation */ ut_asserteq(-EPERM, device_bind_by_name(dms->root, true, &driver_info_manual, &dev)); /* But this one is marked pre-reloc */ ut_assertok(device_bind_by_name(dms->root, true, &driver_info_pre_reloc, &dev)); return 0; } DM_TEST(dm_test_pre_reloc, 0); static int dm_test_uclass_before_ready(struct unit_test_state *uts) { struct uclass *uc; ut_assertok(uclass_get(UCLASS_TEST, &uc)); gd->dm_root = NULL; gd->dm_root_f = NULL; memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root)); ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST)); return 0; } DM_TEST(dm_test_uclass_before_ready, 0); static int dm_test_uclass_devices_find(struct unit_test_state *uts) { struct udevice *dev; int ret; for (ret = uclass_find_first_device(UCLASS_TEST, &dev); dev; ret = uclass_find_next_device(&dev)) { ut_assert(!ret); ut_assert(dev); } return 0; } DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA); static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts) { struct udevice *finddev; struct udevice *testdev; int findret, ret; /* * For each test device found in fdt like: "a-test", "b-test", etc., * use its name and try to find it by uclass_find_device_by_name(). * Then, on success check if: * - current 'testdev' name is equal to the returned 'finddev' name * - current 'testdev' pointer is equal to the returned 'finddev' * * We assume that, each uclass's device name is unique, so if not, then * this will fail on checking condition: testdev == finddev, since the * uclass_find_device_by_name(), returns the first device by given name. */ for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev); testdev; ret = uclass_find_next_device(&testdev)) { ut_assertok(ret); ut_assert(testdev); findret = uclass_find_device_by_name(UCLASS_TEST_FDT, testdev->name, &finddev); ut_assertok(findret); ut_assert(testdev); ut_asserteq_str(testdev->name, finddev->name); ut_asserteq_ptr(testdev, finddev); } return 0; } DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT); static int dm_test_uclass_devices_get(struct unit_test_state *uts) { struct udevice *dev; int ret; for (ret = uclass_first_device(UCLASS_TEST, &dev); dev; ret = uclass_next_device(&dev)) { ut_assert(!ret); ut_assert(dev); ut_assert(device_active(dev)); } return 0; } DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA); static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts) { struct udevice *finddev; struct udevice *testdev; int ret, findret; /* * For each test device found in fdt like: "a-test", "b-test", etc., * use its name and try to get it by uclass_get_device_by_name(). * On success check if: * - returned finddev' is active * - current 'testdev' name is equal to the returned 'finddev' name * - current 'testdev' pointer is equal to the returned 'finddev' * * We asserts that the 'testdev' is active on each loop entry, so we * could be sure that the 'finddev' is activated too, but for sure * we check it again. * * We assume that, each uclass's device name is unique, so if not, then * this will fail on checking condition: testdev == finddev, since the * uclass_get_device_by_name(), returns the first device by given name. */ for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev); testdev; ret = uclass_next_device(&testdev)) { ut_assertok(ret); ut_assert(testdev); ut_assert(device_active(testdev)); findret = uclass_get_device_by_name(UCLASS_TEST_FDT, testdev->name, &finddev); ut_assertok(findret); ut_assert(finddev); ut_assert(device_active(finddev)); ut_asserteq_str(testdev->name, finddev->name); ut_asserteq_ptr(testdev, finddev); } return 0; } DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT); static int dm_test_device_get_uclass_id(struct unit_test_state *uts) { struct udevice *dev; ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev)); ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev)); return 0; } DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);