/* * * ZFS filesystem ported to u-boot by * Jorgen Lundman * * GRUB -- GRand Unified Bootloader * Copyright (C) 1999,2000,2001,2002,2003,2004 * Free Software Foundation, Inc. * Copyright 2004 Sun Microsystems, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include "zfs_common.h" #include "div64.h" block_dev_desc_t *zfs_dev_desc; /* * The zfs plug-in routines for GRUB are: * * zfs_mount() - locates a valid uberblock of the root pool and reads * in its MOS at the memory address MOS. * * zfs_open() - locates a plain file object by following the MOS * and places its dnode at the memory address DNODE. * * zfs_read() - read in the data blocks pointed by the DNODE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ZPOOL_PROP_BOOTFS "bootfs" /* * For nvlist manipulation. (from nvpair.h) */ #define NV_ENCODE_NATIVE 0 #define NV_ENCODE_XDR 1 #define NV_BIG_ENDIAN 0 #define NV_LITTLE_ENDIAN 1 #define DATA_TYPE_UINT64 8 #define DATA_TYPE_STRING 9 #define DATA_TYPE_NVLIST 19 #define DATA_TYPE_NVLIST_ARRAY 20 /* * Macros to get fields in a bp or DVA. */ #define P2PHASE(x, align) ((x) & ((align) - 1)) #define DVA_OFFSET_TO_PHYS_SECTOR(offset) \ ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT) /* * return x rounded down to an align boundary * eg, P2ALIGN(1200, 1024) == 1024 (1*align) * eg, P2ALIGN(1024, 1024) == 1024 (1*align) * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) */ #define P2ALIGN(x, align) ((x) & -(align)) /* * FAT ZAP data structures */ #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) #define CHAIN_END 0xffff /* end of the chunk chain */ /* * The amount of space within the chunk available for the array is: * chunk size - space for type (1) - space for next pointer (2) */ #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) #define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5) #define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs)) #define LEAF_HASH(bs, h) \ ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \ ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len))) /* * The amount of space available for chunks is: * block size shift - hash entry size (2) * number of hash * entries - header space (2*chunksize) */ #define ZAP_LEAF_NUMCHUNKS(bs) \ (((1<l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx] #define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry) /* * Decompression Entry - lzjb */ #ifndef NBBY #define NBBY 8 #endif typedef int zfs_decomp_func_t(void *s_start, void *d_start, uint32_t s_len, uint32_t d_len); typedef struct decomp_entry { char *name; zfs_decomp_func_t *decomp_func; } decomp_entry_t; typedef struct dnode_end { dnode_phys_t dn; zfs_endian_t endian; } dnode_end_t; struct zfs_data { /* cache for a file block of the currently zfs_open()-ed file */ char *file_buf; uint64_t file_start; uint64_t file_end; /* XXX: ashift is per vdev, not per pool. We currently only ever touch * a single vdev, but when/if raid-z or stripes are supported, this * may need revision. */ uint64_t vdev_ashift; uint64_t label_txg; uint64_t pool_guid; /* cache for a dnode block */ dnode_phys_t *dnode_buf; dnode_phys_t *dnode_mdn; uint64_t dnode_start; uint64_t dnode_end; zfs_endian_t dnode_endian; uberblock_t current_uberblock; dnode_end_t mos; dnode_end_t mdn; dnode_end_t dnode; uint64_t vdev_phys_sector; int (*userhook)(const char *, const struct zfs_dirhook_info *); struct zfs_dirhook_info *dirinfo; }; static int zlib_decompress(void *s, void *d, uint32_t slen, uint32_t dlen) { if (zlib_decompress(s, d, slen, dlen) < 0) return ZFS_ERR_BAD_FS; return ZFS_ERR_NONE; } static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = { {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */ {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */ {"off", NULL}, /* ZIO_COMPRESS_OFF */ {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */ {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */ {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */ {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */ {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */ {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */ {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */ {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */ {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */ {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */ {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */ }; static int zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf, struct zfs_data *data); static int zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, size_t *size, struct zfs_data *data); /* * Our own version of log2(). Same thing as highbit()-1. */ static int zfs_log2(uint64_t num) { int i = 0; while (num > 1) { i++; num = num >> 1; } return i; } /* Checksum Functions */ static void zio_checksum_off(const void *buf __attribute__ ((unused)), uint64_t size __attribute__ ((unused)), zfs_endian_t endian __attribute__ ((unused)), zio_cksum_t *zcp) { ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); } /* Checksum Table and Values */ static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { {NULL, 0, 0, "inherit"}, {NULL, 0, 0, "on"}, {zio_checksum_off, 0, 0, "off"}, {zio_checksum_SHA256, 1, 1, "label"}, {zio_checksum_SHA256, 1, 1, "gang_header"}, {NULL, 0, 0, "zilog"}, {fletcher_2_endian, 0, 0, "fletcher2"}, {fletcher_4_endian, 1, 0, "fletcher4"}, {zio_checksum_SHA256, 1, 0, "SHA256"}, {NULL, 0, 0, "zilog2"}, }; /* * zio_checksum_verify: Provides support for checksum verification. * * Fletcher2, Fletcher4, and SHA256 are supported. * */ static int zio_checksum_verify(zio_cksum_t zc, uint32_t checksum, zfs_endian_t endian, char *buf, int size) { zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1; zio_checksum_info_t *ci = &zio_checksum_table[checksum]; zio_cksum_t actual_cksum, expected_cksum; if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) { printf("zfs unknown checksum function %d\n", checksum); return ZFS_ERR_NOT_IMPLEMENTED_YET; } if (ci->ci_eck) { expected_cksum = zec->zec_cksum; zec->zec_cksum = zc; ci->ci_func(buf, size, endian, &actual_cksum); zec->zec_cksum = expected_cksum; zc = expected_cksum; } else { ci->ci_func(buf, size, endian, &actual_cksum); } if ((actual_cksum.zc_word[0] != zc.zc_word[0]) || (actual_cksum.zc_word[1] != zc.zc_word[1]) || (actual_cksum.zc_word[2] != zc.zc_word[2]) || (actual_cksum.zc_word[3] != zc.zc_word[3])) { return ZFS_ERR_BAD_FS; } return ZFS_ERR_NONE; } /* * vdev_uberblock_compare takes two uberblock structures and returns an integer * indicating the more recent of the two. * Return Value = 1 if ub2 is more recent * Return Value = -1 if ub1 is more recent * The most recent uberblock is determined using its transaction number and * timestamp. The uberblock with the highest transaction number is * considered "newer". If the transaction numbers of the two blocks match, the * timestamps are compared to determine the "newer" of the two. */ static int vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) { zfs_endian_t ub1_endian, ub2_endian; if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) ub1_endian = LITTLE_ENDIAN; else ub1_endian = BIG_ENDIAN; if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) ub2_endian = LITTLE_ENDIAN; else ub2_endian = BIG_ENDIAN; if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) < zfs_to_cpu64(ub2->ub_txg, ub2_endian)) return -1; if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) > zfs_to_cpu64(ub2->ub_txg, ub2_endian)) return 1; if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) return -1; if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) return 1; return 0; } /* * Three pieces of information are needed to verify an uberblock: the magic * number, the version number, and the checksum. * * Currently Implemented: version number, magic number, label txg * Need to Implement: checksum * */ static int uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data) { int err; zfs_endian_t endian = UNKNOWN_ENDIAN; zio_cksum_t zc; if (uber->ub_txg < data->label_txg) { debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n", uber->ub_txg, data->label_txg); return ZFS_ERR_BAD_FS; } if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION) endian = LITTLE_ENDIAN; if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION) endian = BIG_ENDIAN; if (endian == UNKNOWN_ENDIAN) { printf("invalid uberblock magic\n"); return ZFS_ERR_BAD_FS; } memset(&zc, 0, sizeof(zc)); zc.zc_word[0] = cpu_to_zfs64(offset, endian); err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian, (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift)); if (!err) { /* Check that the data pointed by the rootbp is usable. */ void *osp = NULL; size_t ospsize; err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data); free(osp); if (!err && ospsize < OBJSET_PHYS_SIZE_V14) { printf("uberblock rootbp points to invalid data\n"); return ZFS_ERR_BAD_FS; } } return err; } /* * Find the best uberblock. * Return: * Success - Pointer to the best uberblock. * Failure - NULL */ static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data) { const uint64_t sector = data->vdev_phys_sector; uberblock_t *ubbest = NULL; uberblock_t *ubnext; unsigned int i, offset, pickedub = 0; int err = ZFS_ERR_NONE; const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift); const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift); for (i = 0; i < UBCOUNT; i++) { ubnext = (uberblock_t *) (i * UBBYTES + ub_array); offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES); err = uberblock_verify(ubnext, offset, data); if (err) continue; if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) { ubbest = ubnext; pickedub = i; } } if (ubbest) debug("zfs Found best uberblock at idx %d, txg %llu\n", pickedub, (unsigned long long) ubbest->ub_txg); return ubbest; } static inline size_t get_psize(blkptr_t *bp, zfs_endian_t endian) { return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1) << SPA_MINBLOCKSHIFT; } static uint64_t dva_get_offset(dva_t *dva, zfs_endian_t endian) { return zfs_to_cpu64((dva)->dva_word[1], endian) << SPA_MINBLOCKSHIFT; } /* * Read a block of data based on the gang block address dva, * and put its data in buf. * */ static int zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf, struct zfs_data *data) { zio_gbh_phys_t *zio_gb; uint64_t offset, sector; unsigned i; int err; zio_cksum_t zc; memset(&zc, 0, sizeof(zc)); zio_gb = malloc(SPA_GANGBLOCKSIZE); if (!zio_gb) return ZFS_ERR_OUT_OF_MEMORY; offset = dva_get_offset(dva, endian); sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); /* read in the gang block header */ err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb); if (err) { free(zio_gb); return err; } /* XXX */ /* self checksuming the gang block header */ ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva), dva_get_offset(dva, endian), bp->blk_birth, 0); err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian, (char *) zio_gb, SPA_GANGBLOCKSIZE); if (err) { free(zio_gb); return err; } endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { if (zio_gb->zg_blkptr[i].blk_birth == 0) continue; err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data); if (err) { free(zio_gb); return err; } buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian); } free(zio_gb); return ZFS_ERR_NONE; } /* * Read in a block of raw data to buf. */ static int zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf, struct zfs_data *data) { int i, psize; int err = ZFS_ERR_NONE; psize = get_psize(bp, endian); /* pick a good dva from the block pointer */ for (i = 0; i < SPA_DVAS_PER_BP; i++) { uint64_t offset, sector; if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0) continue; if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) { err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data); } else { /* read in a data block */ offset = dva_get_offset(&bp->blk_dva[i], endian); sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); err = zfs_devread(sector, 0, psize, buf); } if (!err) { /*Check the underlying checksum before we rule this DVA as "good"*/ uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff; err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize); if (!err) return ZFS_ERR_NONE; } /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/ } if (!err) { printf("couldn't find a valid DVA\n"); err = ZFS_ERR_BAD_FS; } return err; } /* * Read in a block of data, verify its checksum, decompress if needed, * and put the uncompressed data in buf. */ static int zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, size_t *size, struct zfs_data *data) { size_t lsize, psize; unsigned int comp; char *compbuf = NULL; int err; *buf = NULL; comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff; lsize = (BP_IS_HOLE(bp) ? 