/* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation. * Copyright (C) 2006, 2007 University of Szeged, Hungary * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter * Zoltan Sogor */ /* * This file implements UBIFS I/O subsystem which provides various I/O-related * helper functions (reading/writing/checking/validating nodes) and implements * write-buffering support. Write buffers help to save space which otherwise * would have been wasted for padding to the nearest minimal I/O unit boundary. * Instead, data first goes to the write-buffer and is flushed when the * buffer is full or when it is not used for some time (by timer). This is * similar to the mechanism is used by JFFS2. * * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by * mutexes defined inside these objects. Since sometimes upper-level code * has to lock the write-buffer (e.g. journal space reservation code), many * functions related to write-buffers have "nolock" suffix which means that the * caller has to lock the write-buffer before calling this function. * * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not * aligned, UBIFS starts the next node from the aligned address, and the padded * bytes may contain any rubbish. In other words, UBIFS does not put padding * bytes in those small gaps. Common headers of nodes store real node lengths, * not aligned lengths. Indexing nodes also store real lengths in branches. * * UBIFS uses padding when it pads to the next min. I/O unit. In this case it * uses padding nodes or padding bytes, if the padding node does not fit. * * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes * every time they are read from the flash media. */ #include "ubifs.h" /** * ubifs_ro_mode - switch UBIFS to read read-only mode. * @c: UBIFS file-system description object * @err: error code which is the reason of switching to R/O mode */ void ubifs_ro_mode(struct ubifs_info *c, int err) { if (!c->ro_media) { c->ro_media = 1; c->no_chk_data_crc = 0; ubifs_warn("switched to read-only mode, error %d", err); dbg_dump_stack(); } } /** * ubifs_check_node - check node. * @c: UBIFS file-system description object * @buf: node to check * @lnum: logical eraseblock number * @offs: offset within the logical eraseblock * @quiet: print no messages * @must_chk_crc: indicates whether to always check the CRC * * This function checks node magic number and CRC checksum. This function also * validates node length to prevent UBIFS from becoming crazy when an attacker * feeds it a file-system image with incorrect nodes. For example, too large * node length in the common header could cause UBIFS to read memory outside of * allocated buffer when checking the CRC checksum. * * This function may skip data nodes CRC checking if @c->no_chk_data_crc is * true, which is controlled by corresponding UBIFS mount option. However, if * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is * ignored and CRC is checked. * * This function returns zero in case of success and %-EUCLEAN in case of bad * CRC or magic. */ int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, int offs, int quiet, int must_chk_crc) { int err = -EINVAL, type, node_len; uint32_t crc, node_crc, magic; const struct ubifs_ch *ch = buf; ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); ubifs_assert(!(offs & 7) && offs < c->leb_size); magic = le32_to_cpu(ch->magic); if (magic != UBIFS_NODE_MAGIC) { if (!quiet) ubifs_err("bad magic %#08x, expected %#08x", magic, UBIFS_NODE_MAGIC); err = -EUCLEAN; goto out; } type = ch->node_type; if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { if (!quiet) ubifs_err("bad node type %d", type); goto out; } node_len = le32_to_cpu(ch->len); if (node_len + offs > c->leb_size) goto out_len; if (c->ranges[type].max_len == 0) { if (node_len != c->ranges[type].len) goto out_len; } else if (node_len < c->ranges[type].min_len || node_len > c->ranges[type].max_len) goto out_len; if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc) return 0; crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); node_crc = le32_to_cpu(ch->crc); if (crc != node_crc) { if (!quiet) ubifs_err("bad CRC: calculated %#08x, read %#08x", crc, node_crc); err = -EUCLEAN; goto out; } return 0; out_len: if (!quiet) ubifs_err("bad node length %d", node_len); out: if (!quiet) { ubifs_err("bad node at LEB %d:%d", lnum, offs); dbg_dump_node(c, buf); dbg_dump_stack(); } return err; } /** * ubifs_pad - pad flash space. * @c: UBIFS file-system description object * @buf: buffer to put padding to * @pad: how many bytes to pad * * The flash media obliges us to write only in chunks of %c->min_io_size and * when we have to write less data we add padding node to the write-buffer and * pad it to the next minimal I/O unit's boundary. Padding nodes help when the * media is being scanned. If the amount of wasted space is not enough to fit a * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes * pattern (%UBIFS_PADDING_BYTE). * * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is * used. */ void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) { uint32_t crc; ubifs_assert(pad >= 0 && !(pad & 7)); if (pad >= UBIFS_PAD_NODE_SZ) { struct ubifs_ch *ch = buf; struct ubifs_pad_node *pad_node = buf; ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); ch->node_type = UBIFS_PAD_NODE; ch->group_type = UBIFS_NO_NODE_GROUP; ch->padding[0] = ch->padding[1] = 0; ch->sqnum = 0; ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); pad -= UBIFS_PAD_NODE_SZ; pad_node->pad_len = cpu_to_le32(pad); crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); ch->crc = cpu_to_le32(crc); memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); } else if (pad > 0) /* Too little space, padding node won't fit */ memset(buf, UBIFS_PADDING_BYTE, pad); } /** * next_sqnum - get next sequence number. * @c: UBIFS file-system description object */ static unsigned long long next_sqnum(struct ubifs_info *c) { unsigned long long sqnum; spin_lock(&c->cnt_lock); sqnum = ++c->max_sqnum; spin_unlock(&c->cnt_lock); if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { if (sqnum >= SQNUM_WATERMARK) { ubifs_err("sequence number overflow %llu, end of life", sqnum); ubifs_ro_mode(c, -EINVAL); } ubifs_warn("running out of sequence numbers, end of life soon"); } return sqnum; } /** * ubifs_prepare_node - prepare node to be written to flash. * @c: UBIFS file-system description object * @node: the node to pad * @len: node length * @pad: if the buffer has to be padded * * This function prepares node at @node to be written to the media - it * calculates node CRC, fills the common header, and adds proper padding up to * the next minimum I/O unit if @pad is not zero. */ void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) { uint32_t crc; struct ubifs_ch *ch = node; unsigned long long sqnum = next_sqnum(c); ubifs_assert(len >= UBIFS_CH_SZ); ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); ch->len = cpu_to_le32(len); ch->group_type = UBIFS_NO_NODE_GROUP; ch->sqnum = cpu_to_le64(sqnum); ch->padding[0] = ch->padding[1] = 0; crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); ch->crc = cpu_to_le32(crc); if (pad) { len = ALIGN(len, 8); pad = ALIGN(len, c->min_io_size) - len; ubifs_pad(c, node + len, pad); } } /** * ubifs_read_node - read node. * @c: UBIFS file-system description object * @buf: buffer to read to * @type: node type * @len: node length (not aligned) * @lnum: logical eraseblock number * @offs: offset within the logical eraseblock * * This function reads a node of known type and and length, checks it and * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched * and a negative error code in case of failure. */ int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, int lnum, int offs) { int err, l; struct ubifs_ch *ch = buf; dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); ubifs_assert(!(offs & 7) && offs < c->leb_size); ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); err = ubi_read(c->ubi, lnum, buf, offs, len); if (err && err != -EBADMSG) { ubifs_err("cannot read node %d from LEB %d:%d, error %d", type, lnum, offs, err); return err; } if (type != ch->node_type) { ubifs_err("bad node type (%d but expected %d)", ch->node_type, type); goto out; } err = ubifs_check_node(c, buf, lnum, offs, 0, 0); if (err) { ubifs_err("expected node type %d", type); return err; } l = le32_to_cpu(ch->len); if (l != len) { ubifs_err("bad node length %d, expected %d", l, len); goto out; } return 0; out: ubifs_err("bad node at LEB %d:%d", lnum, offs); dbg_dump_node(c, buf); dbg_dump_stack(); return -EINVAL; }