/* * Copyright 2014 Google Inc. * * SPDX-License-Identifier: GPL-2.0+ * * Extracted from Chromium coreboot commit 3f59b13d */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "displayport.h" DECLARE_GLOBAL_DATA_PTR; /* return in 1000ths of a Hertz */ static int tegra_dc_calc_refresh(const struct display_timing *timing) { int h_total, v_total, refresh; int pclk = timing->pixelclock.typ; h_total = timing->hactive.typ + timing->hfront_porch.typ + timing->hback_porch.typ + timing->hsync_len.typ; v_total = timing->vactive.typ + timing->vfront_porch.typ + timing->vback_porch.typ + timing->vsync_len.typ; if (!pclk || !h_total || !v_total) return 0; refresh = pclk / h_total; refresh *= 1000; refresh /= v_total; return refresh; } static void print_mode(const struct display_timing *timing) { int refresh = tegra_dc_calc_refresh(timing); debug("MODE:%dx%d@%d.%03uHz pclk=%d\n", timing->hactive.typ, timing->vactive.typ, refresh / 1000, refresh % 1000, timing->pixelclock.typ); } static int update_display_mode(struct dc_ctlr *disp_ctrl, const struct display_timing *timing, int href_to_sync, int vref_to_sync) { print_mode(timing); writel(0x1, &disp_ctrl->disp.disp_timing_opt); writel(vref_to_sync << 16 | href_to_sync, &disp_ctrl->disp.ref_to_sync); writel(timing->vsync_len.typ << 16 | timing->hsync_len.typ, &disp_ctrl->disp.sync_width); writel(((timing->vback_porch.typ - vref_to_sync) << 16) | timing->hback_porch.typ, &disp_ctrl->disp.back_porch); writel(((timing->vfront_porch.typ + vref_to_sync) << 16) | timing->hfront_porch.typ, &disp_ctrl->disp.front_porch); writel(timing->hactive.typ | (timing->vactive.typ << 16), &disp_ctrl->disp.disp_active); /** * We want to use PLLD_out0, which is PLLD / 2: * PixelClock = (PLLD / 2) / ShiftClockDiv / PixelClockDiv. * * Currently most panels work inside clock range 50MHz~100MHz, and PLLD * has some requirements to have VCO in range 500MHz~1000MHz (see * clock.c for more detail). To simplify calculation, we set * PixelClockDiv to 1 and ShiftClockDiv to 1. In future these values * may be calculated by clock_display, to allow wider frequency range. * * Note ShiftClockDiv is a 7.1 format value. */ const u32 shift_clock_div = 1; writel((PIXEL_CLK_DIVIDER_PCD1 << PIXEL_CLK_DIVIDER_SHIFT) | ((shift_clock_div - 1) * 2) << SHIFT_CLK_DIVIDER_SHIFT, &disp_ctrl->disp.disp_clk_ctrl); debug("%s: PixelClock=%u, ShiftClockDiv=%u\n", __func__, timing->pixelclock.typ, shift_clock_div); return 0; } static u32 tegra_dc_poll_register(void *reg, u32 mask, u32 exp_val, u32 poll_interval_us, u32 timeout_us) { u32 temp = timeout_us; u32 reg_val = 0; do { udelay(poll_interval_us); reg_val = readl(reg); if (timeout_us > poll_interval_us) timeout_us -= poll_interval_us; else break; } while ((reg_val & mask) != exp_val); if ((reg_val & mask) == exp_val) return 0; /* success */ return temp; } int tegra_dc_sor_general_act(struct dc_ctlr *disp_ctrl) { writel(GENERAL_ACT_REQ, &disp_ctrl->cmd.state_ctrl); if (tegra_dc_poll_register(&disp_ctrl->cmd.state_ctrl, GENERAL_ACT_REQ, 0, 100, DC_POLL_TIMEOUT_MS * 1000)) { debug("dc timeout waiting for DC to stop\n"); return -ETIMEDOUT; } return 0; } static struct display_timing min_mode = { .hsync_len = { .typ = 1 }, .vsync_len = { .typ = 1 }, .hback_porch = { .typ = 20 }, .vback_porch = { .typ = 0 }, .hactive = { .typ = 16 }, .vactive = { .typ = 16 }, .hfront_porch = { .typ = 1 }, .vfront_porch = { .typ = 2 }, }; /* Disable