0 : (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1) << SPA_MINBLOCKSHIFT)); psize = get_psize(bp, endian); if (size) *size = lsize; if (comp >= ZIO_COMPRESS_FUNCTIONS) { printf("compression algorithm %u not supported\n", (unsigned int) comp); return ZFS_ERR_NOT_IMPLEMENTED_YET; } if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) { printf("compression algorithm %s not supported\n", decomp_table[comp].name); return ZFS_ERR_NOT_IMPLEMENTED_YET; } if (comp != ZIO_COMPRESS_OFF) { compbuf = malloc(psize); if (!compbuf) return ZFS_ERR_OUT_OF_MEMORY; } else { compbuf = *buf = malloc(lsize); } err = zio_read_data(bp, endian, compbuf, data); if (err) { free(compbuf); *buf = NULL; return err; } if (comp != ZIO_COMPRESS_OFF) { *buf = malloc(lsize); if (!*buf) { free(compbuf); return ZFS_ERR_OUT_OF_MEMORY; } err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize); free(compbuf); if (err) { free(*buf); *buf = NULL; return err; } } return ZFS_ERR_NONE; } /* * Get the block from a block id. * push the block onto the stack. * */ static int dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf, zfs_endian_t *endian_out, struct zfs_data *data) { int idx, level; blkptr_t *bp_array = dn->dn.dn_blkptr; int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT; blkptr_t *bp; void *tmpbuf = 0; zfs_endian_t endian; int err = ZFS_ERR_NONE; bp = malloc(sizeof(blkptr_t)); if (!bp) return ZFS_ERR_OUT_OF_MEMORY; endian = dn->endian; for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) { idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1); *bp = bp_array[idx]; if (bp_array != dn->dn.dn_blkptr) { free(bp_array); bp_array = 0; } if (BP_IS_HOLE(bp)) { size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec, dn->endian) << SPA_MINBLOCKSHIFT; *buf = malloc(size); if (*buf) { err = ZFS_ERR_OUT_OF_MEMORY; break; } memset(*buf, 0, size); endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; break; } if (level == 0) { err = zio_read(bp, endian, buf, 0, data); endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; break; } err = zio_read(bp, endian, &tmpbuf, 0, data); endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; if (err) break; bp_array = tmpbuf; } if (bp_array != dn->dn.dn_blkptr) free(bp_array); if (endian_out) *endian_out = endian; free(bp); return err; } /* * mzap_lookup: Looks up property described by "name" and returns the value * in "value". */ static int mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize, char *name, uint64_t * value) { int i, chunks; mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; chunks = objsize / MZAP_ENT_LEN - 1; for (i = 0; i < chunks; i++) { if (strcmp(mzap_ent[i].mze_name, name) == 0) { *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian); return ZFS_ERR_NONE; } } printf("couldn't find '%s'\n", name); return ZFS_ERR_FILE_NOT_FOUND; } static int mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize, int (*hook)(const char *name, uint64_t val, struct zfs_data *data), struct zfs_data *data) { int i, chunks; mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; chunks = objsize / MZAP_ENT_LEN - 1; for (i = 0; i < chunks; i++) { if (hook(mzap_ent[i].mze_name, zfs_to_cpu64(mzap_ent[i].mze_value, endian), data)) return 1; } return 0; } static uint64_t zap_hash(uint64_t salt, const char *name) { static uint64_t table[256]; const uint8_t *cp; uint8_t c; uint64_t crc = salt; if (table[128] == 0) { uint64_t *ct; int i, j; for (i = 0; i < 256; i++) { for (ct = table + i, *ct = i, j = 8; j > 0; j--) *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); } } for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++) crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF]; /* * Only use 28 bits, since we need 4 bits in the cookie for the * collision differentiator. We MUST use the high bits, since * those are the onces that we first pay attention to when * chosing the bucket. */ crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); return crc; } /* * Only to be used on 8-bit arrays. * array_len is actual len in bytes (not encoded le_value_length). * buf is null-terminated. */ /* XXX */ static int zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft, int chunk, int array_len, const char *buf) { int bseen = 0; while (bseen < array_len) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) return 0; if (memcmp(la->la_array, buf + bseen, toread) != 0) break; chunk = zfs_to_cpu16(la->la_next, endian); bseen += toread; } return (bseen == array_len); } /* XXX */ static int zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft, int chunk, int array_len, char *buf) { int bseen = 0; while (bseen < array_len) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) /* Don't use errno because this error is to be ignored. */ return ZFS_ERR_BAD_FS; memcpy(buf + bseen, la->la_array, toread); chunk = zfs_to_cpu16(la->la_next, endian); bseen += toread; } return ZFS_ERR_NONE; } /* * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the * value for the property "name". * */ /* XXX */ static int zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft, uint64_t h, const char *name, uint64_t *value) { uint16_t chunk; struct zap_leaf_entry *le; /* Verify if this is a valid leaf block */ if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { printf("invalid leaf type\n"); return ZFS_ERR_BAD_FS; } if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { printf("invalid leaf magic\n"); return ZFS_ERR_BAD_FS; } for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian); chunk != CHAIN_END; chunk = le->le_next) { if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) { printf("invalid chunk number\n"); return ZFS_ERR_BAD_FS; } le = ZAP_LEAF_ENTRY(l, blksft, chunk); /* Verify the chunk entry */ if (le->le_type != ZAP_CHUNK_ENTRY) { printf("invalid