/*------------------------------------------------------------------------- * Filename: mini_inflate.c * Version: $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $ * Copyright: Copyright (C) 2001, Russ Dill * Author: Russ Dill * Description: Mini inflate implementation (RFC 1951) *-----------------------------------------------------------------------*/ /* * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #if (CONFIG_COMMANDS & CFG_CMD_JFFS2) #include /* The order that the code lengths in section 3.2.7 are in */ static unsigned char huffman_order[] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; inline void cramfs_memset(int *s, const int c, size n) { n--; for (;n > 0; n--) s[n] = c; s[0] = c; } /* associate a stream with a block of data and reset the stream */ static void init_stream(struct bitstream *stream, unsigned char *data, void *(*inflate_memcpy)(void *, const void *, size)) { stream->error = NO_ERROR; stream->memcpy = inflate_memcpy; stream->decoded = 0; stream->data = data; stream->bit = 0; /* The first bit of the stream is the lsb of the * first byte */ /* really sorry about all this initialization, think of a better way, * let me know and it will get cleaned up */ stream->codes.bits = 8; stream->codes.num_symbols = 19; stream->codes.lengths = stream->code_lengths; stream->codes.symbols = stream->code_symbols; stream->codes.count = stream->code_count; stream->codes.first = stream->code_first; stream->codes.pos = stream->code_pos; stream->lengths.bits = 16; stream->lengths.num_symbols = 288; stream->lengths.lengths = stream->length_lengths; stream->lengths.symbols = stream->length_symbols; stream->lengths.count = stream->length_count; stream->lengths.first = stream->length_first; stream->lengths.pos = stream->length_pos; stream->distance.bits = 16; stream->distance.num_symbols = 32; stream->distance.lengths = stream->distance_lengths; stream->distance.symbols = stream->distance_symbols; stream->distance.count = stream->distance_count; stream->distance.first = stream->distance_first; stream->distance.pos = stream->distance_pos; } /* pull 'bits' bits out of the stream. The last bit pulled it returned as the * msb. (section 3.1.1) */ inline unsigned long pull_bits(struct bitstream *stream, const unsigned int bits) { unsigned long ret; int i; ret = 0; for (i = 0; i < bits; i++) { ret += ((*(stream->data) >> stream->bit) & 1) << i; /* if, before incrementing, we are on bit 7, * go to the lsb of the next byte */ if (stream->bit++ == 7) { stream->bit = 0; stream->data++; } } return ret; } inline int pull_bit(struct bitstream *stream) { int ret = ((*(stream->data) >> stream->bit) & 1); if (stream->bit++ == 7) { stream->bit = 0; stream->data++; } return ret; } /* discard bits up to the next whole byte */ static void discard_bits(struct bitstream *stream) { if (stream->bit != 0) { stream->bit = 0; stream->data++; } } /* No decompression, the data is all literals (section 3.2.4) */ static void decompress_none(struct bitstream *stream, unsigned char *dest) { unsigned int length; discard_bits(stream); length = *(stream->data++); length += *(stream->data++) << 8; pull_bits(stream, 16); /* throw away the inverse of the size */ stream->decoded += length; stream->memcpy(dest, stream->data, length); stream->data += length; } /* Read in a symbol from the stream (section 3.2.2) */ static int read_symbol(struct bitstream *stream, struct huffman_set *set) { int bits = 0; int code = 0; while (!(set->count[bits] && code < set->first[bits] + set->count[bits])) { code = (code << 1) + pull_bit(stream); if (++bits > set->bits) { /* error decoding (corrupted data?) */ stream->error = CODE_NOT_FOUND; return -1; } } return set->symbols[set->pos[bits] + code - set->first[bits]]; } /* decompress a stream of data encoded with the passed length and distance * huffman codes */ static void decompress_huffman(struct bitstream *stream, unsigned char *dest) { struct huffman_set *lengths = &(stream->lengths); struct huffman_set *distance = &(stream->distance); int symbol, length, dist, i; do { if ((symbol = read_symbol(stream, lengths)) < 0) return; if (symbol < 256) { *(dest++) = symbol; /* symbol is a literal */ stream->decoded++; } else if (symbol > 256) { /* Determine the length of the repitition * (section 3.2.5) */ if (symbol < 265) length = symbol - 254; else if (symbol == 285) length = 258; else { length = pull_bits(stream, (symbol - 261) >> 2); length += (4 << ((symbol - 261) >> 2)) + 3; length += ((symbol - 1) % 4) << ((symbol - 261) >> 2); } /* Determine how far back to go */ if ((symbol = read_symbol(stream, distance)) < 0) return; if (symbol < 4) dist = symbol + 1; else { dist = pull_bits(stream, (symbol - 2) >> 1); dist += (2 << ((symbol - 2) >> 1)) + 1; dist += (symbol % 2) << ((symbol - 2) >> 1); } stream->decoded += length; for (i = 0; i < length; i++) { *dest = dest[-dist]; dest++; } } } while (symbol != 256); /* 256 is the end of the data block */ } /* Fill the lookup tables (section 3.2.2) */ static void fill_code_tables(struct huffman_set *set) { int code = 0, i, length; /* fill in the first code of each bit length, and the pos pointer */ set->pos[0] = 0; for (i = 1; i < set->bits; i++) { code = (code + set->count[i - 1]) << 1; set->first[i] = code; set->pos[i] = set->pos[i - 1] + set->count[i - 1]; } /* Fill in the table of symbols in order of their huffman code */ for (i = 0; i < set->num_symbols; i++) { if ((length = set->lengths[i])) set->symbols[set->pos[length]++] = i; } /* reset the pos pointer */ for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i]; } static void init_code_tables(struct huffman_set *set) { cramfs_memset(set->lengths, 0, set->num_symbols); cramfs_memset(set->count, 0, set->bits); cramfs_memset(set->first, 0, set->bits); } /* read in the huffman codes for dynamic decoding (section 3.2.7) */ static void decompress_dynamic(struct bitstream *stream, unsigned char *dest) { /* I tried my best to minimize the memory footprint here, while still * keeping up performance. I really dislike the _lengths[] tables, but * I see no way of eliminating them without a sizable performance * impact. The first struct table keeps track of stats on each bit * length. The _length table keeps a record of the bit length of each * symbol. The _symbols table is for looking up symbols by the huffman * code (the pos element points to the first place in the symbol table * where that bit length occurs). I also hate the initization of these * structs, if someone knows how to compact these, lemme know. */ struct huffman_set *codes = &(stream->codes); struct huffman_set *lengths = &(stream->lengths); struct huffman_set *distance = &(stream->distance); int hlit = pull_bits(stream, 5) + 257; int hdist = pull_bits(stream, 5) + 1; int hclen = pull_bits(stream, 4) + 4; int length, curr_code, symbol, i, last_code; last_code = 0; init_code_tables(codes); init_code_tables(lengths); init_code_tables(distance); /* fill in the count of each bit length' as well as the lengths * table */ for (i = 0; i < hclen; i++) { length = pull_bits(stream, 3); codes->lengths[huffman_order[i]] = length; if (length) codes->count[length]++; } fill_code_tables(codes); /* Do the same for the length codes, being carefull of wrap through * to the distance table */ curr_code = 0; while (curr_code < hlit) { if ((symbol = read_symbol(stream, codes)) < 0) return; if (symbol == 0) { curr_code++; last_code = 0; } else if (symbol < 16) { /* Literal length */ lengths->lengths[curr_code] = last_code = symbol; lengths->count[symbol]++; curr_code++; } else if (symbol == 16) { /* repeat the last symbol 3 - 6 * times */ length = 3 + pull_bits(stream, 2); for (;length; length--, curr_code++) if (curr_code < hlit) { lengths->lengths[curr_code] = last_code; lengths->count[last_code]++; } else { /* wrap to the distance table */ distance->lengths[curr_code - hlit] = last_code; distance->count[last_code]++; } } else if (symbol == 17) { /* repeat a bit length 0 */ curr_code += 3 + pull_bits(stream, 3); last_code = 0; } else { /* same, but more times */ curr_code += 11 + pull_bits(stream, 7); last_code = 0; } } fill_code_tables(lengths); /* Fill the distance table, don't need to worry about wrapthrough * here */ curr_code -= hlit; while (curr_code < hdist) { if ((symbol = read_symbol(stream, codes)) < 0) return; if (symbol == 0) { curr_code++; last_code = 0; } else if (symbol < 16) { distance->lengths[curr_code] = last_code = symbol; distance->count[symbol]++; curr_code++; } else if (symbol == 16) { length = 3 + pull_bits(stream, 2); for (;length; length--, curr_code++) { distance->lengths[curr_code] = last_code; distance->count[last_code]++; } } else if (symbol == 17) { curr_code += 3 + pull_bits(stream, 3); last_code = 0; } else { curr_code += 11 + pull_bits(stream, 7); last_code = 0; } } fill_code_tables(distance); decompress_huffman(stream, dest); } /* fill in the length and distance huffman codes for fixed encoding * (section 3.2.6) */ static void decompress_fixed(struct bitstream *stream, unsigned char *dest) { /* let gcc fill in the initial values */ struct huffman_set *lengths = &(stream->lengths); struct huffman_set *distance = &(stream->distance); cramfs_memset(lengths->count, 0, 16); cramfs_memset(lengths->first, 0, 16); cramfs_memset(lengths->lengths, 8, 144); cramfs_memset(lengths->lengths + 144, 9, 112); cramfs_memset(lengths->lengths + 256, 7, 24); cramfs_memset(lengths->lengths + 280, 8, 8); lengths->count[7] = 24; lengths->count[8] = 152; lengths->count[9] = 112; cramfs_memset(distance->count, 0, 16); cramfs_memset(distance->first, 0, 16); cramfs_memset(distance->lengths, 5, 32); distance->count[5] = 32; fill_code_tables(lengths); fill_code_tables(distance); decompress_huffman(stream, dest); } /* returns the number of bytes decoded, < 0 if there was an error. Note that * this function assumes that the block starts on a byte boundry * (non-compliant, but I don't see where this would happen). section 3.2.3 */ long decompress_block(unsigned char *dest, unsigned char *source, void *(*inflate_memcpy)(void *, const void *, size)) { int bfinal, btype; struct bitstream stream; init_stream(&stream, source, inflate_memcpy); do { bfinal = pull_bit(&stream); btype = pull_bits(&stream, 2); if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded); else if (btype == DYNAMIC_COMP) decompress_dynamic(&stream, dest + stream.decoded); else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded); else stream.error = COMP_UNKNOWN; } while (!bfinal && !stream.error); #if 0 putstr("decompress_block start\r\n"); putLabeledWord("stream.error = ",stream.error); putLabeledWord("stream.decoded = ",stream.decoded); putLabeledWord("dest = ",dest); putstr("decompress_block end\r\n"); #endif return stream.error ? -stream.error : stream.decoded; } #endif /* CFG_CMD_JFFS2 */