windows and set minimum raster timings */ void tegra_dc_sor_disable_win_short_raster(struct dc_ctlr *disp_ctrl, int *dc_reg_ctx) { const int href_to_sync = 0, vref_to_sync = 1; int selected_windows, i; selected_windows = readl(&disp_ctrl->cmd.disp_win_header); /* Store and clear window options */ for (i = 0; i < DC_N_WINDOWS; ++i) { writel(WINDOW_A_SELECT << i, &disp_ctrl->cmd.disp_win_header); dc_reg_ctx[i] = readl(&disp_ctrl->win.win_opt); writel(0, &disp_ctrl->win.win_opt); writel(WIN_A_ACT_REQ << i, &disp_ctrl->cmd.state_ctrl); } writel(selected_windows, &disp_ctrl->cmd.disp_win_header); /* Store current raster timings and set minimum timings */ dc_reg_ctx[i++] = readl(&disp_ctrl->disp.ref_to_sync); writel(href_to_sync | (vref_to_sync << 16), &disp_ctrl->disp.ref_to_sync); dc_reg_ctx[i++] = readl(&disp_ctrl->disp.sync_width); writel(min_mode.hsync_len.typ | (min_mode.vsync_len.typ << 16), &disp_ctrl->disp.sync_width); dc_reg_ctx[i++] = readl(&disp_ctrl->disp.back_porch); writel(min_mode.hback_porch.typ | (min_mode.vback_porch.typ << 16), &disp_ctrl->disp.back_porch); dc_reg_ctx[i++] = readl(&disp_ctrl->disp.front_porch); writel(min_mode.hfront_porch.typ | (min_mode.vfront_porch.typ << 16), &disp_ctrl->disp.front_porch); dc_reg_ctx[i++] = readl(&disp_ctrl->disp.disp_active); writel(min_mode.hactive.typ | (min_mode.vactive.typ << 16), &disp_ctrl->disp.disp_active); writel(GENERAL_ACT_REQ, &disp_ctrl->cmd.state_ctrl); } /* Restore previous windows status and raster timings */ void tegra_dc_sor_restore_win_and_raster(struct dc_ctlr *disp_ctrl, int *dc_reg_ctx) { int selected_windows, i; selected_windows = readl(&disp_ctrl->cmd.disp_win_header); for (i = 0; i < DC_N_WINDOWS; ++i) { writel(WINDOW_A_SELECT << i, &disp_ctrl->cmd.disp_win_header); writel(dc_reg_ctx[i], &disp_ctrl->win.win_opt); writel(WIN_A_ACT_REQ << i, &disp_ctrl->cmd.state_ctrl); } writel(selected_windows, &disp_ctrl->cmd.disp_win_header); writel(dc_reg_ctx[i++], &disp_ctrl->disp.ref_to_sync); writel(dc_reg_ctx[i++], &disp_ctrl->disp.sync_width); writel(dc_reg_ctx[i++], &disp_ctrl->disp.back_porch); writel(dc_reg_ctx[i++], &disp_ctrl->disp.front_porch); writel(dc_reg_ctx[i++], &disp_ctrl->disp.disp_active); writel(GENERAL_UPDATE, &disp_ctrl->cmd.state_ctrl); } static int tegra_depth_for_bpp(int bpp) { switch (bpp) { case 32: return COLOR_DEPTH_R8G8B8A8; case 16: return COLOR_DEPTH_B5G6R5; default: debug("Unsupported LCD bit depth"); return -1; } } static int update_window(struct dc_ctlr *disp_ctrl, u32 frame_buffer, int fb_bits_per_pixel, const struct display_timing *timing) { const u32 colour_white = 0xffffff; int colour_depth; u32 val; writel(WINDOW_A_SELECT, &disp_ctrl->cmd.disp_win_header); writel(((timing->vactive.typ << 16) | timing->hactive.typ), &disp_ctrl->win.size); writel(((timing->vactive.typ << 16) | (timing->hactive.typ * fb_bits_per_pixel / 8)), &disp_ctrl->win.prescaled_size); writel(((timing->hactive.typ * fb_bits_per_pixel / 8 + 31) / 32 * 32), &disp_ctrl->win.line_stride); colour_depth = tegra_depth_for_bpp(fb_bits_per_pixel); if (colour_depth == -1) return -EINVAL; writel(colour_depth, &disp_ctrl->win.color_depth); writel(frame_buffer, &disp_ctrl->winbuf.start_addr); writel(0x1000 << V_DDA_INC_SHIFT | 0x1000 << H_DDA_INC_SHIFT, &disp_ctrl->win.dda_increment); writel(colour_white, &disp_ctrl->disp.blend_background_color); writel(CTRL_MODE_C_DISPLAY << CTRL_MODE_SHIFT, &disp_ctrl->cmd.disp_cmd); writel(WRITE_MUX_ACTIVE, &disp_ctrl->cmd.state_access); val = GENERAL_ACT_REQ | WIN_A_ACT_REQ; val |= GENERAL_UPDATE | WIN_A_UPDATE; writel(val, &disp_ctrl->cmd.state_ctrl); /* Enable win_a */ val = readl(&disp_ctrl->win.win_opt); writel(val | WIN_ENABLE, &disp_ctrl->win.win_opt); return 0; } static int tegra_dc_init(struct dc_ctlr *disp_ctrl) { /* do not accept interrupts during initialization */ writel(0x00000000, &disp_ctrl->cmd.int_mask); writel(WRITE_MUX_ASSEMBLY | READ_MUX_ASSEMBLY, &disp_ctrl->cmd.state_access); writel(WINDOW_A_SELECT, &disp_ctrl->cmd.disp_win_header); writel(0x00000000, &disp_ctrl->win.win_opt); writel(0x00000000, &disp_ctrl->win.byte_swap); writel(0x00000000, &disp_ctrl->win.buffer_ctrl); writel(0x00000000, &disp_ctrl->win.pos); writel(0x00000000, &disp_ctrl->win.h_initial_dda); writel(0x00000000, &disp_ctrl->win.v_initial_dda); writel(0x00000000, &disp_ctrl->win.dda_increment); writel(0x00000000, &disp_ctrl->win.dv_ctrl); writel(0x01000000, &disp_ctrl->win.blend_layer_ctrl); writel(0x00000000, &disp_ctrl->win.blend_match_select); writel(0x00000000, &disp_ctrl->win.blend_nomatch_select); writel(0x00000000, &disp_ctrl->win.blend_alpha_1bit); writel(0x00000000, &disp_ctrl->winbuf.start_addr_hi); writel(0x00000000, &disp_ctrl->winbuf.addr_h_offset); writel(0x00000000, &disp_ctrl->winbuf.addr_v_offset); writel(0x00000000, &disp_ctrl->com.crc_checksum); writel(0x00000000, &disp_ctrl->com.pin_output_enb[0]); writel(0x00000000, &disp_ctrl->com.pin_output_enb[1]); writel(0x00000000, &disp_ctrl->com.pin_output_enb[2]); writel(0x00000000, &disp_ctrl->com.pin_output_enb[3]); writel(0x00000000, &disp_ctrl->disp.disp_signal_opt0); return 0; } static void dump_config(int panel_bpp, struct display_timing *timing) { printf("timing->hactive.typ = %d\n", timing->hactive.typ); printf("timing->vactive.typ = %d\n", timing->vactive.typ); printf("timing->pixelclock.typ = %d\n", timing->pixelclock.typ); printf("timing->hfront_porch.typ = %d\n", timing->hfront_porch.typ); printf("timing->hsync_len.typ = %d\n", timing->hsync_len.typ); printf("timing->hback_porch.typ = %d\n", timing->hback_porch.typ); printf("timing->vfront_porch.typ %d\n", timing->vfront_porch.typ); printf("timing->vsync_len.typ = %d\n", timing->vsync_len.typ); printf("timing->vback_porch.typ = %d\n", timing->vback_porch.typ); printf("panel_bits_per_pixel = %d\n", panel_bpp); } static int display_update_config_from_edid(struct udevice *dp_dev, int *panel_bppp, struct display_timing *timing) { int ret; ret = display_read_timing(dp_dev, timing); if (ret) return ret; return 0; } static int display_init(struct udevice *dev, void *lcdbase, int fb_bits_per_pixel, struct display_timing *timing) { struct display_plat *disp_uc_plat; struct dc_ctlr *dc_ctlr; const void *blob = gd->fdt_blob; struct udevice *dp_dev; const int href_to_sync = 1, vref_to_sync = 1; int panel_bpp = 18; /* default 18 bits per pixel */ u32 plld_rate; int ret; /* * Before we probe the display device (eDP), tell it that this device * is are the source of the display data. */ ret = uclass_find_first_device(UCLASS_DISPLAY, &dp_dev); if (ret) { debug("%s: device '%s' display not found (ret=%d)\n", __func__, dev->name, ret); return ret; } disp_uc_plat = dev_get_uclass_platdata(dp_dev); debug("Found device '%s', disp_uc_priv=%p\n", dp_dev->name, disp_uc_plat); disp_uc_plat->src_dev = dev; ret = uclass_get_device(UCLASS_DISPLAY, 0, &dp_dev); if (ret) { debug("%s: Failed to probe eDP, ret=%d\n", __func__, ret); return ret; } dc_ctlr = (struct dc_ctlr *)fdtdec_get_addr(blob, dev->of_offset, "reg"); if (fdtdec_decode_display_timing(blob, dev->of_offset, 0, timing)) { debug("%s: Failed to decode display timing\n", __func__); return -EINVAL; } ret = display_update_config_from_edid(dp_dev, &panel_bpp, timing); if (ret) { debug("%s: Failed to decode EDID, using defaults\n", __func__); dump_config(panel_bpp, timing); } /* * The plld is programmed with the assumption of the SHIFT_CLK_DIVIDER * and PIXEL_CLK_DIVIDER are zero (divide by 1). See the * update_display_mode() for detail. */ plld_rate = clock_set_display_rate(timing->pixelclock.typ * 2); if (plld_rate == 0) { printf("dc: clock init failed\n"); return -EIO; } else if (plld_rate != timing->pixelclock.typ * 2) { debug("dc: plld rounded to %u\n", plld_rate); timing->pixelclock.typ = plld_rate / 2; } /* Init dc */ ret = tegra_dc_init(dc_ctlr); if (ret) { debug("dc: init failed\n"); return ret; } /* Configure dc mode */ ret = update_display_mode(dc_ctlr, timing, href_to_sync, vref_to_sync); if (ret) { debug("dc: failed to configure display mode\n"); return ret; } /* Enable dp */ ret = display_enable(dp_dev, panel_bpp, timing); if (ret) { debug("dc: failed to enable display: ret=%d\n", ret); return ret; } ret = update_window(dc_ctlr, (ulong)lcdbase, fb_bits_per_pixel, timing); if (ret) { debug("dc: failed to update window\n"); return ret; } return 0; } enum { /* Maximum LCD size we support */ LCD_MAX_WIDTH = 1920, LCD_MAX_HEIGHT = 1200, LCD_MAX_LOG2_BPP = 4, /* 2^4 = 16 bpp */ }; static int tegra124_lcd_init(struct udevice *dev, void *lcdbase, enum video_log2_bpp l2bpp) { struct video_priv *uc_priv = dev_get_uclass_priv(dev); struct display_timing timing; int ret; clock_set_up_plldp(); clock_start_periph_pll(PERIPH_ID_HOST1X, CLOCK_ID_PERIPH, 408000000); clock_enable(PERIPH_ID_HOST1X); clock_enable(PERIPH_ID_DISP1); clock_enable(PERIPH_ID_PWM); clock_enable(PERIPH_ID_DPAUX); clock_enable(PERIPH_ID_SOR0); udelay(2); reset_set_enable(PERIPH_ID_HOST1X, 0); reset_set_enable(PERIPH_ID_DISP1, 0); reset_set_enable(PERIPH_ID_PWM, 0); reset_set_enable(PERIPH_ID_DPAUX, 0); reset_set_enable(PERIPH_ID_SOR0, 0); ret = display_init(dev, lcdbase, 1 << l2bpp, &timing); if (ret) return ret; uc_priv->xsize = roundup(timing.hactive.typ, 16); uc_priv->ysize = timing.vactive.typ; uc_priv->bpix = l2bpp; video_set_flush_dcache(dev, 1); debug("%s: done\n", __func__); return 0; } static int tegra124_lcd_probe(struct udevice *dev) { struct video_uc_platdata *plat = dev_get_uclass_platdata(dev); ulong start; int ret; start = get_timer(0); ret = tegra124_lcd_init(dev, (void *)plat->base, VIDEO_BPP16); debug("LCD init took %lu ms\n", get_timer(start)); if (ret) printf("%s: Error %d\n", __func__, ret); return 0; } static int tegra124_lcd_bind(struct udevice *dev) { struct video_uc_platdata *uc_plat = dev_get_uclass_platdata(dev); uc_plat->size = LCD_MAX_WIDTH * LCD_MAX_HEIGHT * (1 << VIDEO_BPP16) / 8; debug("%s: Frame buffer size %x\n", __func__, uc_plat->size); return 0; } static const struct udevice_id tegra124_lcd_ids[] = { { .compatible = "nvidia,tegra124-dc" }, { } }; U_BOOT_DRIVER(tegra124_dc) = { .name = "tegra124-dc", .id = UCLASS_VIDEO, .of_match = tegra124_lcd_ids, .bind = tegra124_lcd_bind, .probe = tegra124_lcd_probe, };