chunk entry\n"); return ZFS_ERR_BAD_FS; } if (zfs_to_cpu64(le->le_hash, endian) != h) continue; if (zap_leaf_array_equal(l, endian, blksft, zfs_to_cpu16(le->le_name_chunk, endian), zfs_to_cpu16(le->le_name_length, endian), name)) { struct zap_leaf_array *la; if (le->le_int_size != 8 || le->le_value_length != 1) { printf("invalid leaf chunk entry\n"); return ZFS_ERR_BAD_FS; } /* get the uint64_t property value */ la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; *value = be64_to_cpu(la->la_array64); return ZFS_ERR_NONE; } } printf("couldn't find '%s'\n", name); return ZFS_ERR_FILE_NOT_FOUND; } /* Verify if this is a fat zap header block */ static int zap_verify(zap_phys_t *zap) { if (zap->zap_magic != (uint64_t) ZAP_MAGIC) { printf("bad ZAP magic\n"); return ZFS_ERR_BAD_FS; } if (zap->zap_flags != 0) { printf("bad ZAP flags\n"); return ZFS_ERR_BAD_FS; } if (zap->zap_salt == 0) { printf("bad ZAP salt\n"); return ZFS_ERR_BAD_FS; } return ZFS_ERR_NONE; } /* * Fat ZAP lookup * */ /* XXX */ static int fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap, char *name, uint64_t *value, struct zfs_data *data) { void *l; uint64_t hash, idx, blkid; int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << DNODE_SHIFT); int err; zfs_endian_t leafendian; err = zap_verify(zap); if (err) return err; hash = zap_hash(zap->zap_salt, name); /* get block id from index */ if (zap->zap_ptrtbl.zt_numblks != 0) { printf("external pointer tables not supported\n"); return ZFS_ERR_NOT_IMPLEMENTED_YET; } idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift); blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; /* Get the leaf block */ if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { printf("ZAP leaf is too small\n"); return ZFS_ERR_BAD_FS; } err = dmu_read(zap_dnode, blkid, &l, &leafendian, data); if (err) return err; err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value); free(l); return err; } /* XXX */ static int fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap, int (*hook)(const char *name, uint64_t val, struct zfs_data *data), struct zfs_data *data) { zap_leaf_phys_t *l; void *l_in; uint64_t idx, blkid; uint16_t chunk; int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << DNODE_SHIFT); int err; zfs_endian_t endian; if (zap_verify(zap)) return 0; /* get block id from index */ if (zap->zap_ptrtbl.zt_numblks != 0) { printf("external pointer tables not supported\n"); return 0; } /* Get the leaf block */ if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { printf("ZAP leaf is too small\n"); return 0; } for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) { blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; err = dmu_read(zap_dnode, blkid, &l_in, &endian, data); l = l_in; if (err) continue; /* Verify if this is a valid leaf block */ if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { free(l); continue; } if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { free(l); continue; } for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) { char *buf; struct zap_leaf_array *la; struct zap_leaf_entry *le; uint64_t val; le = ZAP_LEAF_ENTRY(l, blksft, chunk); /* Verify the chunk entry */ if (le->le_type != ZAP_CHUNK_ENTRY) continue; buf = malloc(zfs_to_cpu16(le->le_name_length, endian) + 1); if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk, le->le_name_length, buf)) { free(buf); continue; } buf[le->le_name_length] = 0; if (le->le_int_size != 8 || zfs_to_cpu16(le->le_value_length, endian) != 1) continue; /* get the uint64_t property value */ la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; val = be64_to_cpu(la->la_array64); if (hook(buf, val, data)) return 1; free(buf); } } return 0; } /* * Read in the data of a zap object and find the value for a matching * property name. * */ static int zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val, struct zfs_data *data) { uint64_t block_type; int size; void *zapbuf; int err; zfs_endian_t endian; /* Read in the first block of the zap object data. */ size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT; err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); if (err) return err; block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); if (block_type == ZBT_MICRO) { err = (mzap_lookup(zapbuf, endian, size, name, val)); free(zapbuf); return err; } else if (block_type == ZBT_HEADER) { /* this is a fat zap */ err = (fzap_lookup(zap_dnode, zapbuf, name, val, data)); free(zapbuf); return err; } printf("unknown ZAP type\n"); return ZFS_ERR_BAD_FS; } static int zap_iterate(dnode_end_t *zap_dnode, int (*hook)(const char *name, uint64_t val, struct zfs_data *data), struct zfs_data *data) { uint64_t block_type; int size; void *zapbuf; int err; int ret; zfs_endian_t endian; /* Read in the first block of the zap object data. */ size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT; err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); if (err) return 0; block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); if (block_type == ZBT_MICRO) { ret = mzap_iterate(zapbuf, endian, size, hook, data); free(zapbuf); return ret; } else if (block_type == ZBT_HEADER) { /* this is a fat zap */ ret = fzap_iterate(zap_dnode, zapbuf, hook, data); free(zapbuf); return ret; } printf("unknown ZAP type\n"); return 0; } /* * Get the dnode of an object number from the metadnode of an object set. * * Input * mdn - metadnode to get the object dnode * objnum - object number for the object dnode * buf - data buffer that holds the returning dnode */ static int dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type, dnode_end_t *buf, struct zfs_data *data) { uint64_t blkid, blksz; /* the block id this object dnode is in */ int epbs; /* shift of number of dnodes in a block */ int idx; /* index within a block */ void *dnbuf; int err; zfs_endian_t endian; blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec, mdn->endian) << SPA_MINBLOCKSHIFT; epbs = zfs_log2(blksz) - DNODE_SHIFT; blkid = objnum >> epbs; idx = objnum & ((1 << epbs) - 1); if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn, sizeof(*mdn)) == 0 && objnum >= data->dnode_start && objnum < data->dnode_end) { memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE); buf->endian = data->dnode_endian; if (type && buf->dn.dn_type != type) { printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type); return ZFS_ERR_BAD_FS; } return ZFS_ERR_NONE; } err = dmu_read(mdn, blkid, &dnbuf, &endian, data); if (err) return err; free(data->dnode_buf); free(data->dnode_mdn); data->dnode_mdn = malloc(sizeof(*mdn)); if (!data->dnode_mdn) { data->dnode_buf = 0; } else { memcpy(data->dnode_mdn, mdn, sizeof(*mdn)); data->dnode_buf = dnbuf; data->dnode_start = blkid << epbs; data->dnode_end = (blkid + 1) << epbs; data->dnode_endian = endian; } memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE); buf->endian = endian; if (type && buf->dn.dn_type != type) { printf("incorrect dnode type\n"); return ZFS_ERR_BAD_FS; } return ZFS_ERR_NONE; } /* * Get the file dnode for a given file name where mdn is the meta dnode * for this ZFS object set. When found, place the file dnode in dn. * The 'path' argument will be mangled. * */ static int dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn, struct zfs_data *data) { uint64_t objnum, version; char *cname, ch; int err = ZFS_ERR_NONE; char *path, *path_buf; struct dnode_chain { struct dnode_chain *next; dnode_end_t dn; }; struct dnode_chain *dnode_path = 0, *dn_new, *root; dn_new = malloc(sizeof(*dn_new)); if (!dn_new) return ZFS_ERR_OUT_OF_MEMORY; dn_new->next = 0; dnode_path = root = dn_new; err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, &(dnode_path->dn), data); if (err) { free(dn_new); return err; } err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data); if (err) { free(dn_new); return err; } if (version > ZPL_VERSION) { free(dn_new); printf("too new ZPL version\n"); return ZFS_ERR_NOT_IMPLEMENTED_YET; } err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data); if (err) { free(dn_new); return err; } err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); if (err) { free(dn_new); return err; } path = path_buf = strdup(path_in); if (!path_buf) { free(dn_new); return ZFS_ERR_OUT_OF_MEMORY; } while (1) { /* skip leading slashes */ while (*path == '/') path++; if (!*path) break; /* get the next component name */ cname = path; while (*path && *path != '/') path++; /* Skip dot. */ if (cname + 1 == path && cname[0] == '.') continue; /* Handle double dot. */ if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') { if (dn_new->next) { dn_new = dnode_path; dnode_path = dn_new->next; free(dn_new); } else { printf("can't resolve ..\n"); err = ZFS_ERR_FILE_NOT_FOUND; break; } continue; } ch = *path; *path = 0; /* ensure null termination */ if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { free(path_buf); printf("not a directory\n"); return ZFS_ERR_BAD_FILE_TYPE; } err = zap_lookup(&(dnode_path->dn), cname, &objnum, data); if (err) break; dn_new = malloc(sizeof(*dn_new)); if (!dn_new) { err = ZFS_ERR_OUT_OF_MEMORY; break; } dn_new->next = dnode_path; dnode_path = dn_new; objnum = ZFS_DIRENT_OBJ(objnum); err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); if (err) break; *path = ch; } if (!err) memcpy(dn, &(dnode_path->dn), sizeof(*dn)); while (dnode_path) { dn_new = dnode_path->next; free(dnode_path); dnode_path = dn_new; } free(path_buf); return err; } /* * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname), * e.g. pool/rootfs, or a given object number (obj), e.g. the object number * of pool/rootfs. * * If no fsname and no obj are given, return the DSL_DIR metadnode. * If fsname is given, return its metadnode and its matching object number. * If only obj is given, return the metadnode for this object number. * */ static int get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname, dnode_end_t *mdn, struct zfs_data *data) { uint64_t objnum; int err; err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT, DMU_OT_OBJECT_DIRECTORY, mdn, data); if (err) return err; err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data); if (err) return err; err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); if (err) return err; while (*fsname) { uint64_t childobj; char *cname, ch; while (*fsname == '/') fsname++; if (!*fsname || *fsname == '@') break; cname = fsname; while (*fsname && !isspace(*fsname) && *fsname != '/') fsname++; ch = *fsname; *fsname = 0; childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian); err = dnode_get(mosmdn, childobj, DMU_OT_DSL_DIR_CHILD_MAP, mdn, data); if (err) return err; err = zap_lookup(mdn, cname, &objnum, data); if (err) return err; err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); if (err) return err; *fsname = ch; } return ZFS_ERR_NONE; } static int make_mdn(dnode_end_t *mdn, struct zfs_data *data) { void *osp; blkptr_t *bp; size_t ospsize; int err; bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp); err = zio_read(bp, mdn->endian, &osp, &ospsize, data); if (err) return err; if (ospsize < OBJSET_PHYS_SIZE_V14) { free(osp); printf("too small osp\n"); return ZFS_ERR_BAD_FS; } mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1; memmove((char *) &(mdn->dn), (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); free(osp); return ZFS_ERR_NONE; } static int dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn, uint64_t *mdnobj, dnode_end_t *dn, int *isfs, struct zfs_data *data) { char *fsname, *snapname; const char *ptr_at, *filename; uint64_t headobj; int err; ptr_at = strchr(fullpath, '@'); if (!ptr_at) { *isfs = 1; filename = 0; snapname = 0; fsname = strdup(fullpath); } else { const char *ptr_slash = strchr(ptr_at, '/'); *isfs = 0; fsname = malloc(ptr_at - fullpath + 1); if (!fsname) return ZFS_ERR_OUT_OF_MEMORY; memcpy(fsname, fullpath, ptr_at - fullpath); fsname[ptr_at - fullpath] = 0; if (ptr_at[1] && ptr_at[1] != '/') { snapname = malloc(ptr_slash - ptr_at); if (!snapname) { free(fsname); return ZFS_ERR_OUT_OF_MEMORY; } memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1); snapname[ptr_slash - ptr_at - 1] = 0; } else { snapname = 0; } if (ptr_slash) filename = ptr_slash; else filename = "/"; printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n", fsname, snapname, filename); } err = get_filesystem_dnode(&(data->mos), fsname, dn, data); if (err) { free(fsname); free(snapname); return err; } headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian); err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); if (err) { free(fsname); free(snapname); return err; } if (snapname) { uint64_t snapobj; snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian); err = dnode_get(&(data->mos), snapobj, DMU_OT_DSL_DS_SNAP_MAP, mdn, data); if (!err) err = zap_lookup(mdn, snapname, &headobj, data); if (!err) err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); if (err) { free(fsname); free(snapname); return err; } } if (mdnobj) *mdnobj = headobj; make_mdn(mdn, data); if (*isfs) { free(fsname); free(snapname); return ZFS_ERR_NONE; } err = dnode_get_path(mdn, filename, dn, data); free(fsname); free(snapname); return err; } /* * For a given XDR packed nvlist, verify the first 4 bytes and move on. * * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) : * * encoding method/host endian (4 bytes) * nvl_version (4 bytes) * nvl_nvflag (4 bytes) * encoded nvpairs: * encoded size of the nvpair (4 bytes) * decoded size of the nvpair (4 bytes) * name string size (4 bytes) * name string data (sizeof(NV_ALIGN4(string)) * data type (4 bytes) * # of elements in the nvpair (4 bytes) * data * 2 zero's for the last nvpair * (end of the entire list) (8 bytes) * */ static int nvlist_find_value(char *nvlist, char *name, int valtype, char **val, size_t *size_out, size_t *nelm_out) { int name_len, type, encode_size; char *nvpair, *nvp_name; /* Verify if the 1st and 2nd byte in the nvlist are valid. */ /* NOTE: independently of what endianness header announces all subsequent values are big-endian. */ if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN && nvlist[1] != NV_BIG_ENDIAN)) { printf("zfs incorrect nvlist header\n"); return ZFS_ERR_BAD_FS; } /* skip the header, nvl_version, and nvl_nvflag */ nvlist = nvlist + 4 * 3; /* * Loop thru the nvpair list * The XDR representation of an integer is in big-endian byte order. */ while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) { int nelm; nvpair = nvlist + 4 * 2; /* skip the encode/decode size */ name_len = be32_to_cpu(*(uint32_t *) nvpair); nvpair += 4; nvp_name = nvpair; nvpair = nvpair + ((name_len + 3) & ~3); /* align */ type = be32_to_cpu(*(uint32_t *) nvpair); nvpair += 4; nelm = be32_to_cpu(*(uint32_t *) nvpair); if (nelm < 1) { printf("empty nvpair\n"); return ZFS_ERR_BAD_FS; } nvpair += 4; if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) { *val = nvpair; *size_out = encode_size; if (nelm_out) *nelm_out = nelm; return 1; } nvlist += encode_size; /* goto the next nvpair */ } return 0; } int zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out) { char *nvpair; size_t size; int found; found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0); if (!found) return 0; if (size < sizeof(uint64_t)) { printf("invalid uint64\n"); return ZFS_ERR_BAD_FS; } *out = be64_to_cpu(*(uint64_t *) nvpair); return 1; } char * zfs_nvlist_lookup_string(char *nvlist, char *name) { char *nvpair; char *ret; size_t slen; size_t size; int found; found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0); if (!found) return 0; if (size < 4) { printf("invalid string\n"); return 0; } slen = be32_to_cpu(*(uint32_t *) nvpair); if (slen > size - 4) slen = size - 4; ret = malloc(slen + 1); if (!ret) return 0; memcpy(ret, nvpair + 4, slen); ret[slen] = 0; return ret; } char * zfs_nvlist_lookup_nvlist(char *nvlist, char *name) { char *nvpair; char *ret; size_t size; int found; found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, &size, 0); if (!found) return 0; ret = calloc(1, size + 3 * sizeof(uint32_t)); if (!ret) return 0; memcpy(ret, nvlist, sizeof(uint32_t)); memcpy(ret + sizeof(uint32_t), nvpair, size); return ret; } int zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name) { char *nvpair; size_t nelm, size; int found; found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, &size, &nelm); if (!found) return -1; return nelm; } char * zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name, size_t index) { char *nvpair, *nvpairptr; int found; char *ret; size_t size; unsigned i; size_t nelm; found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, &size, &nelm); if (!found) return 0; if (index >= nelm) { printf("trying to lookup past nvlist array\n"); return 0; } nvpairptr = nvpair; for (i = 0; i < index; i++) { uint32_t encode_size; /* skip the header, nvl_version, and nvl_nvflag */ nvpairptr = nvpairptr + 4 * 2; while (nvpairptr < nvpair + size && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr))) nvlist += encode_size; /* goto the next nvpair */ nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */ } if (nvpairptr >= nvpair + size || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) >= nvpair + size) { printf("incorrect nvlist array\n"); return 0; } ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) + 3 * sizeof(uint32_t)); if (!ret) return 0; memcpy(ret, nvlist, sizeof(uint32_t)); memcpy(ret + sizeof(uint32_t), nvpairptr, size); return ret; } static int int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist) { int err; *nvlist = malloc(VDEV_PHYS_SIZE); /* Read in the vdev name-value pair list (112K). */ err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist); if (err) { free(*nvlist); *nvlist = 0; return err; } return ZFS_ERR_NONE; } /* * Check the disk label information and retrieve needed vdev name-value pairs. * */ static int check_pool_label(struct zfs_data *data) { uint64_t pool_state; char *nvlist; /* for the pool */ char *vdevnvlist; /* for the vdev */ uint64_t diskguid; uint64_t version; int found; int err; err = int_zfs_fetch_nvlist(data, &nvlist); if (err) return err; found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE, &pool_state); if (!found) { free(nvlist); printf("zfs pool state not found\n"); return ZFS_ERR_BAD_FS; } if (pool_state == POOL_STATE_DESTROYED) { free(nvlist); printf("zpool is marked as destroyed\n"); return ZFS_ERR_BAD_FS; } data->label_txg = 0; found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG, &data->label_txg); if (!found) { free(nvlist); printf("zfs pool txg not found\n"); return ZFS_ERR_BAD_FS; } /* not an active device */ if (data->label_txg == 0) { free(nvlist); printf("zpool is not active\n"); return ZFS_ERR_BAD_FS; } found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION, &version); if (!found) { free(nvlist); printf("zpool config version not found\n"); return ZFS_ERR_BAD_FS; } if (version > SPA_VERSION) { free(nvlist); printf("SPA version too new %llu > %llu\n", (unsigned long long) version, (unsigned long long) SPA_VERSION); return ZFS_ERR_NOT_IMPLEMENTED_YET; } vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE); if (!vdevnvlist) { free(nvlist); printf("ZFS config vdev tree not found\n"); return ZFS_ERR_BAD_FS; } found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT, &data->vdev_ashift); free(vdevnvlist); if (!found) { free(nvlist); printf("ZPOOL config ashift not found\n"); return ZFS_ERR_BAD_FS; } found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid); if (!found) { free(nvlist); printf("ZPOOL config guid not found\n"); return ZFS_ERR_BAD_FS; } found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid); if (!found) { free(nvlist); printf("ZPOOL config pool guid not found\n"); return ZFS_ERR_BAD_FS; } free(nvlist); printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n", (unsigned long long) data->pool_guid, (unsigned long long) data->pool_guid, (unsigned long long) diskguid, (unsigned long long) diskguid, (unsigned long long) data->label_txg, (unsigned long long) version, (unsigned long long) data->vdev_ashift); return ZFS_ERR_NONE; } /* * vdev_label_start returns the physical disk offset (in bytes) of * label "l". */ static uint64_t vdev_label_start(uint64_t psize, int l) { return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ? 0 : psize - VDEV_LABELS * sizeof(vdev_label_t))); } void zfs_unmount(struct zfs_data *data) { free(data->dnode_buf); free(data->dnode_mdn); free(data->file_buf); free(data); } /* * zfs_mount() locates a valid uberblock of the root pool and read in its MOS * to the memory address MOS. * */ struct zfs_data * zfs_mount(device_t dev) { struct zfs_data *data = 0; int label = 0, bestlabel = -1; char *ub_array; uberblock_t *ubbest; uberblock_t *ubcur = NULL; void *osp = 0; size_t ospsize; int err; data = malloc(sizeof(*data)); if (!data) return 0; memset(data, 0, sizeof(*data)); ub_array = malloc(VDEV_UBERBLOCK_RING); if (!ub_array) { zfs_unmount(data); return 0; } ubbest = malloc(sizeof(*ubbest)); if (!ubbest) { zfs_unmount(data); return 0; } memset(ubbest, 0, sizeof(*ubbest)); /* * some eltorito stacks don't give us a size and * we end up setting the size to MAXUINT, further * some of these devices stop working once a single * read past the end has been issued. Checking * for a maximum part_length and skipping the backup * labels at the end of the slice/partition/device * avoids breaking down on such devices. */ const int vdevnum = dev->part_length == 0 ? VDEV_LABELS / 2 : VDEV_LABELS; /* Size in bytes of the device (disk or partition) aligned to label size*/ uint64_t device_size = dev->part_length << SECTOR_BITS; const uint64_t alignedbytes = P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t)); for (label = 0; label < vdevnum; label++) { uint64_t labelstartbytes = vdev_label_start(alignedbytes, label); uint64_t labelstart = labelstartbytes >> SECTOR_BITS; debug("zfs reading label %d at sector %llu (byte %llu)\n", label, (unsigned long long) labelstart, (unsigned long long) labelstartbytes); data->vdev_phys_sector = labelstart + ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS); err = check_pool_label(data); if (err) { printf("zfs error checking label %d\n", label); continue; } /* Read in the uberblock ring (128K). */ err = zfs_devread(data->vdev_phys_sector + (VDEV_PHYS_SIZE >> SECTOR_BITS), 0, VDEV_UBERBLOCK_RING, ub_array); if (err) { printf("zfs error reading uberblock ring for label %d\n", label); continue; } ubcur = find_bestub(ub_array, data); if (!ubcur) { printf("zfs No good uberblocks found in label %d\n", label); continue; } if (vdev_uberblock_compare(ubcur, ubbest) > 0) { /* Looks like the block is good, so use it.*/ memcpy(ubbest, ubcur, sizeof(*ubbest)); bestlabel = label; debug("zfs Current best uberblock found in label %d\n", label); } } free(ub_array); /* We zero'd the structure to begin with. If we never assigned to it, magic will still be zero. */ if (!ubbest->ub_magic) { printf("couldn't find a valid ZFS label\n"); zfs_unmount(data); free(ubbest); return 0; } debug("zfs ubbest %p in label %d\n", ubbest, bestlabel); zfs_endian_t ub_endian = zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC ? LITTLE_ENDIAN : BIG_ENDIAN; debug("zfs endian set to %s\n", !ub_endian ? "big" : "little"); err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data); if (err) { printf("couldn't zio_read object directory\n"); zfs_unmount(data); free(ubbest); return 0; } if (ospsize < OBJSET_PHYS_SIZE_V14) { printf("osp too small\n"); zfs_unmount(data); free(osp); free(ubbest); return 0; } /* Got the MOS. Save it at the memory addr MOS. */ memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); data->mos.endian = (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1; memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t)); free(osp); free(ubbest); return data; } int zfs_fetch_nvlist(device_t dev, char **nvlist) { struct zfs_data *zfs; int err; zfs = zfs_mount(dev); if (!zfs) return ZFS_ERR_BAD_FS; err = int_zfs_fetch_nvlist(zfs, nvlist); zfs_unmount(zfs); return err; } /* * zfs_open() locates a file in the rootpool by following the * MOS and places the dnode of the file in the memory address DNODE. */ int zfs_open(struct zfs_file *file, const char *fsfilename) { struct zfs_data *data; int err; int isfs; data = zfs_mount(file->device); if (!data) return ZFS_ERR_BAD_FS; err = dnode_get_fullpath(fsfilename, &(data->mdn), 0, &(data->dnode), &isfs, data); if (err) { zfs_unmount(data); return err; } if (isfs) { zfs_unmount(data); printf("Missing @ or / separator\n"); return ZFS_ERR_FILE_NOT_FOUND; } /* We found the dnode for this file. Verify if it is a plain file. */ if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) { zfs_unmount(data); printf("not a file\n"); return ZFS_ERR_BAD_FILE_TYPE; } /* get the file size and set the file