/* * EFI application memory management * * Copyright (c) 2016 Alexander Graf * * SPDX-License-Identifier: GPL-2.0+ */ /* #define DEBUG_EFI */ #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; struct efi_mem_list { struct list_head link; struct efi_mem_desc desc; }; /* This list contains all memory map items */ LIST_HEAD(efi_mem); /* * Sorts the memory list from highest address to lowest address * * When allocating memory we should always start from the highest * address chunk, so sort the memory list such that the first list * iterator gets the highest address and goes lower from there. */ static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b) { struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link); struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link); if (mema->desc.physical_start == memb->desc.physical_start) return 0; else if (mema->desc.physical_start < memb->desc.physical_start) return 1; else return -1; } static void efi_mem_sort(void) { list_sort(NULL, &efi_mem, efi_mem_cmp); } /* * Unmaps all memory occupied by the carve_desc region from the * list entry pointed to by map. * * Returns 1 if carving was performed or 0 if the regions don't overlap. * Returns -1 if it would affect non-RAM regions but overlap_only_ram is set. * Carving is only guaranteed to complete when all regions return 0. */ static int efi_mem_carve_out(struct efi_mem_list *map, struct efi_mem_desc *carve_desc, bool overlap_only_ram) { struct efi_mem_list *newmap; struct efi_mem_desc *map_desc = &map->desc; uint64_t map_start = map_desc->physical_start; uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT); uint64_t carve_start = carve_desc->physical_start; uint64_t carve_end = carve_start + (carve_desc->num_pages << EFI_PAGE_SHIFT); /* check whether we're overlapping */ if ((carve_end <= map_start) || (carve_start >= map_end)) return 0; /* We're overlapping with non-RAM, warn the caller if desired */ if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY)) return -1; /* Sanitize carve_start and carve_end to lie within our bounds */ carve_start = max(carve_start, map_start); carve_end = min(carve_end, map_end); /* Carving at the beginning of our map? Just move it! */ if (carve_start == map_start) { if (map_end == carve_end) { /* Full overlap, just remove map */ list_del(&map->link); } map_desc->physical_start = carve_end; map_desc->num_pages = (map_end - carve_end) >> EFI_PAGE_SHIFT; return 1; } /* * Overlapping maps, just split the list map at carve_start, * it will get moved or removed in the next iteration. * * [ map_desc |__carve_start__| newmap ] */ /* Create a new map from [ carve_start ... map_end ] */ newmap = calloc(1, sizeof(*newmap)); newmap->desc = map->desc; newmap->desc.physical_start = carve_start; newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT; list_add_tail(&newmap->link, &efi_mem); /* Shrink the map to [ map_start ... carve_start ] */ map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT; return 1; } uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type, bool overlap_only_ram) { struct list_head *lhandle; struct efi_mem_list *newlist; bool do_carving; if (!pages) return start; newlist = calloc(1, sizeof(*newlist)); newlist->desc.type = memory_type; newlist->desc.physical_start = start; newlist->desc.virtual_start = start; newlist->desc.num_pages = pages; switch (memory_type) { case EFI_RUNTIME_SERVICES_CODE: case EFI_RUNTIME_SERVICES_DATA: newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) | (1ULL << EFI_MEMORY_RUNTIME_SHIFT); break; case EFI_MMAP_IO: newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT; break; default: newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT; break; } /* Add our new map */ do { do_carving = false; list_for_each(lhandle, &efi_mem) { struct efi_mem_list *lmem; int r; lmem = list_entry(lhandle, struct efi_mem_list, link); r = efi_mem_carve_out(lmem, &newlist->desc, overlap_only_ram); if (r < 0) { return 0; } else if (r) { do_carving = true; break; } } } while (do_carving); /* Add our new map */ list_add_tail(&newlist->link, &efi_mem); /* And make sure memory is listed in descending order */ efi_mem_sort(); return start; } static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr) { struct list_head *lhandle; list_for_each(lhandle, &efi_mem) { struct efi_mem_list *lmem = list_entry(lhandle, struct efi_mem_list, link); struct efi_mem_desc *desc = &lmem->desc; uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT; uint64_t desc_end = desc->physical_start + desc_len; uint64_t curmax = min(max_addr, desc_end); uint64_t ret = curmax - len; /* We only take memory from free RAM */ if (desc->type != EFI_CONVENTIONAL_MEMORY) continue; /* Out of bounds for max_addr */ if ((ret + len) > max_addr) continue; /* Out of bounds for upper map limit */ if ((ret + len) > desc_end) continue; /* Out of bounds for lower map limit */ if (ret < desc->physical_start) continue; /* Return the highest address in this map within bounds */ return ret; } return 0; } efi_status_t efi_allocate_pages(int type, int memory_type, unsigned long pages, uint64_t *memory) { u64 len = pages << EFI_PAGE_SHIFT; efi_status_t r = EFI_SUCCESS; uint64_t addr; switch (type) { case 0: /* Any page */ addr = efi_find_free_memory(len, gd->ram_top); if (!addr) { r = EFI_NOT_FOUND; break; } break; case 1: /* Max address */ addr = efi_find_free_memory(len, *memory); if (!addr) { r = EFI_NOT_FOUND; break; } break; case 2: /* Exact address, reserve it. The addr is already in *memory. */ addr = *memory; break; default: /* UEFI doesn't specify other allocation types */ r = EFI_INVALID_PARAMETER; break; } if (r == EFI_SUCCESS) { uint64_t ret; /* Reserve that map in our memory maps */ ret = efi_add_memory_map(addr, pages, memory_type, true); if (ret == addr) { *memory = addr; } else { /* Map would overlap, bail out */ r = EFI_OUT_OF_RESOURCES; } } return r; } void *efi_alloc(uint64_t len, int memory_type) { uint64_t ret = 0; uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; efi_status_t r; r = efi_allocate_pages(0, memory_type, pages, &ret); if (r == EFI_SUCCESS) return (void*)(uintptr_t)ret; return NULL; } efi_status_t efi_free_pages(uint64_t memory, unsigned long pages) { /* We don't free, let's cross our fingers we have plenty RAM */ return EFI_SUCCESS; } efi_status_t efi_get_memory_map(unsigned long *memory_map_size, struct efi_mem_desc *memory_map, unsigned long *map_key, unsigned long *descriptor_size, uint32_t *descriptor_version) { ulong map_size = 0; int map_entries = 0; struct list_head *lhandle; list_for_each(lhandle, &efi_mem) map_entries++; map_size = map_entries * sizeof(struct efi_mem_desc); *memory_map_size = map_size; if (descriptor_size) *descriptor_size = sizeof(struct efi_mem_desc); if (*memory_map_size < map_size) return EFI_BUFFER_TOO_SMALL; /* Copy list into array */ if (memory_map) { /* Return the list in ascending order */ memory_map = &memory_map[map_entries - 1]; list_for_each(lhandle, &efi_mem) { struct efi_mem_list *lmem; lmem = list_entry(lhandle, struct efi_mem_list, link); *memory_map = lmem->desc; memory_map--; } } return EFI_SUCCESS; } int efi_memory_init(void) { uint64_t runtime_start, runtime_end, runtime_pages; uint64_t uboot_start, uboot_pages; uint64_t uboot_stack_size = 16 * 1024 * 1024; int i; /* Add RAM */ for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { u64 ram_start = gd->bd->bi_dram[i].start; u64 ram_size = gd->bd->bi_dram[i].size; u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY, false); } /* Add U-Boot */ uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK; uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT; efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false); /* Add Runtime Services */ runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK; runtime_end = (ulong)&__efi_runtime_stop; runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT; efi_add_memory_map(runtime_start, runtime_pages, EFI_RUNTIME_SERVICES_CODE, false); return 0; }