position to 0 */ /* * For DMU_OT_SA we will need to locate the SIZE attribute * attribute, which could be either in the bonus buffer * or the "spill" block. */ if (data->dnode.dn.dn_bonustype == DMU_OT_SA) { void *sahdrp; int hdrsize; if (data->dnode.dn.dn_bonuslen != 0) { sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn); } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) { blkptr_t *bp = &data->dnode.dn.dn_spill; err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data); if (err) return err; } else { printf("filesystem is corrupt :(\n"); return ZFS_ERR_BAD_FS; } hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp)); file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET); } else { file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian); } file->data = data; file->offset = 0; return ZFS_ERR_NONE; } uint64_t zfs_read(zfs_file_t file, char *buf, uint64_t len) { struct zfs_data *data = (struct zfs_data *) file->data; int blksz, movesize; uint64_t length; int64_t red; int err; if (data->file_buf == NULL) { data->file_buf = malloc(SPA_MAXBLOCKSIZE); if (!data->file_buf) return -1; data->file_start = data->file_end = 0; } /* * If offset is in memory, move it into the buffer provided and return. */ if (file->offset >= data->file_start && file->offset + len <= data->file_end) { memmove(buf, data->file_buf + file->offset - data->file_start, len); return len; } blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec, data->dnode.endian) << SPA_MINBLOCKSHIFT; /* * Entire Dnode is too big to fit into the space available. We * will need to read it in chunks. This could be optimized to * read in as large a chunk as there is space available, but for * now, this only reads in one data block at a time. */ length = len; red = 0; while (length) { void *t; /* * Find requested blkid and the offset within that block. */ uint64_t blkid = file->offset + red; blkid = do_div(blkid, blksz); free(data->file_buf); data->file_buf = 0; err = dmu_read(&(data->dnode), blkid, &t, 0, data); data->file_buf = t; if (err) return -1; data->file_start = blkid * blksz; data->file_end = data->file_start + blksz; movesize = min(length, data->file_end - (int)file->offset - red); memmove(buf, data->file_buf + file->offset + red - data->file_start, movesize); buf += movesize; length -= movesize; red += movesize; } return len; } int zfs_close(zfs_file_t file) { zfs_unmount((struct zfs_data *) file->data); return ZFS_ERR_NONE; } int zfs_getmdnobj(device_t dev, const char *fsfilename, uint64_t *mdnobj) { struct zfs_data *data; int err; int isfs; data = zfs_mount(dev); if (!data) return ZFS_ERR_BAD_FS; err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj, &(data->dnode), &isfs, data); zfs_unmount(data); return err; } static void fill_fs_info(struct zfs_dirhook_info *info, dnode_end_t mdn, struct zfs_data *data) { int err; dnode_end_t dn; uint64_t objnum; uint64_t headobj; memset(info, 0, sizeof(*info)); info->dir = 1; if (mdn.dn.dn_type == DMU_OT_DSL_DIR) { headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian); err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data); if (err) { printf("zfs failed here 1\n"); return; } } make_mdn(&mdn, data); err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, &dn, data); if (err) { printf("zfs failed here 2\n"); return; } err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data); if (err) { printf("zfs failed here 3\n"); return; } err = dnode_get(&mdn, objnum, 0, &dn, data); if (err) { printf("zfs failed here 4\n"); return; } info->mtimeset = 1; info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); return; } static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data) { struct zfs_dirhook_info info; dnode_end_t dn; memset(&info, 0, sizeof(info)); dnode_get(&(data->mdn), val, 0, &dn, data); info.mtimeset = 1; info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS); debug("zfs type=%d, name=%s\n", (int)dn.dn.dn_type, (char *)name); if (!data->userhook) return 0; return data->userhook(name, &info); } static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data) { struct zfs_dirhook_info info; dnode_end_t mdn; int err; err = dnode_get(&(data->mos), val, 0, &mdn, data); if (err) return 0; if (mdn.dn.dn_type != DMU_OT_DSL_DIR) return 0; fill_fs_info(&info, mdn, data); if (!data->userhook) return 0; return data->userhook(name, &info); } static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data) { struct zfs_dirhook_info info; char *name2; int ret = 0; dnode_end_t mdn; int err; err = dnode_get(&(data->mos), val, 0, &mdn, data); if (err) return 0; if (mdn.dn.dn_type != DMU_OT_DSL_DATASET) return 0; fill_fs_info(&info, mdn, data); name2 = malloc(strlen(name) + 2); name2[0] = '@'; memcpy(name2 + 1, name, strlen(name) + 1); if (data->userhook) ret = data->userhook(name2, &info); free(name2); return ret; } int zfs_ls(device_t device, const char *path, int (*hook)(const char *, const struct zfs_dirhook_info *)) { struct zfs_data *data; int err; int isfs; data = zfs_mount(device); if (!data) return ZFS_ERR_BAD_FS; data->userhook = hook; err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data); if (err) { zfs_unmount(data); return err; } if (isfs) { uint64_t childobj, headobj; uint64_t snapobj; dnode_end_t dn; struct zfs_dirhook_info info; fill_fs_info(&info, data->dnode, data); hook("@", &info); childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian); headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian); err = dnode_get(&(data->mos), childobj, DMU_OT_DSL_DIR_CHILD_MAP, &dn, data); if (err) { zfs_unmount(data); return err; } zap_iterate(&dn, iterate_zap_fs, data); err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data); if (err) { zfs_unmount(data); return err; } snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian); err = dnode_get(&(data->mos), snapobj, DMU_OT_DSL_DS_SNAP_MAP, &dn, data); if (err) { zfs_unmount(data); return err; } zap_iterate(&dn, iterate_zap_snap, data); } else { if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { zfs_unmount(data); printf("not a directory\n"); return ZFS_ERR_BAD_FILE_TYPE; } zap_iterate(&(data->dnode), iterate_zap, data); } zfs_unmount(data); return ZFS_ERR_NONE; }